Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria



Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bacterial Inocula
2.3. β-Glucosidase Activity
2.4. Quantification of Isoflavones
2.5. Bioactivation of Isoflavones in Soymilk
2.6. Statistical Analysis
3. Results and Discussion
3.1. β-Glucosidase Activity
3.2. Bioactivation of Isoflavones in Soymilk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.-A.; Jeong, K.-S.; Kim, Y.K. Soy extract is more potent than genistein on tumor growth inhibition.Anticancer Res.2008,28, 2837–2842. [Google Scholar]
- Zaheer, K.; Akhtar, M.H. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health.Crit. Rev. Food Sci. Nutr.2017,57, 1280–1293. [Google Scholar] [CrossRef]
- Richelle, M.; Pridmore-Merten, S.; Bodenstab, S.; Enslen, M.; Offord, E.A. Hydrolysis of isoflavone glycosides to aglycones by β-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women.J. Nutr.2002,132, 2587–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.-L.; Liu, J.; Zhu, C.; Gao, Y.; Zhao, S.; Liu, W. Interactions between soy isoflavones and other bioactive compounds: A review of their potentially beneficial health effects.Phytochem. Rev.2015,14, 459–467. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Jitka Kašparovská, J.; Tomáš Kašparovský, T. Isoflavones.Molecules2019,24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meghwal, M.; Sahu, C.K. Soy isoflavonoids as nutraceutical for human health: An update.J. Cell Sci. Ther.2015,6, 1. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.I.E.; Zhang, P. Soy isoflavone: The multipurpose phytochemical.Biomed. Rep.2013,1, 697–701. [Google Scholar] [CrossRef]
- Carneiro, A.M.; Moreira, E.A.; Bragagnolo, F.S.; Borges, M.S.; Pilon, A.C.; Rinaldo, D.; De Funari, C.S. Soya agricultural waste as a rich source of isoflavones.Food Res. Int.2019,130, 108949. [Google Scholar] [CrossRef]
- Thai, T.Y.; Tsai, K.S.; Tu, S.T.; Wu, J.S.; Chang, C.I.; Chen, C.L.; Shaw, N.S.; Peng, H.Y.; Wang, S.Y.; Wu, C.H. The effect of soy isoflavones on bone mineral density in post-menopausal Taiwanese women with bone loss: A 2 year randomized double blind placebo-controlled study.Osteoporos. Int.2012,23, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Coward, L.; Barnes, N.C.; Setchell, K.D.R.; Barnes, S. Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets.J. Agric. Food Chem.1993,41, 1961–1967. [Google Scholar] [CrossRef]
- Cornwell, T.; Cohick, W.; Ilya Raskin, I. Dietary phytoestrogens and health.Phytochemistry2004,65, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.R.; Brown, N.M.; Lydeking-Olsenv, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones.J. Nutr.2002,132, 3577–3584. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, H.J.; Murphy, P.A.; Hendrich, S. Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women.J. Nutr.2000,130, 798–801. [Google Scholar] [CrossRef]
- Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women.Am. J. Clin. Nutr.2003,77, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Harris, K.S.; Wang, H.J.; Murphy, P.A.; Hendrich, S. Bioavailability of soybean isoflavones depends upon gut microflora in women.J. Nutr.1995,125, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, H.; Casey, K.; A Bowey, E.; Duffy, R.; Davies, M.; Rowland, I.R.; Lloyd, A.S.; Murray, A.; Thompson, R.; Clarke, D.B. Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults.Am. J. Clin. Nutr.2004,80, 692–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, M.; Junji Ito, J.; Kotaka, A.; Matsumura, K.; Bando, H.; Sahara, H.; Ogino, C.; Shibasaki, S.; Kuroda, K.; Ueda, M.; et al. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase fromAspergillus oryzae on yeast cell surface.Appl. Microbiol. Biotechnol.2008,79, 51–60. [Google Scholar] [CrossRef]
- Erdman, J.W., Jr.; Badger, T.M.; Lampe, J.W.; Setchell, K.D.R.; Messina, M. Not all soy products are created equal: Caution needed in interpretation of research results.J. Nutr.2004,134, S1229–S1233. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.-S.; Rhee, K.C. Production and processing of soybeans and nutrition and safety of isoflavone and other soy products for human health.J. Med. Food2006,9, 1–10. [Google Scholar] [CrossRef]
- Vacek, J.; Klejdus, B.; Lojkova, L.; Kuban, V. Current trends in isolation, separation, determination and identification of isoflavones: A review.J. Sep. Sci.2008,31, 2054–2067. [Google Scholar] [CrossRef]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; Vincentini, O.; Silano, M.; Giuliani, G.; De Angelis, M.; Gobbetti, M. Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal caco-2 cells.J. Agric. Food Chem.2010,58, 10338–10346. [Google Scholar] [CrossRef]
- Otieno, D.O.; Ashton, J.F.; Shah, N.P. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk byBifidobacterium animalis, Lactobacillus acidophilus andLactobacillus casei.Food Res. Int.2006,39, 394–407. [Google Scholar] [CrossRef]
- Otieno, D.O.; Shah, N.P. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous β-glucosidases.J. Appl. Microbiol.2007,103, 601–612. [Google Scholar] [CrossRef]
- D’Adamo, C.R.; Sahin, A. Soy foods and supplementation: A review of commonly perceived health benefits and risks.Altern. Ther. Health Med.2014,20, 39–51. [Google Scholar] [PubMed]
- Xiao, C.W. Health effects of soy protein and isoflavones in humans.J. Nutr.2008,138, 1244S–1249S. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.R.; Faughnan, M.S.; Avades, T.; Zimmer-Nechemias, L.; Brown, N.B.; Wolfe, B.; Brashear, W.T.; Desai, P.; Oldfield, M.F.; Botting, N.P.; et al. Comparing the pharmacokinetics of daidzein and genistein using [13C]labelled tracers in premenopausal women.Am. J. Clin. Nutr.2003,77, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W.-J.; Song, J.M.; et al. Comparisons of percent equol producers between prostate cancer patients and controls: Case-controlled studies of isoflavones in Japanese, Korean and American residents.Jpn. J. Clin. Oncol.2004,34, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Larkin, T.A.; Price, W.E.; Astheimer, L.B. Increased probiotic yogurt or resistant starch intake does not affect isoflavone bioavailability in subjects consuming a high soy diet.Nutrition2007,23, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.P.; Tompkins, T.A.; Buckley, N.D.; Green-Johnson, J.M. Effect of fermentation by pure and mixed cultures ofStreptococcus thermophilus andLactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage.Food Microbiol.2010,27, 968–972. [Google Scholar] [CrossRef]
- Gaya, P.; Peirotén, A.; Medina, M.; Landete, J.M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest.Int. J. Food Sci. Nutr.2016,67, 117–124. [Google Scholar] [CrossRef]
- Yuksekdag, Z.; Acar, B.C.; Aslim, B.; Tukenmez, U. β-glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria.Int. J. Food Prop.2018,20, S2878–S2886. [Google Scholar] [CrossRef] [Green Version]
- Marazza, J.A.; Garro, M.S.; Giori, G.S. Aglycone production byLactobacillus rhamnosus CRL981 during soymilk fermentation.Food Microbiol.2009,26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Biotransformation of phenolics byLactobacillus plantarum in fermented foods. InFermented Foods Health Disease Prevention; Frías, J., Martínez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2017; Chapter 4; pp. 63–83. [Google Scholar]
- Hirattanapun, E.; Koonrungsesomboon, N.; Teekachunhatean, S. Variability of isoflavone content in soy milk products commercially available in Thailand.J. Health Sci. Med Res.2018,36, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Prabhakaran, M.P.; Perera, C.O.; Valiyaveettil, S. Quantification of isoflavones in soymilk and tofu from south east Asia.Int. J. Food Prop.2005,8, 113–123. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Cole, S.J. Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling.J. Agric. Food Chem.2003,51, 4146–4155. [Google Scholar] [CrossRef]
- Hoeck, J.A.; Fehr, W.R.; Murphy, P.A.; Welke, G.A. Influence of genotype and environment on isoflavone contents of soybean.Crop. Sci.2000,40, 8–51. [Google Scholar] [CrossRef]
- Hou, H.J.; Chang, K.C. Interconversions of isoflavones in soybeans as affected by storage.J. Food Sci.2002,67, 2083–2089. [Google Scholar] [CrossRef]
- Simonne, A.H.; Smith, M.; Weaver, D.B.; Wei, C.I. Retention and changes of soy isoflavones and carotenoids in immature soybean seeds (Edamame) during processing.J. Agric. Food Chem.2000,48, 6061–6069. [Google Scholar] [CrossRef] [PubMed]
- Fukutake, M.; Takahashi, M.; Ishida, K.; Kawamura, H.; Sugimura, T.; Wakabayashi, K. Quantification of genistein and genistin in soybeans and soybean products.Food Chem. Toxicol.1996,34, 457–461. [Google Scholar] [CrossRef]
- King, R.A.; Bignell, C.M. Concentrations of isoflavone phytoestrogens and their glycosides in Australian soya beans and soya foods.Aust. J. Nutr. Diet.2000,57, 70–78. [Google Scholar]
- Izumi, T.; Piskula, M.K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans.J. Nutr.2000,130, 1695–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.R.; Brown, N.M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B.E.; Brashear, W.T.; Kirschner, A.S.; Cassidy, A.; Heubi, J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J. Nutr.2001,131, 1362S–1375S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, N.; Pomeroy, S.; Nestel, P. Absorption in humans of isoflavones from soy and red clover is similar.J. Nutr.2002,132, 2199–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kano, M.; Takayanagi, T.; Harada, K.; Sawada, S.; Ishikawa, F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults.J. Nutr.2006,136, 2291–2296. [Google Scholar] [CrossRef]
- Hati, S.; Vij, S.; Singh, B.P.; Mandal, S. β-glucosidase activity and bioconversion of isoflavones during fermentation of soymilk.J. Sci. Food Agric.2015,95, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Rekha, C.R.; Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast.J. Appl. Microbiol.2010,109, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Kim, J.S.; Kim, J.H. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures ofStreptococcus infantarius 12 andWeissella sp. 4.Food Chem.2008,109, 278–284. [Google Scholar] [CrossRef]
- Marazza, J.A.; Nazareno, M.A.; de Giori, G.S.; Garro, M.S. Bioactive action of β-glucosidase enzyme ofBifidobacterium longum upon isoflavone glucosides present in soymilk.Int. J. Food Sci. Technol.2013,48, 2480–2489. [Google Scholar] [CrossRef]
- Ewe, J.-A.; Wan-Abdullah, W.-N.; Alias, A.K.; Liong, M.-T. Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages ofLactobacillus fermentum BT 8633 in biotin-supplemented soymilk.Ultrason. Sonochem.2012,19, 890–900. [Google Scholar] [CrossRef]
Strain | Culture Medium | |
---|---|---|
1 | L. acidophillus | MRSa |
2 | L. acidophillus 4353 | MRSa |
3 | L. brevis 3810 | MRSa |
4 | L. brevis 3811 | MRSa |
5 | L. brevis 3824 | MRSa |
6 | L. brevis 4121 | MRSa |
7 | L. brevis 5354 | MRSa |
8 | L. brevis C310 | MRSa |
9 | L. casei | MRSa |
10 | L. delbruecki 11842 | MRSa |
11 | L. delbruecki 20074 | MRSa |
12 | L. fermentum 4339 | MRSa |
13 | L. fermentum PND4 | MRSa |
14 | L. gasseri 98552 | MRSa |
15 | L. gasseri H633 | MRSa |
16 | L. leichmanii | MRSa |
17 | L. paraplantarum CuB7 | MRSa |
18 | L. plantarum 128/2 | MRSa |
19 | L. plantarum MCMB 8826 | MRSa |
20 | L. plantarum LC441 | MRSa |
21 | L. plantarum LPC 01 nic 100 | MRSa |
22 | L. rhamnosus CR1 | MRSa |
23 | L. reuteri 213 | MRSa |
24 | L. reuteri PND1 | MRSa |
25 | L. reuteri PND3 | MRSa |
26 | L. reuteri PND7 | MRSa |
27 | L. helveticus | MRSa |
28 | S. thermophillus CN RZ 1066 | BHIb |
29 | S. thermophillus CN RZ 1205 | BHIb |
30 | S. thermophillus CMD9 | BHIb |
31 | S. thermophillus 5 | BHIb |
32 | S. thermophillus 6.10.2 | BHIb |
33 | S. thermophillus 6.6.1 | BHIb |
34 | S. thermophillus 3.2.4 | BHIb |
35 | S. thermophillus 111.2 | BHIb |
36 | E. faecium CM17 HFS14 | BHIb |
37 | E. faecium CM17 HFS7 | BHIb |
38 | E. duraus C6 | BHIb |
39 | E. faecalis | BHIb |
40 | E. faecium CM17 C39 | BHIb |
41 | E. faecium CM17 HFS11 | BHIb |
42 | E. duraus CELT 441 | BHIb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izaguirre, J.K.; Barañano, L.; Castañón, S.; Alkorta, I.; Quirós, L.M.; Garbisu, C. Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria.Processes2021,9, 963. https://doi.org/10.3390/pr9060963
Izaguirre JK, Barañano L, Castañón S, Alkorta I, Quirós LM, Garbisu C. Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria.Processes. 2021; 9(6):963. https://doi.org/10.3390/pr9060963
Chicago/Turabian StyleIzaguirre, Jon Kepa, Leire Barañano, Sonia Castañón, Itziar Alkorta, Luis M. Quirós, and Carlos Garbisu. 2021. "Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria"Processes 9, no. 6: 963. https://doi.org/10.3390/pr9060963
APA StyleIzaguirre, J. K., Barañano, L., Castañón, S., Alkorta, I., Quirós, L. M., & Garbisu, C. (2021). Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria.Processes,9(6), 963. https://doi.org/10.3390/pr9060963