Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Airborne Laser Scanning (ALS)
2.3. GEDI
2.4. Sentinel-2
2.5. Ancillary Data
3. Methodology
3.1. Data Preprocessing
- Lon_lowestmode, Lat_lowestmode, and shot_number: These values indicate the longitude, latitude, and identification number of the footprints, which can be used to find the footprints’ locations.
- quality_flag: The value indicates the quality of the footprint. If the quality_flag is 1, it means that the footprint meets the criteria based on energy, sensitivity, amplitude, and real-time surface tracking quality, and thus is retained.
- degrade_flag: If the value is 1, it means that the state of the pointing or geolocated information is degraded; thus, only the footprints with degrade_flag = 0 are retained.
- Sensitivity: The probability that the echo signal reaches the ground from the top of the canopy, with a value greater than or equal to 0.9 representing good spot quality. The sensitivity thresholds varied for different land cover types, with a threshold of ≥ 0.95 set in this study.
3.2. Feature Variable Extraction
3.3. AGB Estimation at the Footprint Level
3.3.1. Feature Variable Selection
3.3.2. Footprint-Level AGB Modeling
3.4. Mapping Wall-to-Wall Forest AGB Based on the Geostatistical Co-Kriging Method
3.4.1. Semivariance Function
3.4.2. Co-Kriging Interpolation
3.5. Accuracy Evaluation
4. Results and Analysis
4.1. Variable Selection Result
4.2. Footprint-Level AGB Estimation Results
4.3. Wall-to-Wall Forest AGB Mapping Results
4.3.1. Accuracy Analysis of Forest AGB Mapping Results
4.3.2. Spatial Distribution Characteristics of Wall-to-Wall Forest AGB
5. Discussion
5.1. Selection of the Interpolation Model
5.2. The Impact of Covariate Selection on the Interpolation Accuracy of AGB
5.3. Accuracy Analysis of Interpolation and Regression Mapping Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO.The State of the World’s Forests 2018: Forest Pathways to Sustainable Development; UN: New York, NY, USA, 2018. [Google Scholar]
- Zhang, C.; Ju, W.; Chen, J.M.; Wang, X.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years.Environ. Res. Lett.2015,10, 114021. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle.Remote Sens. Environ.2011,115, 2850–2860. [Google Scholar] [CrossRef]
- Wang, P.; Tan, S.; Zhang, G.; Wang, S.; Wu, X. Remote sensing estimation of forest aboveground biomass based on Lasso-SVR.Forests2022,13, 1597. [Google Scholar] [CrossRef]
- Chen, Q.; McRoberts, R.E.; Wang, C.; Radtke, P.J. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference.Remote Sens. Environ.2016,184, 350–360. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management.Commun. Earth Environ.2022,3, 8. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.; et al. International benchmarking of terrestrial laser scanning approaches for forest inventories.ISPRS J. Photogramm. Remote Sens.2018,144, 137–179. [Google Scholar] [CrossRef]
- Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J.; et al. Is field-measured tree height as reliable as believed–A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest.ISPRS J. Photogramm. Remote Sens.2019,147, 132–145. [Google Scholar] [CrossRef]
- Arévalo, P.; Baccini, A.; Woodcock, C.E.; Olofsson, P.; Walker, W.S. Continuous mapping of aboveground biomass using Landsat time series.Remote Sens. Environ.2023,288, 113483. [Google Scholar] [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery.Remote Sens. Environ.2022,282, 113232. [Google Scholar] [CrossRef]
- Qin, S.; Nie, S.; Guan, Y.; Zhang, D.; Wang, C.; Zhang, X. Forest emissions reduction assessment using airborne LiDAR for biomass estimation.Resour. Conserv. Recycl.2022,181, 106224. [Google Scholar] [CrossRef]
- Silveira, E.M.; Radeloff, V.C.; Martinuzzi, S.; Pastur, G.J.M.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.O.; Ciuffoli, L.; Rosas, Y.M. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery.Remote Sens. Environ.2023,285, 113391. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in remote sensing to forest ecology and management.One Earth2020,2, 405–412. [Google Scholar] [CrossRef]
- Moradi, F.; Sadeghi, S.M.M.; Heidarlou, H.B.; Deljouei, A.; Boshkar, E.; Borz, S.A. Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data.Ann. For. Res.2022,65, 165–182. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Wang, F.; Li, M. Estimation of Forest Aboveground Biomass in Karst Areas Using Multi-Source Remote Sensing Data and the K-DBN Algorithm.Remote Sens.2021,13, 5030. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; López Sánchez, C.A.; Solís-Moreno, R.; Corral-Rivas, J.J. Geospatial estimation of above ground forest biomass in the Sierra Madre Occidental in the state of Durango, Mexico.Forests2016,7, 70. [Google Scholar] [CrossRef]
- Kumar, P.; Krishna, A.P. Forest biomass estimation using multi-polarization SAR data coupled with optical data.Curr. Sci.2020,119, 1316–1321. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Fan, W.; Wu, G. Comparison of the accuracy of forest biomass estimation by interference water cloud model for sentinel data with different polarization modes.J. Northeast For. Univ.2020,48, 27–32. [Google Scholar]
- Ji, Y.; Wang, L.; Zhang, W.; Marino, A.; Wang, M.; Ma, J.; Shi, J.; Jing, Q.; Zhang, F.; Zhao, H. Forest above-ground biomass estimation using X, C, L, and P band SAR polarimetric observations and different inversion models.Int. J. Digit. Earth2024,17, 2310730. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Zhao, X.; Xu, K.; Wei, D.; Kelly, M.; et al. Lidar boosts 3D ecological observations and modelings: A review and perspective.IEEE Geosci. Remote Sens. Mag.2020,9, 232–257. [Google Scholar] [CrossRef]
- Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Antonarakis, A.; Strahler, A. Management. On promoting the use of lidar systems in forest ecosystem research.For. Ecol. Manag.2019,450, 117484. [Google Scholar] [CrossRef]
- Kozak, I.; Popov, M.; Semko, I.; Mylenka, M.; Kozak-Balaniuk, I.J.U.F.; Greening, U. Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography.Urban For. Urban Green.2023,79, 127793. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Chen, C.; Li, X.; Mao, F.; Lv, L.; Yu, J.; Song, M.; Huang, L.; Chen, J. UAV-LiDAR Integration with Sentinel-2 Enhances Precision in AGB Estimation for Bamboo Forests.Remote Sens.2024,16, 705. [Google Scholar] [CrossRef]
- Hartley, R.J.; Leonardo, E.M.; Massam, P.; Watt, M.S.; Estarija, H.J.; Wright, L.; Melia, N.; Pearse, G.D. An assessment of high-density UAV point clouds for the measurement of young forestry trials.Remote Sens.2020,12, 4039. [Google Scholar] [CrossRef]
- Padalia, H.; Prakash, A.; Watham, T.J. Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics.Ecol. Inf.2023,77, 102234. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Z.; Chen, B.; Liang, X. Progress and trend of spaceborne lidar forest detection.Aerosp. Shanghai2019,36, 20–28. [Google Scholar]
- Salas, E.A.L. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review.Geo-Spat. Inf. Sci.2021,24, 179–200. [Google Scholar] [CrossRef]
- Varvia, P.; Saarela, S.; Maltamo, M.; Packalen, P.; Gobakken, T.; Næsset, E.; Ståhl, G.; Korhonen, L. Estimation of boreal forest biomass from ICESat-2 data using hierarchical hybrid inference.Remote Sens. Environ.2024,311, 114249. [Google Scholar] [CrossRef]
- Liang, M.; Duncanson, L.; Silva, J.A.; Sedano, F. Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat.Remote Sens. Environ.2023,284, 113367. [Google Scholar] [CrossRef]
- Shendryk, Y. Fusing GEDI with earth observation data for large area aboveground biomass mapping.Int. J. Appl. Earth Obs. Geoinf.2022,115, 103108. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Bao, G.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved object-based estimation of forest aboveground biomass by integrating LiDAR data from GEDI and ICESat-2 with multi-sensor images in a heterogeneous mountainous region.Remote Sens.2022,14, 2743. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to estimate and map forest aboveground biomass: A first example.Remote Sens.2020,12, 1824. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Ji, Y.; Marino, A.; Li, C.; Wang, L.; Zhao, H.; Wang, M. Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI.Forests2024,15, 215. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Hu, X.; Zhang, P. Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification.Forests2023,14, 1414. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random Forest algorithm in northwest Himalayan foothills of India.Geophys. Res. Lett.2021,48, e2021GL093799. [Google Scholar] [CrossRef]
- Song, H.; Xi, L.; Shu, Q.; Wei, Z.; Qiu, S. Estimate forest aboveground biomass of mountain by ICESat-2/ATLAS data interacting cokriging.Forests2022,14, 13. [Google Scholar] [CrossRef]
- Feng, Y.Spatial Statistics Theory and Its Application in Forestry; China Forestry Publishing House: Beijing, China, 2008. [Google Scholar]
- Chiles, J.-P.; Delfiner, P.Geostatistics: Modeling Spatial Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 713. [Google Scholar]
- Zhao, M.; Zhao, Y.; Shen, T.; Li, S.; Yao, G.; Chen, Z.; Liu, Y.; Xu, Y. Research on the distribution of soil manganese and zinc pollution based on in-situ PXRF data, combined with Kriging interpolation and high-resolution mapping.Res. Environ. Sci.2023,36, 599–609. [Google Scholar]
- Wang, C.; Qu, Y.; Shuai, Y. The collaborative Kriging method based on ArcGIS is used to predict the spatial distribution of gas pipeline network.Geomat. Spat. Inf. Technol.2022,45, 28–32. [Google Scholar]
- Wang, H.; Zhao, M.; Huang, X.; Song, X.; Cai, B.; Tang, R.; Sun, J.; Han, Z.; Yang, J.; Liu, Y. Improving prediction of soil heavy metal (loid) concentration by developing a combined Co-kriging and geographically and temporally weighted regression (GTWR) model.J. Hazard. Mater.2024,468, 133745. [Google Scholar] [CrossRef]
- Xu, L.; Shu, Q.; Fu, H.; Zhou, W.; Luo, S.; Gao, Y.; Yu, J.; Guo, C.; Yang, Z.; Xiao, J. Estimation of Quercus biomass in Shangri-La based on GEDI spaceborne LiDAR data.Forests2023,14, 876. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Hu, T.; Yang, Q.; Liu, B.; Deng, Y.; Tang, H.; Tang, Z.; Fang, J.; Guo, Q. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data.Remote Sens. Environ.2022,269, 112844. [Google Scholar] [CrossRef]
- Li, H.; Nie, S.; Xi, X.; Wang, H.; Zhang, H.; Wang, C. Forest aboveground biomass inversion based on ICESat-2 / ATLAS and characteristic parameters.Laser J.2023,44, 62–67. [Google Scholar]
- Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping.Remote Sens. Environ.2021,253, 112234. [Google Scholar] [CrossRef]
- Cooper, S.; Okujeni, A.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Combining simulated hyperspectral EnMAP and Landsat time series for forest aboveground biomass mapping.Int. J. Appl. Earth Obs. Geoinf.2021,98, 102307. [Google Scholar] [CrossRef]
- CMS: LiDAR-Derived Biomass, Canopy Height and Cover, Sonoma County, California. 2013. Available online:https://daac.ornl.gov/CMS/guides/CMS_LiDAR_Biomass_CanHt_Sonoma.html (accessed on 10 August 2023).
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography.Sci. Remote Sens.2020,1, 100002. [Google Scholar] [CrossRef]
- Wang, C. Accuracy Analysis and Improvement Methods for Forest Structure and Functioning Parameters of GEDI Products. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2023. [Google Scholar]
- Duan, J.; Wang, H.; Wang, C.; Nie, S.; Yang, X.; Xi, X. Denoising and classification of urban ICESat-2 photon data fused with Sentinel-2 spectral images.Int. J. Digit. Earth2023,16, 4346–4367. [Google Scholar] [CrossRef]
- Zhou, Z. Research on Mangrove Remote Sensing Information Recognition Based on Multi-Source Remote Sensing Data. Master’s Thesis, Jilin University, Jilin, China, 2019. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission.Rev. Geophys.2007,45. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery.ISPRS J. Photogramm. Remote Sens.2019,151, 277–289. [Google Scholar] [CrossRef]
- 2020 Global 30 m Surface Coverage Fine Classification Product V1.0. Available online:https://data.casearth.cn/sdo/detail/5fbc7904819aec1ea2dd7061 (accessed on 12 February 2024).
- Ngo, Y.-N.; Ho Tong Minh, D.; Baghdadi, N.; Fayad, I. Tropical forest top height by GEDI: From sparse coverage to continuous data.Remote Sens.2023,15, 975. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data.Remote Sens. Environ.2021,253, 112165. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally.Nat. Rev. Earth Environ.2022,3, 477–493. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models.Int. J. Digit. Earth2023,16, 4471–4491. [Google Scholar] [CrossRef]
- Guo, Q.; Du, S.; Jiang, J.; Guo, W.; Zhao, H.; Yan, X.; Zhao, Y.; Xiao, W. Combining GEDI and sentinel data to estimate forest canopy mean height and aboveground biomass.Ecol. Inf.2023,78, 102348. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.; Zhao, J.; Liu, L.; Qin, P.; Wang, H.; Zhan, T. Real-time mountain fire risk assessment model of transmission corridor based on feature engineering, ensemble learning and model fusion.Power Syst. Technol.2023,47, 4727–4738. [Google Scholar]
- Saber, M.; Boulmaiz, T.; Guermoui, M.; Abdrabo, K.I.; Kantoush, S.A.; Sumi, T.; Boutaghane, H.; Hori, T.; Binh, D.V.; Nguyen, B.Q.; et al. Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling.Geomat. Nat. Hazards Risk2023,14, 2203798. [Google Scholar] [CrossRef]
- Xu, L.; Lai, H.; Yu, J.; Luo, S.; Guo, C.; Gao, Y.; Zhou, W.; Wang, S.; Shu, Q. Carbon Storage Estimation of Quercus aquifolioides Based on GEDI Spaceborne LiDAR Data and Landsat 9 Images in Shangri-La.Sustainability2023,15, 11525. [Google Scholar] [CrossRef]
- Esfandiari, M.; Jabari, S.; McGrath, H.; Coleman, D. Flood mapping using random forest and identifying the essential conditioning factors; a case study in Fredericton, New Brunswick, Canada.ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.2020,3, 609–615. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Z.; Zhang, H.; Zhang, H.; Qiu, H. Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data.Remote Sens.2023,15, 5653. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling.Expert Syst. Appl.2019,134, 93–101. [Google Scholar] [CrossRef]
- Mälicke, M. SciKit-GStat 1.0: A SciPy-flavored geostatistical variogram estimation toolbox written in Python.Geosci. Model Dev.2022,15, 2505–2532. [Google Scholar] [CrossRef]
- Musthafa, M.; Singh, G.; Kumar, P. Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India.Environ. Monit. Assess.2023,195, 71. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining kriging interpolation to improve the accuracy of forest aboveground biomass estimation using remote sensing data.IEEE Access2020,8, 128124–128139. [Google Scholar] [CrossRef]
- Byrd, K.B.; O’Connell, J.L.; Di Tommaso, S.; Kelly, M. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation.Remote Sens. Environ.2014,149, 166–180. [Google Scholar] [CrossRef]
- Zhen, X.; Lu, L.Geostatistics (Modern Spatial Statistics); Science Press: Beijing, China, 2018. [Google Scholar]
- Meiyan, L.; Sheng, N.; Cheng, W.; Xiaohuan, X.; Feng, C.; Baokun, F. Forest volume inversion based on ICESat-2 and Sentinel-2A data.Remote Sens. Nat. Resour.2024,36, 210–216. (In Chinese) [Google Scholar]
- Meng, P.; Wang, H.; Qin, S.; Li, X.; Song, Z.; Wang, Y.; Yang, Y.; Gao, J. Health assessment of plantations based on LiDAR canopy spatial structure parameters.Int. J. Digit. Earth2022,15, 712–729. [Google Scholar] [CrossRef]
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation.Int. J. Digit. Earth2013,6, 203–218. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Yang, J.; Li, L.; Wang, T. Snow avalanche susceptibility mapping from tree-based machine learning approaches in ungauged or poorly-gauged regions.Catena2023,224, 106997. [Google Scholar] [CrossRef]
- Bulut, S. Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, Türkiye.Ecol. Inf.2023,74, 101951. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Shao, Z.; Jiang, W.; Gao, H. Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China.Int. J. Digit. Earth2023,16, 158–182. [Google Scholar] [CrossRef]
- Silveira, E.M.; Silva, S.H.G.; Acerbi-Junior, F.W.; Carvalho, M.C.; Carvalho, L.M.T.; Scolforo, J.R.S.; Wulder, M.A. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment.Int. J. Appl. Earth Obs. Geoinf.2019,78, 175–188. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging.For. Ecol. Manag.2019,447, 12–25. [Google Scholar] [CrossRef]
- Du, H.; Zhou, G.; Fan, W.; Ge, H.; Xu, X.; Shi, Y.; Fan, W. Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory.J. Plant Ecol.2010,207, 131–139. [Google Scholar] [CrossRef]
- Lu, Y.Spatial-Temporal Co-Kriging Interpolation Method for Air Pollution Index Analysis; Chinese Academy of Surveying and Mapping: Beijing, China, 2018. [Google Scholar]
- Zhou, Y.; Xie, B.; Li, M. Regional forest aboveground biomass mapping based on random forest and Kriging method—A case study of forest in northern Guangdong.J. Nanjing For. Univ. (Nat. Sci. Ed.)2024,48, 169. [Google Scholar]
- Li, J.; Li, C.; Yin, Z. Kriging interpolation method based on ArcGIS and its application.Bull. Surv. Map.2013,9, 87–90+97. [Google Scholar]
- Dowd, P.A.; Pardo-Igúzquiza, E. The many forms of co-kriging: A diversity of multivariate spatial estimators.Math. Geosci.2024,56, 387–413. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Qiu, A. A co-Kriging interpolation method based on principal component analysis.Bull. Surv. Map.2017,11, 51. [Google Scholar]
- High Carbon Stock Mapping at Large Scale with Optical Satellite Imagery and Spaceborne LIDAR. Available online:https://arxiv.org/abs/2107.07431 (accessed on 20 January 2024).
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Kumar, A.S. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam.Ecol. Inf.2019,50, 24–32. [Google Scholar] [CrossRef]
Product | Parameters | Level | Resolution |
---|---|---|---|
L2A | Canopy height metrics | Footprint level | 25 m |
L2B | Canopy cover (total and vertical profiles of canopy cover), | Footprint level | 25 m |
Plant Area Index (PAI), | |||
Plant Area Volume Density (PAVD), | |||
Foliage Height Diversity (FHD) |
Source | Type/Number | Feature | Description |
---|---|---|---|
GEDI | L2A (11) | rh90, rh91, rh92, rh93, rh94, rh95, rh96, rh97, rh98, rh99, rh100 | Relative height metrics |
L2B (28) | cover, pai, fhd_normal, paga_theta, landsat_treecover, | The footprint-level canopy coverage and vertical profile metrics | |
leaf_off_doy, leaf_on_doy, leaf_off_flag, modis_treecover, | |||
modis_nonvegetated, rg_aN, rv_aN, rx_energy_aN | |||
Sentinel-2 | Spectral band (10) | B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12 | Band reflectance information |
Spectral index (8) | NDVI, normalized difference vegetation index | (B8 − B4)/(B8 + B4) | |
RVI, relative vegetation index | B8/B4 | ||
EVI, enhanced vegetation index, | 2.5 × [(B8 − B4)/ (B8 + 6 × B4 − 7.5 × B2 + 1)] | ||
DVI, difference vegetation index | B8 − B4 | ||
MNDWI, modified normalized difference water index | (B3 − B11)/(B3 + B11) | ||
RGVI, red–green vegetation index | (B4 − B3)/(B4 + B3) | ||
SAVI, soil-adjusted vegetation index | [(B8 − B4)/(B8 + B4 + L)] × (1 + L) | ||
SVI, shadow vegetation index | (B8 − B4) × B8/(B8 + B4) | ||
Textural feature (170) | ASMi, CONTRASTi, CORRi, VARi, IDMi, SAVGi, SVAGi, | Reflecting surface characteristics of land cover | |
SENTi, ENTi, DVARi, DENTi, IMCORR1i, IMCORR2i, | |||
DISSi, INERTIAi, SHADEi, PROMi | |||
SRTM DEM | Terrain factor (3) | Elevation | Topographic-feature-related factors |
Slope | |||
Aspect |
Data | Model | Features | Runtime (s) | RMSE (Mg/ha) | rRMSE (%) | |
---|---|---|---|---|---|---|
GEDI | CatBoost | 16 | 45 | 0.84 | 55.32 | 30.23 |
RF | 16 | 62 | 0.82 | 59.49 | 32.07 | |
MLR | 31 | 85 | 0.77 | 67.71 | 36.69 | |
Sentinel-2 | CatBoost | 65 | 82 | 0.74 | 71.19 | 38.77 |
RF | 65 | 98 | 0.72 | 75.12 | 40.69 | |
MLR | 94 | 145 | 0.69 | 78.05 | 42.33 | |
GEDI + Sentinel-2 | CatBoost | 45 | 65 | 0.87 | 49.56 | 27.06 |
RF | 45 | 78 | 0.85 | 54.08 | 29.37 | |
MLR | 47 | 117 | 0.81 | 60.69 | 32.91 |
Cross-Validation Accuracy | ME (Mg/ha) | RMSE (Mg/ha) | MSE (Mg/ha)2 | ASE (Mg/ha)2 | RMSSE |
0.99 | 65.20 | 0.01 | 61.82 | 1.09 | |
MappingAccuracy | RMSE (Mg/ha) | rRMSE (%) | BIAS (Mg/ha) | ||
0.69 | 81.56 | 40.98 | −3.236 |
Variable | Model | Nugget | Sill | SR | Range (m) | RSS | ||
---|---|---|---|---|---|---|---|---|
Main variable | Predicted AGB | Linear | 0.013 | 0.019 | 0.27 | 56,837.21 | 0.73 | 7.44 × 10−6 |
Spherical | 0.001 | 0.016 | 0.97 | 6800.00 | 0.49 | 1.40 × 10−6 | ||
Exponential | 0.008 | 0.045 | 0.82 | 31,800.00 | 0.93 | 2.55 × 10−6 | ||
Gaussian | 0.002 | 0.016 | 0.87 | 5715.76 | 0.49 | 1.40 × 10−6 | ||
Covariates | rh95 | Linear | 1.445 | 1.980 | 0.27 | 57,383.05 | 0.94 | 0.0181 |
Spherical | 0.053 | 1.753 | 0.97 | 5200.00 | 0.33 | 0.215 | ||
Exponential | 1.408 | 2.817 | 0.50 | 339,300.00 | 0.97 | 0.0103 | ||
Gaussian | 0.221 | 1.753 | 0.87 | 4503.33 | 0.33 | 0.215 | ||
B12 | Linear | 0.276 | 0.402 | 0.31 | 57,383.05 | 0.90 | 1.50 × 10−4 | |
Spherical | 0.006 | 0.352 | 0.98 | 6800.00 | 0.45 | 8.67 × 10−4 | ||
Exponential | 0.017 | 0.147 | 0.88 | 237,300.00 | 0.93 | 9.79 × 10−4 | ||
Gaussian | 0.039 | 0.352 | 0.89 | 5888.97 | 0.45 | 8.65 × 10−4 | ||
Slope | Linear | 0.011 | 0.014 | 0.21 | 57,383.05 | 0.86 | 1.62 × 10−6 | |
Spherical | 0.001 | 0.013 | 0.96 | 5100.00 | 0.44 | 6.60 × 10−6 | ||
Exponential | 0.002 | 0.013 | 0.87 | 6900.00 | 0.54 | 5.57 × 10−6 | ||
Gaussian | 0.001 | 0.013 | 0.87 | 4330.12 | 0.44 | 6.59 × 10−6 |
Covariate | RMSE (Mg/ha) | rRMSE (%) | BIAS (Mg/ha) | |
---|---|---|---|---|
- | 0.62 | 91.06 | 45.76 | −4.474 |
rh95 | 0.65 | 87.35 | 43.89 | −3.024 |
rh95 + B12 | 0.69 | 81.56 | 40.98 | −3.236 |
rh95 + B12 + slope | 0.66 | 85.83 | 43.13 | −3.231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, H.; Wang, C.; Zhang, S.; Wang, R.; Wang, S.; Duan, J. Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data.Remote Sens.2024,16, 2913. https://doi.org/10.3390/rs16162913
Wang Y, Wang H, Wang C, Zhang S, Wang R, Wang S, Duan J. Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data.Remote Sensing. 2024; 16(16):2913. https://doi.org/10.3390/rs16162913
Chicago/Turabian StyleWang, Yingchen, Hongtao Wang, Cheng Wang, Shuting Zhang, Rongxi Wang, Shaohui Wang, and Jingjing Duan. 2024. "Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data"Remote Sensing 16, no. 16: 2913. https://doi.org/10.3390/rs16162913
APA StyleWang, Y., Wang, H., Wang, C., Zhang, S., Wang, R., Wang, S., & Duan, J. (2024). Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data.Remote Sensing,16(16), 2913. https://doi.org/10.3390/rs16162913