Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning
Abstract
:1. Introduction
- The objective of this study is to build an efficient hammer sounding analysis system for concrete hammering inspection. To this end, a novel online learning framework had been proposed, which can effectively characterize discriminant information from large-scale response spectrum data in an incremental way.
- Various state-of-the-art online learning algorithms have been reviewed and evaluated for the application of response pattern classification. The side-by-side comparison results can inspire other applications with streaming data input, not limited to the hammer sounding analysis discussed in this study.
- Unlike conventional studies which commonly conduct experiments on laboratory-scale data, a massive dataset has been created during this study, which includes more than 10,000 samples collected from different types of concrete structures. Moreover, each instance has been annotated by professional inspectors with healthy/defective label. The database laid solid fundamentals for learning scheme validation.
2. Related Work
2.1. Impact-Echo Method and Air-Coupled Hammer Sounding Inspection
2.2. Data-Driven Hammer Sounding Investigation System for Non-Destructive Test of Concrete Structure
3. The Proposed Online Learning Framework for Hammering Response Pattern Analysis
3.1. Feature Extraction
3.2. Online Learning Algorithms in Evaluation
Algorithrm 1. Online Learning () |
Initializationw1 ← 0 fort = 1, 2, …,T return (wt + 1) |
3.2.1. Perceptron
3.2.2. Online Gradient Descent (OGD)
3.2.3. Passive-Aggressive Learning Algorithm [PA]
3.2.4. The Second Order Perception (SOP)
3.2.5. The Confidence-Weighted Learning Algorithm (CW)
3.2.6. Adaptive Regularization of Weight Vectors (AROW)
3.2.7. Soft Confidence-Weighted Learning (SCW-II)
3.3. Hammering Response Data Visualization
4. Experimental Validations
4.1. Data Collection
4.2. Experimental Settings
4.3. Echo Data Visualization
4.4. Empirical Evaluation Results
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sansalone, M.J.; William, B.S.Impact-echo. Nondestructive Evaluation of Concrete and Masonry; Bullbrier Press: Jersey Shore, PA, USA, 1997. [Google Scholar]
- Schubert, F.; Kohler, B. Ten lectures on impact-echo.J. Nondestruc. Eval.2008,27, 5–21. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K.Structural Health Monitoring: A Machine Learning Perspective; John Wiley Sons: New York, NY, USA, 2012. [Google Scholar]
- Igual, J.; Salazar, A.; Safont, G.; Vergara, L. Semi-supervised Bayesian classification of materials with impact-echo signals.Sensors2015,15, 11528–11550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.K.; Yan, W.; Cui, D.M. Concrete condition assessment using impact-echo method and extreme learning machines.Sensors2016,16, 447. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Takumi, K.; Iwata, M.; Murakawa, M.; Higuchi, T.; Kubota, T.; Yui, T. Noise Reduction Methods for Hammering Impact Acoustic Inspection: An Experimental Comparison. In Proceedings of the International Conference on Structural Health Monitoring, Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- Ye, J.; Takumi, K.; Iwata, M.; Murakawa, M. Noise robust hammering echo analysis for concrete structure assessment under mismatch conditions: A sparse coding approach. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6. [Google Scholar]
- Gepperth, A.; Hammer, B. Incremental learning algorithms and applications. In Proceedings of the European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 27–29 April 2016; pp. 357–368. [Google Scholar]
- Hoi, S.C.H.; Wang, J.; Zhao, P. Libol: A library for online learning algorithms.J. Mach. Learn. Res.2014,15, 495–499. [Google Scholar]
- Carino, N.J.; Sansalone, M.; Hsu, N.N. A point source-point receiver, pulse-echo technique for flaw detection in concrete.J. Am. Concr. Inst.1986,2, 199–208. [Google Scholar]
- Sansalone, M. Impact-echo: The complete story.Struc. J.1997,94, 777–786. [Google Scholar]
- Yeh, P.L.; Liu, P.L. Application of the wavelet transform and the enhanced Fourier spectrum in the impact echo test.NDT Int.2008,41, 382–394. [Google Scholar] [CrossRef]
- Hola, J.; Sadowski, L.; Sadowski, K. Nondestructive identification of delaminations in concrete floor toppings with acoustic methods.Autom. Constr.2011,20, 799–807. [Google Scholar] [CrossRef]
- Gibson, A.; Popovics, J.S. Lamb wave basis for impact-echo method analysis.J. Eng. Mech.2005,131, 438–443. [Google Scholar] [CrossRef]
- Zhu, J.; Popovics, J.S. Imaging concrete structures using air-coupled impact-echo.J. Eng. Mech.2007,133, 628–640. [Google Scholar] [CrossRef]
- Groschup, R.; Grosse, C.U. Development of an Efficient Air-Coupled Impact-Echo Scanner for Concrete Pavements. In Proceedings of the World Conference on Non-Destructive Testing, Munich, Germany, 13–17 June 2016. [Google Scholar]
- Sadowski, Ł. Non-destructive identification of pull-off adhesion between concrete layers.Autom. Constr.2015,57, 146–155. [Google Scholar] [CrossRef]
- Li, B.; Ushiroda, K.; Yang, L.; Song, Q.; Xiao, J. Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM.Int. J. Intell. Robot. Appl.2017,1, 255–270. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain.Psychol. Rev.1958,7, 551–585. [Google Scholar] [CrossRef]
- Zinkevich, M. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the International Conference on Machine Learning (ICML), Pittsburgh, PA, USA, 25–29 June 2003; pp. 928–936. [Google Scholar]
- Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y. Online passive aggressive algorithms.J. Mach. Learn. Res.2006,7, 551–585. [Google Scholar]
- Cesa-Bianchi, N.; Conconi, A.; Gentile, C. A second-order perceptron algorithm.SIAM J. Comput.2005,34, 640–668. [Google Scholar] [CrossRef]
- Crammer, K.; Dredze, M.; Pereira, F. Exact convex confidence-weighted learning. In Proceedings of the Neural Information Processing System Conference (NIPS), Vancouver, BC, Canada, 8–11 December 2008; pp. 345–352. [Google Scholar]
- Crammer, K.; Kulesza, A.; Dredze, M. Adaptive regularization of weight vectors. In Proceedings of the Neural Information Processing System Conference (NIPS), Vancouver, BC, Canada, 7–10 December 2009; pp. 414–422. [Google Scholar]
- Drezde, M.; Crammer, K.; Pereira, F. Confidence-weighted linear classification. In Proceedings of the International conference on machine learning (ICML), Edinburgh, UK, 26 June–1 July 2012; pp. 121–128. [Google Scholar]
- Christopher, M.B.Pattern Recognition and Machine Learning; Springer Science Business Media: New York, NY, USA, 2006. [Google Scholar]
Device | Specification | |
---|---|---|
1 | Hammer device | Solenoid: Takaha Kikou Co., Ltd., CB15670033 |
2 | Transducer | Low-cost condenser microphone: ECM PC60 |
3 | Recorder | Olympus Voice-Trek V-803 |
Index | Algorithm | C | Others | ||
---|---|---|---|---|---|
1 | Perceptron | / | / | / | parameter free |
2 | OGD | / | / | ||
3 | PA | / | / | / | parameter free |
4 | SOP | / | / | parameter free | |
5 | CW | / | |||
6 | AROW | / | |||
7 | SCW-II |
Algorithm: | Mistake Rate (M ± Std) | Size of SVs (M ± Std) | Cpu Time (M ± Std) |
---|---|---|---|
Perceptron | 0.144 ± 0.002 | 1570.8 ± 25.2 | 0.647 ± 0.056 |
OGD | 0.128 ± 0.005 | 1460.7 ± 59.3 | 0.718 ± 0.045 |
PA | 0.147 ± 0.002 | 2945.8 ± 41.2 | 0.699 ± 0.037 |
SOP | 0.181 ± 0.002 | 1983.8 ± 27.0 | 9.708 ± 0.608 |
CW | 0.126 ± 0.002 | 3000.1 ± 36.6 | 3.460 ± 0.248 |
AROW | 0.115 ± 0.004 | 6378.9 ± 278.2 | 6.357 ± 0.429 |
SCW-II | 0.105 ± 0.002 | 3128.4 ± 61.6 | 3.577 ± 0.244 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Kobayashi, T.; Iwata, M.; Tsuda, H.; Murakawa, M. Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning.Sensors2018,18, 833. https://doi.org/10.3390/s18030833
Ye J, Kobayashi T, Iwata M, Tsuda H, Murakawa M. Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning.Sensors. 2018; 18(3):833. https://doi.org/10.3390/s18030833
Chicago/Turabian StyleYe, Jiaxing, Takumi Kobayashi, Masaya Iwata, Hiroshi Tsuda, and Masahiro Murakawa. 2018. "Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning"Sensors 18, no. 3: 833. https://doi.org/10.3390/s18030833
APA StyleYe, J., Kobayashi, T., Iwata, M., Tsuda, H., & Murakawa, M. (2018). Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning.Sensors,18(3), 833. https://doi.org/10.3390/s18030833