A Portable Laser Photoacoustic Methane Sensor Based on FPGA
Abstract
:1. Introduction
2. Sensor Design
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, J.; Lu, X.T.; Yang, Z.H. Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis.Spectrosc. Spect. Anal.2014,34, 1249–1252. [Google Scholar]
- Jahjah, M.; Ren, W.; Stefanski, P.; Lewicki, R.; Zhang, J.W.; Jiang, W.Z.; Tarka, J.; Tittel, F.K. A compact QCL based methane and nitrous oxide sensor for environmental and medical applications.Analyst2014,139, 2065–2069. [Google Scholar] [CrossRef] [PubMed]
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction.Int. J. Coal Geol.2011,86, 121–156. [Google Scholar] [CrossRef]
- Cheng, Y.-P.; Wang, L.; Zhang, X.-L. Environmental impact of coal mine methane emissions and responding strategies in China.Int. J. Greenh. Gas. Control2011,5, 157–166. [Google Scholar] [CrossRef]
- Costello, B.P.J.D.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: A review.J. Breath Res.2013,7, 024001. [Google Scholar] [CrossRef] [PubMed]
- Shemshad, J.; Aminossadati, S.M.; Kizil, M.S. A review of developments in near infrared methane detection based on tunable diode laser.Sens. Actuators B Chem.2012,171, 77–92. [Google Scholar] [CrossRef]
- Wang, C.J.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits.Sensors2009,9, 8230–8262. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.W.; Bartlome, R.; Marinov, D.; Rey, J.M.; Vogler, D.E.; Wachter, H. Trace gas monitoring with infrared laser-based detection schemes.Appl. Phys. B2008,90, 289–300. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Liang, L.; Yu, Q. Tunable fiber laser based photoacoustic spectrometer for multi-gas analysis.Sens. Actuators B Chem.2011,160, 1268–1272. [Google Scholar] [CrossRef]
- Jahjah, M.; Jiang, W.Z.; Sanchez, N.P.; Ren, W.; Patimisco, P.; Spagnolo, V.; Herndon, S.C.; Griffin, R.J.; Tittel, F.K. Atmospheric CH4 and N2O measurements near greater Houston area landfills using a QCL-based qepas sensor system during discover-AQ 2013.Opt. Lett.2014,39, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.K.N. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives.Eur. Phys. J. Spec. Top.2008,153, 1–18. [Google Scholar] [CrossRef]
- Rocha, M.V.; Sthel, M.S.; Silva, M.G.; Paiva, L.B.; Pinheiro, F.W.; Miklos, A.; Vargas, H. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines.Appl. Phys. B2012,106, 701–706. [Google Scholar] [CrossRef]
- Holthoff, E.L.; Heaps, D.A.; Pellegrino, P.M. Development of a mems-scale photoacoustic chemical sensor using a quantum cascade laser.IEEE Sens. J.2010,10, 572–577. [Google Scholar] [CrossRef]
- Sampaolo, A.; Patimisco, P.; Giglio, M.; Vitiello, M.; Beere, H.; Ritchie, D.; Scamarcio, G.; Tittel, F.; Spagnolo, V. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy.Sensors2016,16, 439. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary).Rev. Sci. Instrum.2003,74, 485–490. [Google Scholar] [CrossRef]
- Hanyecz, V.; Mohacsi, A.; Pogany, A.; Varga, A.; Bozoki, Z.; Kovacs, I.; Szabo, G. Multi-component photoacoustic gas analyzer for industrial applications.Vib. Spectrosc.2010,52, 63–68. [Google Scholar] [CrossRef]
- Besson, J.P.; Schilt, S.; Thevenaz, L. Sub-ppm multi-gas photoacoustic sensor.Spectrochim. Acta. A2006,63, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.E.; Pushkarsky, M.; Patel, C.K.N. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers.Appl. Opt.2003,42, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Bakhirkin, Y.A.; Tittel, F.K. Methane detection by means of quartz enhanced photoacoustic spectroscopy in NIR. In Proceedings of the 2007 Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2007), Baltimore, MD, USA, 6–11 May 2007. [CrossRef]
- Ma, Y.; Yu, G.; Zhang, J.; Yu, X.; Sun, R.; Tittel, F. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.Sensors2015,15, 7596–7604. [Google Scholar] [CrossRef] [PubMed]
- Bernard-Schwarz, M.; Zwick, W.; Wenzel, L.; Klier, J.; Groschl, M. Field programmable gate array-assigned complex-valued computation and its limits.Rev. Sci. Instrum.2014,85, 093104. [Google Scholar] [CrossRef] [PubMed]
- Schwettmann, A.; Sedlacek, J.; Shaffer, J.P. Field-programmable gate array based locking circuit for external cavity diode laser frequency stabilization.Rev. Sci. Instrum.2011,82, 103103. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K. A highly integrated FPGA-based nuclear magnetic resonance spectrometer.Rev. Sci. Instrum.2007,78, 033103. [Google Scholar] [CrossRef] [PubMed]
- Restelli, A.; Abbiati, R.; Geraci, A. Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications.Rev. Sci. Instrum.2005,76, 093112. [Google Scholar] [CrossRef]
- Jinghong, L.; Kai, L.; Peng, Y. Design and Implementation of Flame Combustion State Detection System Based on FPGA. In Proceedings of the 2015 27th Chinese Control and Decision Conference, Qingdao, China, 23–25 May 2015.
- Botella, G.; Martín H., J.A.; Santos, M.; Meyer-Baese, U. FPGA-based multimodal embedded sensor system integrating low- and mid-level vision.Sensors2011,11, 8164–8179. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Botella, G.; Meyer-Baese, U.; García, C.; Sanz, C.; Prieto-Matías, M.; Tirado, F. A low cost matching motion estimation sensor based on the NIOS II microprocessor.Sensors2012,12, 13126–13149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguezdonate, C.; Botella, G.; Garcia, C.; Cabalyepez, E.; Prietomatias, M. Early experiences with opencl on FPGAs: Convolution case study. In Proceedings of the IEEE International Symposium on Field-Programmable Custom Computing Machines, Vancouver, BC, Canada, 3–5 May 2015; p. 235.
- González, D.; Botella, G.; García, C.; Prieto, M.; Tirado, F. Acceleration of block-matching algorithms using a custom instruction-based paradigm on a NIOS II microprocessor.EURASIP J. Adv. Signal. Process.2013,2013, 1–20. [Google Scholar] [CrossRef]
- Windh, S.; Ma, X.; Halstead, R.J.; Budhkar, P.; Luna, Z.; Hussaini, O.; Najjar, W.A. High-level language tools for reconfigurable computing.Proc. IEEE2015,103, 390–408. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.E.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database.J. Quant. Spectrosc. Radiat. Transfer2009,110, 533–572. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, H.; Liu, X. A Portable Laser Photoacoustic Methane Sensor Based on FPGA.Sensors2016,16, 1551. https://doi.org/10.3390/s16091551
Wang J, Wang H, Liu X. A Portable Laser Photoacoustic Methane Sensor Based on FPGA.Sensors. 2016; 16(9):1551. https://doi.org/10.3390/s16091551
Chicago/Turabian StyleWang, Jianwei, Huili Wang, and Xianyong Liu. 2016. "A Portable Laser Photoacoustic Methane Sensor Based on FPGA"Sensors 16, no. 9: 1551. https://doi.org/10.3390/s16091551
APA StyleWang, J., Wang, H., & Liu, X. (2016). A Portable Laser Photoacoustic Methane Sensor Based on FPGA.Sensors,16(9), 1551. https://doi.org/10.3390/s16091551