RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Images and Processing
2.2.2. Land-Use Data and Statistical Data
2.3. Approaches
2.3.1.LST Retrieval
2.3.2. Urban Area Extraction
2.3.3. SUHI FP Calculation
3. Results
3.1. The Characteristics of SUHI FP
3.2. Comparative Analysis between the RSEDM and EDM
3.2.1. Spatial Differences in FP Calculated by the RSEDM and EDM
3.2.2. Advantages of the RSEDM in Fitting BackgroundLST
3.2.3. Advantages of the RSEDM in R2
3.3. Seasonal Variations of SUHI
3.3.1. Spatiotemporal Variations of SUHI FP
3.3.2. Temporal Variations of SUHII
4. Discussion
4.1. Effect of Parameter Threshold
4.2. SUHI Coupling Effect in the Su-Xi-Chang Metropolitan Area
4.3. Difference between Popular Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UHI | Urban Heat Island |
SUHI | Surface Urban Heat Island |
FP | Footprint |
SUHII | Surface Urban Heat Island Intensity |
AUHI | Atmospheric Urban Heat Island |
LST | Land Surface Temperature |
EDM | Exponential Decay Model |
RSEDM | Rotational-Scan Exponential Decay Model |
SMW | Statistical Mono-Window |
GEE | Google Earth Engine |
TOA | Top-of-Atmosphere |
NTL | Nightlight |
YRDUA | Yangtze River Delta Urban Agglomeration |
BR | Built-up Area Rate |
WR | Water Body Rate |
MT | Merge Tolerance |
References
- Li, X.; Zhou, Y.; Eom, J.; Yu, S.; Asrar, G.R. Projecting Global Urban Area Growth through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways.Earth’s Future2019,7, 351–362. [Google Scholar] [CrossRef] [Green Version]
- United Nation.United Nations: World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery.Remote Sens. Environ.2016,175, 205–214. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends.Sustain. Cities Soc.2021,71, 102926. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island.Int. J. Climatol.2003,23, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island.Atmos. Environ.1973,7, 769–779. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings.Energy Build.2012,47, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Garg, V.; Kumar, R.; Kumar, K. Impact of urban heat island formation on energy consumption in Delhi.Urban Clim.2021,36, 100763. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. InUrban Ecology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 317–334. [Google Scholar]
- Gala, T.S.; Alfraihat, R.; Mulugeta, G.; Gala, T.S. Ecological evaluation of urban heat island in Chicago City, USA.J. Atmos. Pollut.2016,4, 23–29. [Google Scholar]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment.Curr. Environ. Health Rep.2017,4, 296–305. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Nik Sulaiman, N.M. Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur.Sustain. Cities Soc.2017,35, 660–668. [Google Scholar] [CrossRef]
- Mirzaei, M.; Verrelst, J.; Arbabi, M.; Shaklabadi, Z.; Lotfizadeh, M. Urban heat island monitoring and impacts on citizen’s general health status in Isfahan metropolis: A remote sensing and field survey approach.Remote Sens.2020,12, 1350. [Google Scholar] [CrossRef]
- Chakraborty, T.C.; Lee, X.; Ermida, S.; Zhan, W. On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis.Remote Sens. Environ.2021,265, 112682. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change.Energy Build.2020,207, 109482. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability.Int. J. Appl. Earth Obs. Geoinf.2019,74, 269–280. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia.Sci. Total Environ.2017,577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Kotharkar, R.; Bagade, A.; Ramesh, A. Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach.Landsc. Urban Plan.2019,190, 103586. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M.; Zhang, X. Response of urban heat island to future urban expansion over the Beijing-Tianjin-Hebei metropolitan area.Appl. Geogr.2016,70, 26–36. [Google Scholar] [CrossRef]
- Hou, L.; Yue, W.; Liu, X. Spatiotemporal patterns and drivers of summer heat island in Beijing-Tianjin-Hebei urban agglomeration, China.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2021,14, 7516–7527. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Wang, M.; Gong, A. Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China.Sci. Total Environ.2019,669, 229–247. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia.Build. Environ.2021,187, 107390. [Google Scholar] [CrossRef]
- You, M.; Lai, R.; Lin, J.; Zhu, Z. Quantitative analysis of a spatial distribution and driving factors of the urban heat island effect: A case study of Fuzhou Central Area, China.Int. J. Environ. Res. Public Health2021,18, 13088. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Tang, R.; Jiang, Y.; Zhou, X. Spatiotemporal patterns and drivers of the surface urban heat island in 36 major cities in China: A comparison of two different methods for delineating rural areas.Sustainability2020,12, 478. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Peng, Z.; Tang, R.; Zhang, Z. Development of a long-term dataset of China surface urban heat island for policy making: Spatio-temporal characteristics. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6928–6931. [Google Scholar]
- Sung, C.Y. Mitigating surface urban heat island by a tree protection policy: A case study of The Woodland, Texas, USA.Urban For. Urban Green.2013,12, 474–480. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Niu, Y.; Chen, Y.; Niu, Z. The influence of different data and method on estimating the surface urban heat island intensity.Ecol. Indic.2018,89, 45–55. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities.Sci. Total Environ.2017,609, 742–754. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Murayama, Y.; Morimoto, T. Impacts of land cover/use on the urban thermal environment: A comparative study of 10 megacities in China.Remote Sens.2020,12, 307. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the urban heat Island effect in Shijiazhuang, China using satellite and airborne data.Remote Sens.2015,7, 4804–4833. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Hu, Y.; Tang, G.; Zhou, T. Long-term evolution of the SUHI footprint and urban expansion based on a temperature attenuation curve in the Yangtze River delta urban agglomeration.Sustainability2021,13, 8530. [Google Scholar] [CrossRef]
- Yao, L.; Sun, S.; Song, C.; Li, J.; Xu, W.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China.Appl. Geogr.2021,133, 102496. [Google Scholar] [CrossRef]
- Keeratikasikorn, C.; Bonafoni, S. Satellite images and Gaussian parameterization for an extensive analysis of urban heat Islands in Thailand.Remote Sens.2018,10, 665. [Google Scholar] [CrossRef] [Green Version]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model.Remote Sens. Environ.2014,149, 33–46. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Zhou, Y.; Zhang, T.; Ma, Z.; Meng, X. Spatial patterns and temporal variations of footprint and intensity of surface urban heat island in 141 China cities.Sustain. Cities Soc.2022,77, 103585. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China.Sci. Rep.2015,5, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, L.; Dong, X.; Liu, J. The study of regional thermal environments in urban agglomerations using a new method based on metropolitan areas.Sci. Total Environ.2019,672, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, T.; Tao, F. Correlation analysis between UBD and LST in Hefei, China, using Luojia1-01 night-time light imagery.Appl. Sci.2019,9, 5224. [Google Scholar] [CrossRef] [Green Version]
- Arifwidodo, S.; Chandrasiri, O. Urban Heat Island and Household Energy Consumption in Bangkok, Thailand.Energy Procedia2015,79, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Xu, X.; Dong, J. Influence of urbanization factors on surface urban heat island intensity: A comparison of countries at different developmental phases.Sustainability2016,8, 706. [Google Scholar] [CrossRef] [Green Version]
- Arshad, S.; Ahmad, S.R.; Abbas, S.; Asharf, A.; Siddiqui, N.A.; ul Islam, Z. Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan.Land Use Policy2022,113, 105874. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Hu, M.; Zhou, Y. Influence of urban scale and urban expansion on the urban heat island effect in metropolitan areas: Case study of Beijing–Tianjin–Hebei urban agglomeration.Remote Sens.2020,12, 3491. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area.Model. Earth Syst. Environ.2018,4, 501–515. [Google Scholar] [CrossRef]
- Jamei, Y.; Rajagopalan, P.; Chayn Sun, Q. Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia.Sci. Total Environ.2019,659, 1335–1351. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Maqsoom, A.; Khalid, N.; Ullah, F.; Sepasgozar, S. Urban overheating assessment through prediction of surface temperatures: A case study of Karachi, Pakistan.ISPRS Int. J. Geo Inf.2021,10, 539. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Xu, Y. Examining spatiotemporally varying effects of urban expansion and the underlying driving factors.Sustain. Cities Soc.2017,28, 307–320. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; He, K. Analysis on the urban land resources carrying capacity during urbanization—A case study of Chinese YRD.Appl. Geogr.2020,116, 102170. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center. Available online:https://www.resdc.cn/ (accessed on 22 March 2022).
- National Bureau of Statistics. Available online:http://www.stats.gov.cn/ (accessed on 22 March 2022).
- Duguay-Tetzlaff, A.; Bento, V.A.; Göttsche, F.M.; Stöckli, R.; Martins, J.P.A.; Trigo, I.; Olesen, F.; Bojanowski, J.S.; da Camara, C.; Kunz, H. Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties.Remote Sens.2015,7, 13139–13156. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.; Freitas, S.C.; Trigo, I.F.; Macedo, J.; Silva, R.; Perdigão, R. Land surface temperature from multiple geostationary satellites.Int. J. Remote Sens.2013,34, 3051–3068. [Google Scholar]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google earth engine open-source code for land surface temperature estimation from the Landsat series.Remote Sens.2020,12, 1471. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, S.; Zheng, S. Exploring urban expansion and socioeconomic vitality using NPP-VIIRS data in Xia-Zhang-Quan, China.Sustainability2019,11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Kumari, B.; Tayyab, M.; Shahfahad; Salman; Mallick, J.; Khan, M.F.; Rahman, A. Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India.Remote Sens. Earth Syst. Sci.2018,1, 63–78. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities.Environ. Sci. Technol.2012,46, 696–703. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors.Sci. Total Environ.2019,655, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Bonafoni, S.; Anniballe, R.; Pichierri, M. Comparison between surface and canopy layer urban heat island using MODIS data. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Cheval, S.; Dumitrescu, A. The July urban heat island of Bucharest as derived from modis images.Theor. Appl. Climatol.2009,96, 145–153. [Google Scholar] [CrossRef]
City | d (km) | T0 (°C) | City | d (km) | T0 (°C) |
---|---|---|---|---|---|
CZ | 7.78 | 31.21 | SX | 3.78 | 36.52 |
HZ | 12.06 | 35.75 | SZ | 5.46 | 33.82 |
HF | 13.50 | 34.09 | TZ(ZJ) | 4.18 | 33.96 |
JX | 4.39 | 34.41 | TZ(JS) | 13.14 | 32.24 |
NJ | 8.09 | 33.98 | WX | 4.61 | 35.30 |
NT | 15.17 | 29.84 | YC | 15.97 | 31.66 |
NB | 10.29 | 40.05 | YZ | 10.47 | 32.76 |
SH | 15.62 | 33.17 |
City | RSEDM (km2) | EDM (km2) | ARSEDM-EDM (km2) | City | RSEDM (km2) | EDM (km2) | ARSEDM-EDM (km2) |
---|---|---|---|---|---|---|---|
CZ | 2152.80 | 2021.28 | 131.52 | SX | 549.89 | 1141.85 | 591.96 |
HZ | 1264.46 | 2048.91 | 784.45 | SZ | 1537.59 | 1573.44 | 35.85 |
HF | 2526.05 | 3425.71 | 899.66 | TZ(ZJ) | 292.68 | 423.46 | 130.78 |
JX | 494.47 | 519.98 | 25.51 | TZ(JS) | 625.03 | 1607.39 | 982.36 |
NJ | 1339.09 | 1041.30 | 297.79 | WX | 678.15 | 697.84 | 19.69 |
NT | 1487.92 | 1165.56 | 322.36 | YC | 1177.83 | 2066.65 | 888.82 |
NB | 1152.39 | 2455.88 | 1303.49 | YZ | 775.78 | 869.72 | 93.94 |
SH | 4596.40 | 5820.42 | 1224.02 |
City | RSEDM (°C) | EDM (°C) | Real (°C) | LRSEDM-EDM (°C) | LRSEDM-Real (°C) | LEDM-Real (°C) |
---|---|---|---|---|---|---|
HF | 34.09 | 34.43 | 33.60 | 0.34 | 0.49 | 0.83 |
NB | 40.05 | 40.43 | 39.57 | 0.38 | 0.48 | 0.86 |
SX | 36.52 | 36.33 | 36.61 | 0.19 | 0.09 | 0.28 |
TZ(JS) | 32.34 | 32.84 | 34.12 | 0.50 | 1.78 | 1.28 |
YC | 31.66 | 31.72 | 31.68 | 0.06 | 0.02 | 0.04 |
City | RSEDM (°C) | EDM (°C) | Real (°C) | LRSEDM-EDM (°C) | LRSEDM-Real (°C) | LEDM-Real (°C) |
---|---|---|---|---|---|---|
CZ | 34.55 | 35.27 | 35.42 | 0.72 | 0.88 | 0.16 |
HZ | 35.75 | 36.35 | 34.77 | 0.60 | 0.98 | 1.58 |
JX | 34.41 | 34.94 | 34.38 | 0.54 | 0.02 | 0.56 |
NJ | 34.17 | 33.98 | 34.25 | 0.20 | 0.07 | 0.27 |
NT | 30.84 | 31.21 | 30.53 | 0.37 | 0.31 | 0.68 |
SH | 33.17 | 34.45 | 33.40 | 1.28 | 0.23 | 1.05 |
SZ | 33.82 | 35.00 | 34.66 | 1.18 | 0.84 | 0.34 |
TZ(ZJ) | 33.96 | 34.14 | 33.48 | 0.18 | 0.49 | 0.66 |
WX | 35.30 | 36.54 | 36.03 | 1.24 | 0.73 | 0.51 |
YZ | 32.76 | 33.58 | 32.65 | 0.82 | 0.10 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Zhou, T.; Wang, C.; Wang, Z.; Han, Q.; Tao, F. RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint.Remote Sens.2022,14, 3505. https://doi.org/10.3390/rs14143505
Yang K, Zhou T, Wang C, Wang Z, Han Q, Tao F. RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint.Remote Sensing. 2022; 14(14):3505. https://doi.org/10.3390/rs14143505
Chicago/Turabian StyleYang, Ke, Tong Zhou, Chuling Wang, Zilong Wang, Qile Han, and Fei Tao. 2022. "RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint"Remote Sensing 14, no. 14: 3505. https://doi.org/10.3390/rs14143505
APA StyleYang, K., Zhou, T., Wang, C., Wang, Z., Han, Q., & Tao, F. (2022). RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint.Remote Sensing,14(14), 3505. https://doi.org/10.3390/rs14143505