HKT Transporters—State of the Art
Abstract
:1. Introduction
2. HKT1vs. HKT2—Does the Nomenclature still Hold?
3. Class I HKT Transporters—Essential Roles in Na+ Detoxification
3.1. Arabidopsis AtHKT1;1
3.2. Rice OsHKT1;x
3.3. Wheat TaHKT1;4/5
3.4. Tomato HKT1;1 and HKT1;2
4. Class II HKT Transporters—A Role for K+
4.1. OsHKT2;1
4.2. TaHKT2;1
4.3. HvHKT2;1
5. Other Class II HKT Members
5.1. OsHKT2;2
5.2. OsHKT2;2/1, a New HKT Isoform in Rice
5.3. OsHKT2;3
5.4. OsHKT2;4, a HKT Member with Unusual Transport Characteristics, Involved in Ca2+ Signaling?
6. Do HKT Transporters Isolated from Mosses and Clubmosses Form a Third Class?
7. HKT Regulation
7.1. Promoter Structure
7.2. Regulation by ROS
7.3. Regulation by Cytokinins
7.4. Regulation by ABI4
8. Residues Important for HKT Function
9. The Role in Long-Distance Transport
9.1. Recirculationvs. Exclusion: Evidence for Both Models
9.2. HKT and K+ Levels in the Xylem—A Direct or Indirect Effect of HKT
10. Future Prospects
Transporter | Expression in planta | Ref. | Function in planta | Ref. | Transport selectivity when heterologous expressed | Ref. |
---|---|---|---|---|---|---|
AtHKT1;1 | Phloem (roots and shoots) | [19] | Loading excessive shoot Na+ into the phloem | [19] | Na+ transport (Xenopus oocytes) | [15] |
Xylem parenchyma cells | [12,20,21] | Unloading of Na+ from the xylem into XPC | [12,20,21] | K+ transport (E. coli) | ||
OsHKT1;1 | In the leaves: bulliform cells and vascular tissues. | [18,22] | Na+ transport (Xenopus oocytes andS. cerevisiae yeast cells) | [18,22] | ||
In the roots: similar to OsHKT2;1. | ||||||
OsHKT1;2 | Not detected in roots. | [23] | ||||
Expression does not change with NaCl stress in the leaves. | ||||||
OsHKT1;3 | In the leaves: bulliform cells and vascular tissues, mesophyll cells. In the roots: cortex and vascular tissues in the stele. | [22] | Na+ transport (Xenopus oocytes) | [22] | ||
OsHKT1;4 | Leaf sheaths. | [24] | Control of sheath-to-blade transfer of Na+ | [24] | ||
OsHKT1;5 | Mainly expressed in xylem parenchyma cells of both roots and leaves. | [10] | Control of root-to-shoot transfer of Na+ by unloading of Na+ from the xylem into XPC | [10] | Na+ transport (Xenopus oocytes) | [10] |
TaHKT1;4 | Expressed in the roots, leaf sheath and leaf blades. | [25] | Unloading of Na+ from the xylem into XPC | [25] | ||
TaHKT1;5 | Expressed in the roots but not in the shoots. | [7] | Unloading of Na+ from the xylem into XPC | [7,13] | Na+ transport (S. cerevisiae cell) | [13] |
Na+ transport (Xenopus oocytes) | ||||||
Na+ transport (S. cerevisiae cells) | [26] | |||||
SlHKT1;1 | Ubiquitously expressed (roots, stems, leaves, flowers, fruits). | [26] | Na+ transport (Xenopus oocytes) | Almeidaet al. unpublished results | ||
NIL and treatment dependent | ||||||
SlHKT1;2 | Ubiquitously expressed (roots, stems, leaves, flowers, fruits). NIL and treatment dependent | [26] | No transport activity detected in eitherS. cerevisiae cells orXenopus oocytes | [26] | ||
Almeidaet al. unpublished results | ||||||
EcHKT1;1 | Expressed in the leaves, stems and roots | [27] | K+ transport (E. coli cells) | [27,28] | ||
Na+, K+ and Rb+ transport (Xenopus oocytes) | ||||||
EcHKT1;2 | Expressed in the leaves, stems and roots | [27] | K+ transport (E. coli cells) | [27,28] | ||
Na+, K+, Rb+, Li+ Transport (Xenopus oocytes) | ||||||
McHKT1;1 | In the leaves: xylem parenchyma cells and phloem cells; In the roots: epidermal cells and vascular tissues | [29] | The authors proposed a model where McHKT1;1 Unloads Na+ from the xylem in the shoots | [29] | K+ transport (S. cerevisiae cells) | [29] |
Rb+, Cs+, K+, Na+ and Li+ transport (Xenopus oocytes) |
Transporter | Expression in planta | Ref. | Function in planta | Ref. | Transport selectivity when heterologous expressed | Ref. |
---|---|---|---|---|---|---|
OsHKT2;1 | In the roots: epidermis, exodermis, cortex differentiated into aerenchyma, stele (mainly in the phloem); In the leaves: bulliform cells, xylem, phloem, mesophyll cells | [22] | Nutritional Na+ uptake from the external medium | [11] | Na+ and K+ transport (Xenopus oocytes) | [22,30,31] |
Na+ transport (S. cerevisiae cells) | [18,30] | |||||
K+ transport (S. cerevisiae cells) | [31] | |||||
OsHKT2;2 | Expressed only in the roots | [32] | Na+/K+ symporter in BY2 tobacco cells | [33] | Na+, K+, (S. cerevisiae andXenopus oocytes) | [30,34] |
Expected to co-transport both Na+ and K+ in conditions of K+ starvation | [32] | |||||
OsHKT2;2/1 | Expressed only in the roots | [32] | Expected to co-transport both Na+ and K+ in the roots in conditions of low K+ and under salt stress | [32] | Na+ and K+ transport (S. cerevisiae cells andXenopus oocytes) | [32] |
OsHKT2;3 | Marginally expressed in the roots in comparison to the shoots | [34] | No currents or uptake observed inXenopus oocytes orS. cerevisiae cells | [34] | ||
OsHKT2;4 | Vasculature of primary/ lateral root cells, leaf sheaths, spikelets and the base of stems. Expressed also in mesophyll cells | [35] | Possible role in K+ homeostasis as a K+ transporter/channel | [34] | Permeable to NH4+, Li+, Na+, K+, Ca2+, Mg2+ Zn2+, Mn2+, Cu2+, Fe2+, Cd2+ (Xenopus oocytes) | [35] |
Possible redundant role in planta as oshkt2;4 mutants show no phenotype | [35] | Permeable to Na+, K+, Mg2+, Ca2+ (Xenopus oocytes) | [34] | |||
K+ transport (S. cerevisiae cells) | ||||||
Proposed to function as a K+ transporter involved in both nutritional K+ uptake and long-distance K+ transport | [36] | Na+ and K+ transport (Xenopus oocytes) | [36] | |||
TaHKT2;1 | Root cortical and stele cells Vascular tissue of mesophyll cells | [14] | Na+ uptake from the external medium | [37] | Permeable to Na+, K+, Cs+ and Rb+ (Xenopus oocytes) | [14] |
K+ transport (S. cerevisiae cells) | ||||||
Na+ and K+ transport (S. cerevisiae cells) | [38,39] | |||||
Na+ and K+ transport (Xenopus oocytes) | ||||||
Permeable to Na+, K+ and Mg+ (Xenopus oocytes) | [34] | |||||
PutHKT2;1 | Mainly in roots | [40] | Possible high affinity K+ transporter | [40] | Na+ and K+ transport (S. cerevisiae cells) | [40] |
HvHKT2;1 | Root cortex, leaf blades and leaf sheaths | [41,42] | Possible involvement in the root K+ (re)absorption at very low K+ concentrations | [41,42] | Na+ and K+ transporter (S. cerevisiae andXenopus oocytes) | [41–43] |
Possible uptake of Na+ in the roots | ||||||
PhaHKT2;1 | Roots and shoots | [44] | Na+ and K+ transport (S. cerevisiae cells) | [40,44] | ||
PpHKT1 | ------- | ------- | Na+ and K+ uptake (S. cerevisiae cells) | [45] |
Conflicts of Interest
References
- Huang, S.; Spielmeyer, W.; Lagudah, E.S.; Munns, R. Comparative mapping ofHKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.J. Exp. Bot2008,59, 927–937. [Google Scholar]
- Rengasamy, P. World salinization with emphasis on Australia.J. Exp. Bot2006,57, 1017–1023. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance.Annu. Rev. Plant Biol2008,59, 651–681. [Google Scholar]
- Shi, H.; Ishitani, M.; Kim, C.S.; Zhu, J.K. TheArabidopsis thaliana salt tolerance geneSOS1 encodes a putative Na+/H+ antiporter.Proc. Natl. Acad. Sci. USA2000,97, 6896–6901. [Google Scholar]
- Shi, H.Z.; Lee, B.H.; Wu, S.J.; Zhu, J.K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance inArabidopsis thaliana.Nat. Biotechnol2003,21, 81–85. [Google Scholar]
- Maser, P.; Eckelman, B.; Vaidyanathan, R.; Horie, T.; Fairbairn, D.J.; Kubo, M.; Yamagami, M.; Yamaguchi, K.; Nishimura, M.; Uozumi, N.;et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity inArabidopsis by genetic disruption of the Na+ transporter AtHKT 1;1.FEBS Lett2002,531, 157–161. [Google Scholar]
- Byrt, C.S.; Platten, J.D.; Spielmeyer, W.; James, R.A.; Lagudah, E.S.; Dennis, E.S.; Tester, M.; Munns, R. HKT1;5-like cation transporters linked to Na+ exclusionloci in wheat,Nax2 andKna1.Plant Physiol2007,143, 1918–1928. [Google Scholar]
- Apse, M.P.; Aharon, G.S.; Snedden, W.A.; Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport inArabidopsis.Science1999,285, 1256–1258. [Google Scholar]
- Horie, T.; Hauser, F.; Schroeder, J.I. HKT transporter-mediated salinity resistance mechanisms inArabidopsis and monocot crop plants.Trends Plant Sci2009,14, 660–668. [Google Scholar]
- Ren, Z.H.; Gao, J.P.; Li, L.G.; Cai, X.L.; Huang, W.; Chao, D.Y.; Zhu, M.Z.; Wang, Z.Y.; Luan, S.; Lin, H.X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat. Genet2005,37, 1141–1146. [Google Scholar]
- Horie, T.; Costa, A.; Kim, T.H.; Han, M.J.; Horie, R.; Leung, H.Y.; Miyao, A.; Hirochika, H.; An, G.; Schroeder, J.I. Rice OsHKT2;1 transporter mediates large Na+ influx components into K+-starved roots for growth.EMBO J2007,26, 3003–3014. [Google Scholar]
- Moller, I.S.; Gilliham, M.; Jha, D.; Mayo, G.M.; Roy, S.J.; Coates, J.C.; Haseloff, J.; Tester, M. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport inArabidopsis.Plant Cell2009,21, 2163–2178. [Google Scholar]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, J.S.; Jordans, C.; Byrt, C.S.; Hare, R.A.; Tyerman, S.D.; Tester, M.;et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene.Nat. Biotechnol2012,30, 360–364. [Google Scholar]
- Schachtman, D.P.; Schroeder, J.I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher-plants.Nature1994,370, 655–658. [Google Scholar]
- Uozumi, N.; Kim, E.J.; Rubio, F.; Yamaguchi, T.; Muto, S.; Tsuboi, A.; Bakker, E.P.; Nakamura, T.; Schroeder, J.I. TheArabidopsis HKT1 gene homolog mediates inward Na+ currents inXenopus laevis oocytes and Na+ uptake inSaccharomyces cerevisiae.Plant Physiol2000,122, 1249–1259. [Google Scholar]
- Platten, J.D.; Cotsaftis, O.; Berthomieu, P.; Bohnert, H.; Davenport, R.J.; Fairbairn, D.J.; Horie, T.; Leigh, R.A.; Lin, H.X.; Luan, S.;et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance.Trends Plant Sci2006,11, 372–374. [Google Scholar]
- Maser, P.; Hosoo, Y.; Goshima, S.; Horie, T.; Eckelman, B.; Yamada, K.; Yoshida, K.; Bakker, E.P.; Shinmyo, A.; Oiki, S.;et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants.Proc. Nat. Acad. Sci. USA2002,99, 6428–6433. [Google Scholar]
- Garciadeblas, B.; Senn, M.E.; Banuelos, M.A.; Rodriguez-Navarro, A. Sodium transport and HKT transporters: The rice model.Plant J2003,34, 788–801. [Google Scholar]
- Berthomieu, P.; Conejero, G.; Nublat, A.; Brackenbury, W.J.; Lambert, C.; Savio, C.; Uozumi, N.; Oiki, S.; Yamada, K.; Cellier, F.;et al. Functional analysis of AtHKT1 inArabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance.EMBO J2003,22, 2004–2014. [Google Scholar]
- Plett, D.; Safwat, G.; Gilliham, M.; Moller, I.S.; Roy, S.; Shirley, N.; Jacobs, A.; Johnson, A.; Tester, M. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1.PLoS One2010,5, e12571. [Google Scholar]
- Sunarpi; Horie, T.; Motoda, J.; Kubo, M.; Yang, H.; Yoda, K.; Horie, R.; Chan, W.Y.; Leung, H.Y.; Hattori, K.;et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells.Plant J2005,44, 928–938. [Google Scholar]
- Jabnoune, M.; Espeout, S.; Mieulet, D.; Fizames, C.; Verdeil, J.L.; Conejero, G.; Rodriguez-Navarro, A.; Sentenac, H.; Guiderdoni, E.; Abdelly, C.;et al. Diversity in expression patterns and functional properties in the rice HKT transporter family.Plant Physiol2009,150, 1955–1971. [Google Scholar]
- Wu, Y.S.; Hu, Y.B.; Xu, G.H. Interactive effects of potassium and sodium on root growth and expression of K+/Na+ transporter genes in rice.Plant Growth Regul2009,57, 271–280. [Google Scholar]
- Cotsaftis, O.; Plett, D.; Shirley, N.; Tester, M.; Hrmova, M. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing.PLoS One2012,7, e39865. [Google Scholar]
- Huang, S.B.; Spielmeyer, W.; Lagudah, E.S.; James, R.A.; Platten, J.D.; Dennis, E.S.; Munns, R. A sodium transporter (HKT7) is a candidate forNax1, a gene for salt tolerance in durum wheat.Plant Physiol2006,142, 1718–1727. [Google Scholar]
- Asins, J.M.; Villalta, I.; Aly, M.M.; Olias, R.; Morales, P.A.; Huertas, R.; Li, J.; Jaime-Perez, N.; Haro, R.; Raga, V.;et al. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis.Plant Cell Environ2012,36, 1171–1191. [Google Scholar]
- Fairbairn, D.J.; Liu, W.H.; Schachtman, D.P.; Gomez-Gallego, S.; Day, S.R.; Teasdale, R.D. Characterisation of two distinct HKT1-like potassium transporters fromEucalyptus camaldulensis.Plant Mol. Biol2000,43, 515–525. [Google Scholar]
- Liu, W.; Fairbairn, D.J.; Reid, R.J.; Schachtman, D.P. Characterization of two HKT1 homologues fromEucalyptus camaldulensis that display intrinsic osmosensing capability.Plant Physiol2001,127, 283–294. [Google Scholar]
- Su, H.; Balderas, E.; Vera-Estrella, R.; Golldack, D.; Quigley, F.; Zhao, C.S.; Pantoja, O.; Bohnert, J.H. Expression of the cation transporter McHKT1 in a halophyte.Plant Mol. Biol2003,52, 967–980. [Google Scholar]
- Horie, T.; Yoshida, K.; Nakayama, H.; Yamada, K.; Oiki, S.; Shinmyo, A. Two types of HKT transporters with different properties of Na+ and K+ transport inOryza sativa.Plant J2001,27, 129–138. [Google Scholar]
- Golldack, D.; Su, H.; Quigley, F.; Kamasani, U.R.; Munoz-Garay, C.; Balderas, E.; Popova, O.V.; Bennett, J.; Bohnert, H.J.; Pantoja, O. Characterization of a HKT-type transporter in rice as a general alkali cation transporter.Plant J2002,31, 529–542. [Google Scholar]
- Oomen, R.J.; Benito, B.; Sentenac, H.; rodriguez-Navarro, A.; Talon, M.; Very, A.A.; Domingo, C. HKT2;2/1, a K+ permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism.Plant J2012,71, 750–762. [Google Scholar]
- Yao, X.; Horie, T.; Xue, S.W.; Leung, H.Y.; Katsuhara, M.; Brodsky, D.E.; Wu, Y.; Schroeder, J.I. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells.Plant Physiol2010,152, 341–355. [Google Scholar]
- Horie, T.; Brodsky, D.E.; Costa, A.; Kaneko, T.; Lo Schiavo, F.; Katsuhara, M.; Schroeder, J.I. K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions.Plant Physiol2011,156, 1493–1507. [Google Scholar]
- Lan, W.Z.; Wang, W.; Wang, S.M.; Li, L.G.; Buchanan, B.B.; Lin, H.X.; Gao, J.P.; Luan, S. A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel.Proc. Natl. Acad. Sci. USA2010,107, 7089–7094. [Google Scholar]
- Sassi, A.; Meieulet, D.; Khan, I.; Moreau, B.; Gaillard, I.; Sentenac, H.; Very, A.A. The rice monovalent cation transporter OsHKT2;4: Revisited ionic selectivity.Plant Physiol2012,160, 498–510. [Google Scholar]
- Laurie, S.; Feeney, K.A.; Maathuis, F.J.M.; Heard, P.J.; Brown, S.J.; Leigh, R.A. A role for HKT1 in sodium uptake by wheat roots.Plant J2002,32, 139–149. [Google Scholar]
- Rubio, F.; Schwarz, M.; Gassmann, W.; Schroeder, J.I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance.J. Biol. Chem1999,12;274, 6839–6847. [Google Scholar]
- Rubio, F.; Gassmann, W.; Schroeder, J.I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance.Science1995,270, 1660–1663. [Google Scholar]
- Ardie, S.W.; Xie, L.; Takahashi, R.; Liu, S.; Takano, T. Cloning of a high-affinity K+ transporter gene PutHKT2;1 fromPuccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast andArabidopsis.J. Exp. Bot2009,60, 3491–3502. [Google Scholar]
- Haro, R.; Banuelos, M.A.; Senn, M.A.E.; Barrero-Gil, J.; Rodriguez-Navarro, A. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast.Plant Physiol2005,139, 1495–1506. [Google Scholar]
- Mian, A.; Oomen, R.J.; Isayenkow, S.; Sentenac, H.; Maathuis, F.J.; Very, A.A. Overexpression of a Na+ and K+-permeable HKT transporter in barley improves salt tolerance.Plant J2011,68, 468–479. [Google Scholar]
- Banuelos, M.A.; Haro, R.; Fraile-Escanciano, A.; Rodriguez-Navarro, A. Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells.Plant Cell Physiol2008,49, 1128–1132. [Google Scholar]
- Takahashi, R.; Liu, S.; Takano, T. Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants.J. Exp. Bot2007,58, 4387–4395. [Google Scholar]
- Moller, I.S.; Tester, M. Salinity tolerance ofArabidopsis: A good model for cereals?Trends Plant Sci2007,12, 534–540. [Google Scholar]
- Ali, Z.; Park, H.C.; Ali, A.; Oh, D.-H.; Aman, R.; Kropornicka, A.; Hong, H.; Choi, W.; Chung, S.S.; Kim, W.-Y.;et al. TsHKT1;2, a HKT1 homolog from the extremophileArabidopsis relativeThellungiella salsuginea, shows K+ specificity in the presence of NaCl.Plant Physiol2012,158, 1463–1474. [Google Scholar]
- Rus, A.; Yokoi, S.; Sharkhuu, A.; Reddy, M.; Lee, B.H.; Matsumoto, T.K.; Koiwa, H.; Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots.Proc. Natl. Acad. Sci. USA2001,98, 14150–14155. [Google Scholar]
- Essah, P.A.; Davenport, R.; Tester, M. Sodium influx and accumulation inArabidopsis.Plant Physiol2003,133, 307–318. [Google Scholar]
- Davenport, R.J.; Munoz-Mayor, A.; Jha, D.; Essah, P.A.; Rus, A.; Tester, M. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem inArabidopsis.Plant Cell Environ2007,30, 497–507. [Google Scholar]
- Haseloff, J. GFP variants for multispectral imaging of living cells.Method Cell Biol1999,58, 139–151. [Google Scholar]
- Rus, A.; Lee, B.H.; Munoz-Mayor, A.; Sharkhuu, A.; Miura, K.; Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta.Plant Physiol2004,136, 2500–2511. [Google Scholar]
- Munns, R. Salinity, Growth and Phytohormones. InSalinity: Environment-Plants-Molecules; Lauchli, A., Luttge, U., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 271–290. [Google Scholar]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants.Ann. Bot2003,91, 503–527. [Google Scholar]
- Munns, R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypothesis.Plant Cell Environ1993,16, 15–24. [Google Scholar]
- Rus, A.; Baxter, I.; Muthukumar, B.; Gustin, J.; Lahner, B.; Yakubova, E.; Salt, D.E. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations ofArabidopsis.PLoS Genet2006,2, 1964–1973. [Google Scholar]
- Jha, D.; Shirley, N.; Tester, M.; Roy, S.J. Variation in salinity tolerance and shoot sodium accumulation inArabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport.Plant Cell Environ2010,33, 793–804. [Google Scholar]
- Gorham, J.; Bristol, A.; Young, E.M.; Jones, R.G.W.; Kashour, G. Salt tolerance in thetriticeae—K+/Na+ discrimination in barley.J. Exp. Bot1990,41, 1095–1101. [Google Scholar]
- Dubcovsky, J.; Santa-Maria, G.; Epstein, E.; Luo, M.C.; Dvoak, J. Mapping of the K+/Na+ discrimination locusKna1 in wheat.Theor. Appl. Genet1996,92, 448–454. [Google Scholar]
- Gorham, J.; Hardy, C.; Wyn, J.R.G.; Joppa, L.R.; Law, C.N. Chromosomal location of a K+/Na+ discrimination character in the D genome of wheat.Theor. Appl. Genet1987,74, 584–588. [Google Scholar]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major genes for Na+ exclusion,Nax1 andNax2 (wheatHKT1;4 andHKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions.J. Exp. Bot2011,62, 2939–2947. [Google Scholar]
- James, R.A.; Davenport, R.J.; Munns, R. Physiological characterisation of two genes for Na+ exclusion in durum wheat:Nax1 andNax2.Plant Physiol2006,142, 1537–1547. [Google Scholar]
- Plett, D.C.; Moller, I.S. Na+ transport in glycophytic plants: What we know and would like to know.Plant Cell Environ2010,33, 612–626. [Google Scholar]
- Haro, R.; Banuelos, M.A.; Rodriguez-Navarro, A. High-affinity sodium uptake in land plants.Plant Cell Physiol2010,51, 68–79. [Google Scholar]
- Horie, T.; Sugawara, M.; Okunou, K.; Nakayama, H.; Schroeder, J.I.; Shinmyo, A.; Yoshida, K. Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress.Plant Biotechnol2008,25, 233–239. [Google Scholar]
- Rodriguez-Navarro, A.; Rubio, F. High-affinity potassium and sodium transport systems in plants.J. Exp. Bot2006,57, 1149–1160. [Google Scholar]
- Wang, T.B.; Gassmann, W.; Rubio, F.; Schroeder, J.I.; Glass, A.D.M. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium.Plant Physiol1998,118, 651–659. [Google Scholar]
- Buschmann, P.H.; Vaidyanathan, R.; Gassmann, W.; Schroeder, J.I. Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells.Plant Physiol2000,122, 1387–1397. [Google Scholar]
- Maathuis, F.J.M.; Ichida, A.M.; Sanders, D.; Schroeder, J.I. Roles of higher plant K+ channels.Plant Physiol1997,114, 1141–1149. [Google Scholar]
- Cao, Y.; Jin, X.S.; Huang, H.; Derebe, M.G.; Levin, E.J.; Kabaleeswaran, V.; Pan, Y.P.; Punta, M.; Love, J.; Weng, J.;et al. Crystal structure of a potassium ion transporter, TrkH.Nature2011,471, 336–340. [Google Scholar]
- Durell, S.R.; Guy, H.R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel.Biophys. J1999,77, 789–807. [Google Scholar]
- Durell, S.R.; Hao, Y.L.; Nakamura, T.; Bakker, E.P.; Guy, H.R. Evolutionary relationship between K+ channels and symporters.Biophys. J1999,77, 775–788. [Google Scholar]
- Gassmann, W.; Rubio, F.; Schroeder, J.I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1.Plant J1996,10, 869–882. [Google Scholar]
- Hauser, F.; Horie, T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress.Plant Cell Environ2010,33, 552–565. [Google Scholar]
- Baek, D.; Jiang, J.F.; Chung, J.S.; Wang, B.S.; Chen, J.P.; Xin, Z.G.; Shi, H.Z. Regulated AtHKT1;1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance.Plant Cell Physiol2011,52, 149–161. [Google Scholar]
- Miller, G.; Suzuki, N.; Rizhsky, L.; Hegie, A.; Koussevitzky, S.; Miller, R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses.Plant Physiol2007,144, 1777–1785. [Google Scholar]
- Kaye, Y.; Golani, Y.; Singer, Y.; Leshen, Y.; Cohen, G.; Ercetin, M.; Gillaspy, G.; Levine, A. Inositol polyphosphate 5-phosphatase7 regulates production of reactive oxygen species and salt tolerance inArabidopsis.Plant Physiol2011,157, 229–241. [Google Scholar]
- Leshem, Y.; Seri, L.; Levine, A. Induction of phosphotidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance.Plant J2007,51, 185–197. [Google Scholar]
- Jiang, C.; Belfield, E.J.; Mithani, A.; Visscher, A.; Ragoussis, J.; Mott, R.; Smith, J.A.C.; Harberd, N.P. Ros-mediated vascular homeostatic control of root-to-shoot soil Na+ delivery inArabidopsis.EMBO J2012,31, 4359–4370. [Google Scholar]
- Garcia-Mata, C.; Wang, J.; Gajdanowicz, P.; Gonzalez, W.; Hills, A.; Donald, N.; Riedelsberger, J.; Amtmann, A.; Dreyer, I.; Blatt, M.R. A minimal cysteine motif required to activate the SKOR K+ channel ofArabidopsis by the reactive oxygen species H2O2.J. Biol. Chem2010,285, 29286–29294. [Google Scholar]
- Itai, C.; Richmond, A.; Vaadia, Y. The role of root cytokinins during water and salinity stress.Isr. J. Bot17, 195.
- Mason, M.G.; Jha, D.; Salt, D.E.; Tester, M.; Hill, K.; Kieber, J.J.; Schaller, G.E. Type-B response regulators ARR1 and ARR12 regulate expression ofAtHKT1;1 and accumulation of sodium inArabidopsis shoots.Plant J2010,64, 753–763. [Google Scholar]
- Argueso, C.T.; Ferreira, F.J.; Kieber, J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways.Plant Cell Environ2009,32, 1147–1160. [Google Scholar]
- Tran, L.-S.P.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of AHK1/ATHK1 and cytokin receptor histidine kinases in response to abscisic acid, drought, and salt stress inArabidopsis.Proc. Natl. Acad. Sci. USA2007,104, 20623–20628. [Google Scholar]
- Nishiyama, R.; Le, T.D.; Watanabe, Y.; Matsui, A.; Tanaka, M.; Seki, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Transcriptome analysis of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.PLoS One2012,7, e32124. [Google Scholar]
- Mason, M.G.; Li, J.; Mathews, D.E.; Kieber, J.J.; Schaller, G.E. Type-B response regulators display overlapping expression patterns inArabidopsis.Plant Physiol2004,135, 927–937. [Google Scholar]
- Zhang, H.; Kim, M.S.; Sun, Y.; Dowd, S.E.; Shi, H.Z.; Pare, P.W. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.Mol. Plant-Microbe Interact2008,21, 737–744. [Google Scholar]
- Ryu, C.M.; Farag, M.A.; Hu, C.H.; Reddy, M.S.; Wei, H.X.; Pare, P.W.; Kloepper, J.W. Bacterial volatiles promote growth inArabidopsis.Proc. Natl. Acad. Sci. USA2003,100, 4927–4932. [Google Scholar]
- Wind, J.J.; Peviani, A.; Snel, B.; Hanson, J.; Smeekens, S. ABI4: Versatile activator and repressor.Trends Plant Sci2013,18, 125–132. [Google Scholar]
- Shkolnik-Inbar, D.; Adler, G.; Bar-Zvi, D. ABI4 downregulates expression of the sodium transporter HKT1;1 inArabidopsis roots and affects salt tolerance.Plant J2013,73, 993–1005. [Google Scholar]
- Diatloff, E.; Kumar, R.; Schachtman, D.P. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter.FEBS Lett1998,432, 31–36. [Google Scholar]
- Kato, N.; Akai, M.; Zulkifli, L.; Matsuda, N.; Kato, Y.; Goshima, S.; Hazama, A.; Yamagami, M.; Guy, H.R.; Uozumi, N. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters.Channels2007,1, 161–171. [Google Scholar]
- Pardo, J.M. Biotechnology of water and salinity stress tolerance.Curr. Opin. Biotech2010,21, 185–196. [Google Scholar] [Green Version]
- Takahashi, R.; Nishio, T.; Ichizen, N.; Takano, T. High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress.Plant Cell Rep2007,26, 1673–1679. [Google Scholar]
- Xue, S.; Yao, X.; Luo, W.; Jha, D.; Tester, M.; Horie, T.; Schroeder, J.I. AtHKT1;1 mediates Nernstian sodium channel transport properties inArabidopsis root stelar cells.PLoS One2012,6, e24725. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Almeida, P.; Katschnig, D.; De Boer, A.H. HKT Transporters—State of the Art.Int. J. Mol. Sci.2013,14, 20359-20385. https://doi.org/10.3390/ijms141020359
Almeida P, Katschnig D, De Boer AH. HKT Transporters—State of the Art.International Journal of Molecular Sciences. 2013; 14(10):20359-20385. https://doi.org/10.3390/ijms141020359
Chicago/Turabian StyleAlmeida, Pedro, Diana Katschnig, and Albertus H. De Boer. 2013. "HKT Transporters—State of the Art"International Journal of Molecular Sciences 14, no. 10: 20359-20385. https://doi.org/10.3390/ijms141020359
APA StyleAlmeida, P., Katschnig, D., & De Boer, A. H. (2013). HKT Transporters—State of the Art.International Journal of Molecular Sciences,14(10), 20359-20385. https://doi.org/10.3390/ijms141020359