Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine
,
and
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism and Culture Preparation
2.2. Preparation of Bacterial Culture
2.3. The Cell Surface Hydrophobicity Assays of LAB
- A0: OD value of 600 nm initial suspension;
- A: OD value of 600 nm suspension after mixed hydrocarbons.
2.4. LAB Autoaggregation Properties Assays
- At = absorbance at t = 5 h;
- A0 = absorbance at t = 0 h.
2.5. LAB Adhesion Properties Assays on the Rat Intestine
2.6. Genome Sequencing and Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Properties of Surface of LAB Cells
3.2. Properties of LAB Adhesion to the Rat Intestine
3.3. Genomic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO. Joint Working Group on Drafting Guideline for The Evaluation of Probiotics in Food. April–May. 2002. Available online:https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (accessed on 16 September 2021).
- Granato, D.; Branco, G.F.; Cruz, A.G.; Faria, J.d.A.F.; Shah, N.P. Probiotic dairy products as functional foods.Compr. Rev. Food Sci. Food Saf.2010,9, 455–470. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An overview of beneficial effects.Lact. Acid Bact.2002,82, 279–289. [Google Scholar]
- Rhee, S.J.; Lee, J.-E.; Lee, C.-H. Importance of lactic acid bacteria in Asian fermented foods.Microb. Cell Factories2011,10, S5. [Google Scholar] [CrossRef]
- Casey, P.G.; Casey, G.D.; Gardiner, G.E.; Tangney, M.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract.Lett. Appl. Microbiol.2004,39, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Okochi, M.; Sugita, T.; Asai, Y.; Tanaka, M.; Honda, H. Screening of peptides associated with adhesion and aggregation ofLactobacillus rhamnosus GG in vitro.Biochem. Eng. J.2017,128, 178–185. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health.Appl. Microbiol. Biotechnol.2019,103, 6463–6472. [Google Scholar] [CrossRef]
- Morelli, L.; Callegari, M.L. Taxononomy and biology of probiotics. InProbiotics in Food Safety and Human Health; Goktepe, I., Juneja, V.K., Ahmedna, M., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2006; pp. 67–89. [Google Scholar]
- Deepika, G.; Charalampopoulos, D. Chapter 4—Surface and Adhesion Properties of Lactobacilli. InAdvances in Applied Microbiology, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 70. [Google Scholar]
- Del Re, B.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, auto-aggregation, and hydrophobicity of 13 strains ofBifidobacterium longum.Lett. Appl. Microbiol.2000,31, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Saxami, G.; Ypsilantis, P.; Sidira, M.; Simopoulos, C.; Kourkoutas, Y.; Galanis, A. Distinct adhesion of probiotic strainLactobacillus casei ATCC 393 to rat intestinal mucosa.Anaerobe2012,18, 417–420. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; de Cadiñanos, L.P.G.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion abilities of dairyLactobacillus plantarum strains showing an aggregation phenotype.Food Res. Int.2014,57, 44–50. [Google Scholar] [CrossRef]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Measurement of aggregation properties between probiotics and pathogens: In vitro evaluation of different methods.J. Microbiol. Methods2007,71, 71–74. [Google Scholar] [CrossRef]
- Vlková, E.; Rada, V.; Šmehilová, M.; Killer, J. Auto-aggregation and Co-aggregation ability in bifidobacteria and clostridia.Folia Microbiol.2008,53, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.L.; Grześkowiak, Ł.; Collado, M.C.; Salminen, S. In Vitro Evaluation ofLactobacillus gasseri Strains of Infant Origin on Adhesion and Aggregation of Specific Pathogens.J. Food Prot.2011,74, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tian, F.; Liu, X.; Zhao, J.; Zhang, H.-P.; Chen, W.; Zhang, H. In vitro screening of lactobacilli with antagonistic activity againstHelicobacter pylori from traditionally fermented foods.J. Dairy Sci.2010,93, 5627–5634. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; Jovcic, B.; Kojic, M.; Topisirovic, L. Surface properties ofLactobacillus andLeuconostoc isolates from homemade cheeses showing auto-aggregation ability.Eur. Food Res. Technol.2010,231, 925–931. [Google Scholar] [CrossRef]
- Panjaitan, R.; Nuraida, L.; Dewanti-Hariyadi, R. Seleksi Isolat Bakteri Asam Laktat Asal Tempe Dan Tape Sebagai Kandidat Probiotik.J. Teknol. Ind. Pangan2018,29, 175–184. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains.Fermentation2019,5, 100. [Google Scholar] [CrossRef]
- Nuraida, L.; Anggraeni, D.; dan Haryadi-Dewanti, R. Adherence properties of lactic acid bacteria as probiotic candidates isolated from breast milk.Asian J. Food Agro-Ind.2012,5, 500511. [Google Scholar]
- Tuo, Y.; Yu, H.; Ai, L.; Wu, Z.; Guo, B.; Chen, W. Aggregation and adhesion properties of 22Lactobacillus strains.J. Dairy Sci.2013,96, 4252–4257. [Google Scholar] [CrossRef]
- Rahman, M.; Kim, W.S.; Kumura, H.; Shimazaki, K. Auto-aggregation and surface hydrophobicity of bifidobacteria.World J. Microb. Biotechnol.2008,24, 1593–1598. [Google Scholar] [CrossRef]
- Pan, M.; Kumaree, K.K.; Shah, N.P. Physiological Changes of Surface Membrane inLactobacillus with Prebiotics.J. Food Sci.2017,82, 744–750. [Google Scholar] [CrossRef]
- Rahayu, E.S.; Yogeswara, A.; Mariyatun, W.L.; Utami, T.; Watanabe, K. Molecular characteristics of indigenous probiotic strains from Indonesia.Int. J. Probiotics Prebiotics2015,11, 109–116. [Google Scholar]
- Lavilla-lerma, L.; Pérez-pulido, R.; Martínez-bueno, M.; Maqueda, M.; Valdivia, E. Microbiology Characterization of functional, safety, and gut survival related characteristics ofLactobacillus strains isolated from farmhouse goat’s milk cheeses.Int. J. Food Microbiol.2013,163, 136–145. [Google Scholar] [CrossRef] [PubMed]
- De Souza, B.M.S.; Borgonovi, T.F.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B.Lactobacillus casei andLactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions.Probiotics Antimicrob. Proteins2018,11, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability.J. Gen. Appl. Microbiol.2013,59, 425–436. [Google Scholar] [CrossRef]
- Yadav, R.; Puniya, A.K.; Shukla, P. Probiotic Properties ofLactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi.Front. Microbiol.2016,7, 1683. [Google Scholar] [CrossRef]
- Handa, S.; Sharma, N. In vitro study of probiotic properties ofLactobacillus plantarum F22 isolated from chhang—A traditional fermented beverage of Himachal Pradesh, India.J. Genet. Eng. Biotechnol.2016,14, 91–97. [Google Scholar] [CrossRef]
- Shakirova, L.; Grube, M.; Gavare, M.; Auzina, L.; Zikmanis, P. Lactobacillus acidophilus La5and Bifidobacterium lacis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions.J. Nutr.2013,40, 85–93. [Google Scholar]
- Wu, Q.; Shah, N.P. Effects of Elaidic Acid, a Predominant Industrial Trans Fatty Acid, on Bacterial Growth and Cell Surface Hydrophobicity of Lactobacilli.J. Food Sci.2014,79, M2485–M2490. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Li, Q.; Zhang, H.; Li, N. Isolation of adhesive strains and evaluation of the colonization and immune response byLactobacillus plantarum L2 in the rat gastrointestinal tract.Int. J. Food Microbiol.2009,132, 59–66. [Google Scholar] [CrossRef]
- Mantzourani, I.; Chondrou, P.; Bontsidis, C.; Karolidou, K.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Galanis, A.; Plessas, S. Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: Evaluation of adhesion and antiproliferative properties in in vitro experimental systems.Ann. Microbiol.2019,69, 751–763. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S. In vitro Adhesion Assays for Probiotics and their in vivo Relevance: A Review.Microb. Ecol. Health Dis.2003,15, 175–184. [Google Scholar]
- Swidsinski, A.; Loening-Baucke, V.; Theissig, F.; Engelhardt, H.; Bengmark, S.; Koch, S.; Lochs, H.; Dörffel, Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon.Gut2007,56, 343–350. [Google Scholar] [CrossRef]
- Van Tassell, M.L.; Miller, M.J.Lactobacillus adhesion to mucus.Nutrients2011,3, 613–636. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Medici, M.; Perdigon, G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria.J. Appl. Microbiol.2004,96, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Provencio, D.; Llopis, M.; Antolín, M.; de Torres, I.; Guarner, F.; Pérez-Martínez, G.; Monedero, V. Adhesion properties ofLactobacillus casei strains to resected intestinal fragments and components of the extracellular matrix.Arch. Microbiol.2009,191, 153–161. [Google Scholar] [CrossRef]
- Ramos, C.L.; Thorsen, L.; Schwan, R.F.; Jespersen, L. Strain-specific probiotics properties ofLactobacillus fermentum, Lactobacillus plantarum andLactobacillus brevis isolates from Brazilian food products.Food Microbiol.2013,36, 22–29. [Google Scholar] [CrossRef]
- Tokatl, M.; Gülgör, G.; Bağder Elmac, S.; Arslankoz Işleyen, N.; Özçelik, F. In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles.BioMed Res. Int.2015,2015, 315819. [Google Scholar] [CrossRef]
- Massey, R.C.; Kantzanou, M.N.; Fowler, T.; Day, N.P.J.; Schofield, K.; Wann, E.R.; Berendt, A.R.; Hook, M.; Peacock, S.J. Fibronectin-binding protein A ofStaphylococcis aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion to endothelial cells.Cell. Microbiol.2001,12, 839–851. [Google Scholar] [CrossRef]
- Hymes, J.P.; Klaenhammer, T.R. Stuck in the Middle: Fibronectin-Binding Proteins in Gram-Positive Bacteria.Front. Microbiol.2016,7, 1504. [Google Scholar] [CrossRef]
- Sarkar, S. A Mini Review on Heat Shock Proteins (Hsps): Special Emphasis on Heat Shock Protein 70 (Hsp70).Brojendra Nath Seal J. Sci.2017,70, 130–139. [Google Scholar]
- Segal, N.; Shapira, M. HSP33 in eukaryotes—An evolutionary tale of a chaperone adapted to photosynthetic organisms.Plant J.2015,82, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Krewing, M.; Stepanek, J.J.; Cremers, C.; Lackmann, J.-W.; Schubert, B.; Müller, A.; Awakowicz, P.; Leichert, L.I.O.; Jakob, U.; Bandow, J.E. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation.J. R. Soc. Interface2019,16, 20180966. [Google Scholar] [CrossRef] [PubMed]
- Ghazaei, C. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens.J. Med. Microbiol.2017,66, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Sikora, A.; Grzesiuk, E. Heat shock response in gastrointestinal tract.J. Physiol. Pharmacol.2007,58, 43–62. [Google Scholar]
- Rahayu, E.S.; Rusdan, I.H.; Athennia, A.; Kamil, R.Z.; Pramesi, P.C.; Marsono, Y.; Widada, J. Safety Assessment of Indigenous Probiotic StrainLactobacillus plantarum Dad-13 Isolated from Dadih Using Sprague Dawley Rats as a Model.Am. J. Pharmacol. Toxicol.2019,14, 38–47. [Google Scholar] [CrossRef]
- Ikhsani, A.Y.; Riftyan, E.; Safitri, R.A.; Marsono, Y.; Utami, T.; Widada, J.; Rahayu, E.S. Safety Assessment of Indigenous Probiotic StrainLactobacillus plantarum Mut-7 Using Sprague Dawley Rats as a Model.Am. J. Pharmacol. Toxicol.2020,15, 7–16. [Google Scholar] [CrossRef]
- Tropcheva, R.; Georgieva, R.; Danova, S. Adhesion Ability ofLactobacillus Plantarum AC131.Biotechnol. Biotechnol. Equip.2011,25, 121–124. [Google Scholar] [CrossRef][Green Version]
- Dam, T.K.; Brewer, C.F. Multivalent Lectin—Carbohydrate Interactions: Energetics and Mechanisms of Binding. InAdvances in Carbohydrate Chemistry and Biochemistry, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 63. [Google Scholar]
- Wholey, W.-Y.; Jakob, U. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation inVibrio cholerae.Mol. Microbiol.2012,83, 981–991. [Google Scholar] [CrossRef]
- Swoboda, J.G.; Campbell, J.; Meredith, T.C.; Walker, S. Wall Teichoic Acid Function, Biosynthesis, and Inhibition.ChemBioChem2010,11, 35–45. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.-P.; Kulakauskas, S. Cell wall structure and function in lactic acid bacteria.Microb. Cell Factories2014,13, S9. [Google Scholar] [CrossRef]
- Brown, S.; Maria, J.P.S.; Walker, S. Wall Teichoic Acids of Gram-Positive Bacteria.Annu. Rev. Microbiol.2013,67, 313–336. [Google Scholar] [CrossRef]
- Bernard, E.; Rolain, T.; Courtin, P.; Hols, P.; Chapot-Chartier, M.P. Identification of the amidotransferase AsnB1 as being responsible for meso- diaminopimelic acid amidation inLactobacillus plantarum peptidoglycan.J. Bacteriol.2011,193, 6323–6330. [Google Scholar] [CrossRef]
- Veiga, P.; Erkelenz, M.; Bernard, E.; Courtin, P.; Kulakauskas, S.; Chapot-Chartier, M.P. Identification of the asparagine synthase responsible for D-Asp amidation in theLactococcus lactis peptidoglycan interpeptide crossbridge.J. Bacteriol.2009,191, 3752–3757. [Google Scholar] [CrossRef]
- Macho Fernandez, E.; Valenti, V.; Rockel, C.; Hermann, C.; Pot, B.; Boneca, I.G.; Grangette, C. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide.Gut2011,60, 1050–1059. [Google Scholar] [CrossRef]
- Yan, F.; Cao, H.; Cover, T.L.; Washington, M.K.; Shi, Y.; Liu, L.; Chaturvedi, R.; Peek, R.M.; Wilson, K.T.; Polk, D.B. 2011. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism.J. Clin. Investig.2011,121, 2242–2253. [Google Scholar] [CrossRef]
- Xia, G.; Kohler, T.; Peschel, A. The wall teichoic acid and lipoteichoic acid polymers ofStaphylococcus aureus.Int. J. Med. Microbiol.2010,300, 148–154. [Google Scholar] [CrossRef]
- Weidenmaier, C.; Peschel, A. Teichoic acids and related cell-wall glycopo- lymers in Gram-positive physiology and host interactions.Nat. Rev. Microbiol.2008,6, 276–287. [Google Scholar] [CrossRef]
- Gross, M.; Cramton, S.E.; Götz, F.; Peschel, A. Key role of teichoic acid net charge inStaphylococcus aureus colonization of artificial surfaces.Infect. Immun.2001,69, 3423–3426. [Google Scholar] [CrossRef] [PubMed]
- Chapot-Chartier, M.-P.; Vinogradov, E.; Sadovskaya, I.; Andre, G.; Mistou, M.-Y.; Trieu-Cuot, P.; Furlan, S.; Bidnenko, E.; Courtin, P.; Péchoux, C.; et al. Cell Surface ofLactococcus lactis Is Covered by a Protective Polysaccharide Pellicle.J. Biol. Chem.2010,285, 10464–10471. [Google Scholar] [CrossRef] [PubMed]
- Lebeer, S.; Verhoeven, T.L.A.; Francius, G.; Schoofs, G.; Lambrichts, I.; Dufrêne, Y.; Vanderleyden, J.; De Keersmaecker, S.C.J. Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide inLactobacillus rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase.Appl. Environ. Microbiol.2009,75, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Theunissen, D.; Wels, M.; Siezen, R.J. LAB-Secretome: A genome-scale comparative analysis of the predicted extracellular and surface- associated proteins of Lactic Acid Bacteria.BMC Genom.2010,11, 651. [Google Scholar] [CrossRef] [PubMed]
- Boekhorst, J.; Helmer, Q.; Kleerebezem, M.; Siezen, R.J. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria.Microbiology2006,152, 273–280. [Google Scholar] [CrossRef] [PubMed]

| Isolates Name | ||
|---|---|---|
| L. plantarum Dad-13 | L. plantarum Mut-7 | |
| Hydrophobicity (%) | 78.9 ± 5.9a | 83.5 ± 5.7a |
| Autoaggregation (%) | 40.9 ± 2.1a | 57.5 ± 5.5a |
| Compartment | Number of LAB (log CFU/cm2) | ||
|---|---|---|---|
| PBS (No Addition of LAB) | L. plantarum Dad-13 | L. plantarum Mut-7 | |
| Ileum | 3.02 ± 0.03a | 3.5 ± 0.4a | 3.6 ± 0.06a |
| Colon | 2.9 ± 0.08a | 4.4 ± 0.002b | 3.86 ± 0.56b |
| Comparison | Number of IndigenousE. coli (log CFU/cm2) | ||
|---|---|---|---|
| PBS (No Addition of LAB) | L. plantarum Dad-13 | L. plantarum Mut-7 | |
| Ileum | 2.9 ± 0.15Aa | 2.42 ± 0.73Aa | 2.54 ± 0.48Aa |
| Colon | 2.9 ± 0.52Ab | 1.0 ± 0.00Ba | 1.0 ± 0.00Ba |
| Category | Subcategory | Subsystem | Role | Abbreviations | Per. Identifier | Scientific Name |
|---|---|---|---|---|---|---|
| Virulence, Disease, and Defense | Adhesion | Recombination zone of Streptococcus pyogenes | Fibronectin-binding protein | PtrF | 100% | Lactobacillaceae |
| Virulence, Disease, and Defense | Adhesion | Recombination zone of Streptococcus pyogenes | Chaperonin (heat shock protein 33) | hsp33 | 100% | Lactobacillaceae |
| Category | Subcategory | Subsystem | Role | Abbreviations | Per. Identifier | Scientific Name |
|---|---|---|---|---|---|---|
| Virulence, Disease, and Defense | Adhesion | Recombination zone of Streptococcus pyogenes | Fibronectin-binding protein | PtrF | 100% | Lactobacillaceae |
| Virulence, Disease, and Defense | Adhesion | Recombination zone of Streptococcus pyogenes | Chaperonin (heat shock protein 33) | hsp33 | 100% | Lactobacillaceae |
| Category | Subcategory | Subsystem | Role | Abbreviations |
|---|---|---|---|---|
| Cell wall and capsule | Capsular and extracellular polysaccharides | Exopolysaccharide biosynthesis | Transcriptional activator of exopolysaccharide biosynthesis | EpsA |
| Exopolysaccharide biosynthesis glycosyltransferase | EpsF | |||
| Acetyltransferase of exopolysaccharide biosynthesis | EpsH | |||
| Capsular polysaccharide synthesis enzyme | CpsA, CpsB, CpsC, CpsD, CpsH | |||
| Cell wall and capsule | Cell wall and capsule—no subcategory | Peptidoglycan biosynthesis | Monofunctional biosynthetic peptidoglycan transglycosylase | MG |
| Cell division protein FtsI (Peptidoglycan synthetase) | FtsI | |||
| D-alanine ligase | ddlB | |||
| Cell wall and capsule | Gram-positive cell wall components | Biosynthesis of teichoic and lipoteichoic acids | Teichoic acid biosynthesis protein | TBP |
| Regulation of D-alanyl-lipoteichoic acid biosynthesis | DltR, DltS |
| Category | Subcategory | Subsystem | Role | Abbrev. |
|---|---|---|---|---|
| Cell wall and capsule | Capsular and extracellular polysaccharides | Exopolysaccharide biosynthesis | Transcriptional activator of exopolysaccharide biosynthesis | EpsA |
| Exopolysaccharide biosynthesis glycosyltransferase | EpsF | |||
| Acetyltransferase of exopolysaccharide biosynthesis | EpsH | |||
| Capsular polysaccharide synthesis enzyme | CpsA, CpsB, CpsC, CpsD, CpsH | |||
| Capsule polysaccharide export protein | Kps | |||
| Glucose-1-phosphate thymidylyltransferase | RfbA | |||
| Cell wall and capsule | Cell wall and capsule—no subcategory | Peptidoglycan Biosynthesis | Monofunctional biosynthetic peptidoglycan transglycosylase | MG |
| Cell division protein FtsI (Peptidoglycan synthetase) | FtsI | |||
| D-alanine ligase | ddlB | |||
| Cell wall and capsule | Gram-positive cell wall components | Biosynthesis of teichoic and lipoteichoic acids | Teichoic acid biosynthesis protein | TBP |
| Regulation of D-alanyl-lipoteichoic acid biosynthesis | DltR, DltS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmastuti, A.; Hasan, P.N.; Wikandari, R.; Utami, T.; Rahayu, E.S.; Suroto, D.A. Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine.Microorganisms2021,9, 2336. https://doi.org/10.3390/microorganisms9112336
Darmastuti A, Hasan PN, Wikandari R, Utami T, Rahayu ES, Suroto DA. Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine.Microorganisms. 2021; 9(11):2336. https://doi.org/10.3390/microorganisms9112336
Chicago/Turabian StyleDarmastuti, Arum, Pratama N. Hasan, Rachma Wikandari, Tyas Utami, Endang S. Rahayu, and Dian Anggraini Suroto. 2021. "Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine"Microorganisms 9, no. 11: 2336. https://doi.org/10.3390/microorganisms9112336
APA StyleDarmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine.Microorganisms,9(11), 2336. https://doi.org/10.3390/microorganisms9112336




