Drift Invariant Metric Quality Control of Construction Sites Using BIM and Point Cloud Data
Abstract
:1. Introduction
- A robust framework to assess the metric quality of a large number of construction site objects in an efficient manner
- A novel method that evaluates the discrepancies between a recorded point cloud and the BIM objects considering frequent construction site obstacles
- An intuitive visualization displaying objects according to the Level of Accuracy (LOA) specification ranges
2. Background & Related Work
2.1. Construction Site Geometry
2.2. Metric Quality Assessment
3. Overview
- The pipeline has two inputs, that is, a BIM model and a (geo)referenced point cloud (Figure 3a). In order for the method to properly operate, the majority of constructed elements should be built within tolerances and a minimum portion of the surface area of each target object should be observed in the point cloud. Also, the (geo)referencing accuracy of the point cloud should be equal or better than half of the average width of the target objects on the construction site.
- Prior to the metric quality assessment, the data is preprocessed. For every target object in the BIM, a mesh representation is generated and the (geo)referenced point cloud is segmented using these objects. Following, several object characteristics are computed including the theoretical transformation resistance and the percentage of the observed surface of the object, both of which are used to enhance the error assessment.
- The first step in the error assessment is the individual error estimation. An ICP-based algorithm is applied to compute the best fit transformation between an object’s as-design shape and its observed points. Given an object’s rotation and translation parameters, the error vector is established for the object. However, this error is exaggerated due to drift and (geo)referencing errors and thus should be compensated.
- The second step in the error assessment is the adjustment of each object’s error vector using the dominant transformation in the vicinity of that object (Figure 3b). To this end, a cost function is defined between every object and its nearest neighbors. Given each object’s characteristics and ICP error, the best fit parameters for the dominant transformation are defined. The adjusted positioning error vector is then established by applying both the individual and the dominant transformation.
- The resulting error vectors are used to visualise each object’s position errors. The error vectors are assigned to one of the Level of Accuracy (LOA) specification ranges and each BIM object is colored conform its respective interval (Figure 3c). The result is a colored BIM model and tabular error ellipses along the cardinal axes which can be intuitively interpreted by the stakeholders.
4. Methodology
4.1. Data Preprocessing
4.2. Error Estimation
4.2.1. Local ICP
4.2.2. Dominant Transformation
4.2.3. Error Assessment
4.3. Analysis Visualisation
4.4. Implementation
5. Experiments
5.1. Data Description
5.2. Synthetic Data Assessments
5.3. Realistic Data
6. Discussion
7. Conclusions & Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Man, S.S.; Chan, A.H.; Wong, H.M. Risk-taking behaviors of Hong Kong construction workers—A thematic study.Saf. Sci.2017,98, 25–36. [Google Scholar] [CrossRef]
- Wong, T.K.M.; Man, S.S.; Chan, A.H.S. Critical factors for the use or non-use of personal protective equipment amongst construction workers.Saf. Sci.2020,126, 104663. [Google Scholar] [CrossRef]
- Love, P.E.; Teo, P.; Morrison, J. Revisiting Quality Failure Costs in Construction.J. Constr. Eng. Manag.2018,144, 05017020. [Google Scholar] [CrossRef]
- Chen, L.; Luo, H. A BIM-based construction quality management model and its applications.Autom. Constr.2014,46, 64–73. [Google Scholar] [CrossRef]
- Chen, K.; Lu, W.; Peng, Y.; Rowlinson, S.; Huang, G.Q. Bridging BIM and Building: From a Literature Review to an Integrated Conceptual Framework.Int. J. Proj. Manag.2015,33, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Golparvar-Fard, M.; Peña Mora, F.; Savarese, S. D4AR - A 4-dimensional Augmented Reality Model for Automating Construction Progress Monitoring Data Collection, Processing and Communication.J. Inf. Technol. Constr.2009,14, 129–153. [Google Scholar]
- Bosché, F. Automated Recognition of 3D CAD Model Objects in Laser Scans and Calculation of As-built Dimensions for Dimensional Compliance Control in Construction.Adv. Eng. Inform.2010,24, 107–118. [Google Scholar] [CrossRef]
- Vincke, S.; Vergauwen, M. Geo-Registering Consecutive Construction Site Recordings Using a Pre-Registered Reference Module.Remote Sens.2020,12, 1928. [Google Scholar] [CrossRef]
- Bosché, F.; Guillemet, A.; Turkan, Y.; Haas, C.T.; Haas, R. Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs-BIM System.J. Comput. Civ. Eng.2014,28, 05014004. [Google Scholar] [CrossRef] [Green Version]
- Lehtola, V.V.; Kaartinen, H.; Nüchter, A.; Kaijaluoto, R.; Kukko, A.; Litkey, P.; Honkavaara, E.; Rosnell, T.; Vaaja, M.T.; Virtanen, J.P.; et al. Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods.Remote Sens.2017,9, 796. [Google Scholar] [CrossRef] [Green Version]
- Vincke, S.; Bassier, M.; Vergauwen, M. Image Recording Challenges for Photogrammetric Construction Site Monitoring.ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.2019,XLII-2/W9, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Braun, A.; Borrmann, A. Combining inverse photogrammetry and BIM for automated labeling of construction site images for machine learning.Autom. Constr.2019,106, 102879. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018.Adv. Eng. Inform.2019,39, 306–319. [Google Scholar] [CrossRef]
- Son, H.; Bosché, F.; Kim, C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure: A survey.Adv. Eng. Inform.2015,29, 172–183. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. A Concept for Automated Construction Progress Monitoring: Technologies Adoption for Benchmarking Project Performance Control.Arab. J. Sci. Eng.2019,44, 4993–5008. [Google Scholar] [CrossRef]
- Omar, T.; Nehdi, M.L. Data acquisition technologies for construction progress tracking.Autom. Constr.2016,70, 143–155. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. The Impact of Field Data Capturing Technologies on Automated Construction Project Progress Monitoring.Procedia Eng.2016,161, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Pučko, Z.; Šuman, N.; Rebolj, D. Automated continuous construction progress monitoring using multiple workplace real time 3D scans.Adv. Eng. Inform.2018,38, 27–40. [Google Scholar] [CrossRef]
- Behnam, A.; Wickramasinghe, D.C.; Ghaffar, M.A.A.; Vu, T.T.; Tang, Y.H.; Isa, H.B.M. Automated progress monitoring system for linear infrastructure projects using satellite remote sensing.Autom. Constr.2016,68, 114–127. [Google Scholar] [CrossRef]
- Nguyen, C.H.P.; Choi, Y. Comparison of point cloud data and 3D CAD data for on-site dimensional inspection of industrial plant piping systems.Autom. Constr.2018,91, 44–52. [Google Scholar] [CrossRef]
- Asadi, K.; Asce, S.M.; Ramshankar, H.; Noghabaei, M.; Han, K.; Asce, A.M. No Title.J. Comput. Civ. Eng.2019,33, 04019031. [Google Scholar] [CrossRef]
- Kalyan, T.S.; Zadeh, P.A.; Staub-French, S.; Froese, T.M. Construction Quality Assessment Using 3D as-built Models Generated with Project Tango.Procedia Eng.2016,145, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kalasapudi, V.S.; Tang, P. Rapid data quality oriented laser scan planning for dynamic construction environments.Adv. Eng. Inform.2016,30, 218–232. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Xu, J.; Wang, K. Study on Construction Quality Control of Urban Complex Project Based on BIM.Procedia Eng.2017,174, 668–676. [Google Scholar] [CrossRef]
- Bosché, F. Plane-based registration of construction laser scans with 3D/4D building models.Adv. Eng. Inform.2012,26, 90–102. [Google Scholar] [CrossRef]
- Rebolj, D.; Pučko, Z.; Babič, N.Č.; Bizjak, M.; Mongus, D. Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring.Autom. Constr.2017,84, 323–334. [Google Scholar] [CrossRef]
- Chen, J.; Cho, Y.K. Point-to-point Comparison Method for Automated Scan-vs-BIM Deviation Detection. In Proceedings of the 17th International Conference on Computing in Civil and Building Engineering, Tampere, Finland, 4–7 June 2008. [Google Scholar]
- Tang, P.; Anil, E.; Akinci, B.; Huber, D. Efficient and Effective Quality Assessment of As-Is Building Information Models and 3D Laser-Scanned Data. InInternational Workshop on Computing in Civil Engineering; ASCE: Miami, FL, USA, 2011; pp. 486–493. [Google Scholar] [CrossRef] [Green Version]
- Anil, E.B.; Tang, P.; Akinci, B.; Huber, D. Deviation analysis method for the assessment of the quality of the as-is Building Information Models generated from point cloud data.Autom. Constr.2013,35, 507–516. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Wu, J.; Zhao, Y. Dimensional accuracy and structural performance assessment of spatial structure components using 3D laser scanning.Autom. Constr.2018,96, 324–336. [Google Scholar] [CrossRef]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection.Comput. Graph. Forum2007,26, 214–226. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.Commun. ACM1981,24, 381–395. [Google Scholar] [CrossRef]
- Maalek, R.; Lichti, D.D.; Ruwanpura, J.Y. Automatic recognition of common structural elements from point clouds for automated progress monitoring and dimensional quality control in reinforced concrete construction.Remote Sens.2019,11, 1102. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tuttas, S.; Hoegner, L.; Stilla, U. Geometric Primitive Extraction from Point Clouds of Construction Sites Using VGS.IEEE Geosci. Remote Sens. Lett.2017,14, 424–428. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description.Comput. Vis. Image Underst.2014,125, 251–264. [Google Scholar] [CrossRef]
- Besl, P.; McKay, N. Method for Registration of 3-D Shapes. In Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Boston, MA, USA, 30 April 1992; Volume 14, pp. 239–256. [Google Scholar] [CrossRef]
- Kaneko, S.; Kondo, T.; Miyamoto, A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation.Pattern Recognit.2003,36, 2041–2047. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching.ISPRS J. Photogramm. Remote Sens.2005,59, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Zheng, N.; Ying, S.; You, Q.; Wu, Y. An Extension of the ICP Algorithm Considering Scale Factor. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16–19 September 2007; Volume 5, pp. 193–196. [Google Scholar] [CrossRef]
- Valença, J.; Puente, I.; Júlio, E.; González-Jorge, H.; Arias-Sánchez, P. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey.Constr. Build. Mater.2017,146, 668–678. [Google Scholar] [CrossRef]
- Cabaleiro, M.; Lindenbergh, R.; Gard, W.F.; Arias, P.; van de Kuilen, J.W. Algorithm for automatic detection and analysis of cracks in timber beams from LiDAR data.Constr. Build. Mater.2017,130, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Peng, X.; Yan, S.; Shen, M.; Zhai, Y. Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles.Autom. Constr.2018,89, 49–57. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Moselhi, O.; Bagchi, A. Image-based retrieval of concrete crack properties for bridge inspection.Autom. Constr.2014,39, 180–194. [Google Scholar] [CrossRef]
- Kim, M.K.K.; Cheng, J.C.P.; Sohn, H.; Chang, C.C.C. A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning.Autom. Constr.2015,49, 225–238. [Google Scholar] [CrossRef]
- Kim, M.K.K.; Wang, Q.; Park, J.W.W.; Cheng, J.C.; Sohn, H.; Chang, C.C.C. Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM.Autom. Constr.2016,72, 102–114. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.K.; Cheng, J.C.; Sohn, H. Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning.Autom. Constr.2016,68, 170–182. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, L.; Wang, Q. Time and Cost Analysis of Geometric Quality Assessment of Structural Columns based on 3D Terrestrial Laser Scanning.Autom. Constr.2020,110, 103014. [Google Scholar] [CrossRef]
- Han, J.Y.; Guo, J.; Jiang, Y.S. Monitoring tunnel profile by means of multi-epoch dispersed 3-D LiDAR point clouds.Tunn. Undergr. Space Technol.2013,33, 186–192. [Google Scholar] [CrossRef]
- Tran, H.; Khoshelham, K.; Kealy, A. Geometric comparison and quality evaluation of 3D models of indoor environments.ISPRS J. Photogramm. Remote Sens.2019,149, 29–39. [Google Scholar] [CrossRef]
- Bassier, M.; Vergauwen, M. Topology Reconstruction of BIM Wall Objects From Point Cloud Data.Remote Sens.2020,12, 1800. [Google Scholar] [CrossRef]
- U.S. Institute of Building Documentation.USIBD Level of Accuracy (LOA) Specification Guide v3.0-2019; Technical Report; U.S. Institute of Building Documentation: Tustin, CA, USA, 2019. [Google Scholar]
- Wang, J.; Sun, W.; Shou, W.; Wang, X.; Wu, C.; Chong, H.Y.; Liu, Y.; Sun, C. Integrating BIM and LiDAR for Real-Time Construction Quality Control.J. Intell. Robot. Syst. Theory Appl.2015,79, 417–432. [Google Scholar] [CrossRef]
- Robert McNeel & Associates.Rhinoceros 6. Technical Report Last Visited on 06-06-2020. 2019. Available online:https://www.rhino3d.com/ (accessed on 11 September 2020).
- Autodesk Inc.Revit; Technical Report, Last Visited on 06-06-2020; Autodesk Inc.: Mill Valley, CA, USA, 2020. [Google Scholar]
- Robert McNeel & Associates.Rhino.Inside; Technical Report, Last Visited on 06-06-2020; Robert McNeel & Associates: Washington, WA, USA, 2019. [Google Scholar]
- Girardeau-Montaut, D. CloudCompare. 2016. Available online:https://www.danielgm.net/cc/ (accessed on 10 September 2020).
- Liu, H.; Tan, T.H.; Kuo, T.Y. A Novel Shot Detection Approach Based on ORB Fused with Structural Similarity.IEEE Access2019,8, 2472–2481. [Google Scholar] [CrossRef]
Dataset | Description |
---|---|
BIM | As-design BIM model |
BIM PCD | Sampled PCD of the above BIM model |
Dataset 1 | Dataset with 10% of the elements with normal (N) displacements and a normal drift |
applied around the Z-axis only | |
Dataset 2 | Dataset with 20% of the elements with normal displacements and a normal drift applied |
around the Z-axis only | |
Dataset 3 | Dataset with 30% of the elements with normal displacements and a normal drift applied |
around the Z-axis only | |
Dataset 4 | Dataset with 10% of the elements with normal displacements and a normal drift applied |
around the X-, Y- and Z-axis | |
Dataset 5 | Dataset with 10% of the elements with extra large (XL) displacements and a normal drift |
applied around the Z-axis only | |
Dataset 6 | Dataset with 10% of the elements with normal displacements and an extra large drift |
applied around the Z-axis only | |
TLS | Recorded Terrestrial Laser Scanning dataset of the construction site |
PHOT | Recorded photogrammetric dataset of the construction site |
Error | Transformation parameters |
(N) | and |
(XL) | and |
(N) | and |
(XL) | and |
Error Vector (mm) | Dataset 1 | Dataset 2 | ||||||||
element nr. | GT | ABS | ΔABS | REL | ΔREL | GT | ABS | ΔABS | REL | ΔREL |
overall median | 6 | 0 | 6 | 1 | ||||||
overall sd | 15 | 5 | 14 | 5 | ||||||
8 | 0 | 63 | 63 | 3 | 3 | 0 | 62 | 62 | 3 | 3 |
23 | 0 | 8 | 8 | 0 | 0 | 0 | 8 | 8 | 0 | 0 |
28 | 0 | 13 | 13 | 0 | 0 | 0 | 13 | 13 | 0 | 0 |
84 | 0 | 46 | 46 | 51 | 51 | 0 | 45 | 45 | 51 | 51 |
108 | 0 | 6 | 6 | 0 | 0 | 0 | 6 | 6 | 3 | 3 |
Dataset 3 | Dataset 4 | |||||||||
element nr. | GT | ABS | ΔABS | REL | ΔREL | GT | ABS | ΔABS | REL | ΔREL |
overall median | 7 | 1 | 6 | 0 | ||||||
overall sd | 14 | 12 | 11 | 5 | ||||||
8 | 0 | 61 | 61 | 3 | 3 | 0 | 45 | 45 | 2 | 2 |
23 | 0 | 9 | 9 | 0 | 0 | 0 | 6 | 6 | 0 | 0 |
28 | 0 | 13 | 13 | 18 | 18 | 0 | 9 | 9 | 0 | 0 |
84 | 0 | 45 | 45 | 51 | 51 | 0 | 36 | 36 | 24 | 24 |
108 | 0 | 7 | 7 | 10 | 10 | 0 | 6 | 6 | 0 | 0 |
Dataset 5 | Dataset 6 | |||||||||
element nr. | GT | ABS | ΔABS | REL | ΔREL | GT | ABS | ΔABS | REL | ΔREL |
overall median | 6 | 0 | 12 | 1 | ||||||
overall sd | 14 | 5 | 48 | 13 | ||||||
8 | 0 | 63 | 63 | 3 | 3 | 0 | 214 | 214 | 11 | 11 |
23 | 0 | 9 | 9 | 0 | 0 | 0 | 25 | 25 | 1 | 1 |
28 | 0 | 13 | 13 | 2 | 2 | 0 | 48 | 48 | 0 | 0 |
84 | 0 | 46 | 46 | 51 | 51 | 0 | 129 | 129 | 135 | 135 |
108 | 0 | 6 | 6 | 0 | 0 | 0 | 9 | 9 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassier, M.; Vincke, S.; De Winter, H.; Vergauwen, M. Drift Invariant Metric Quality Control of Construction Sites Using BIM and Point Cloud Data.ISPRS Int. J. Geo-Inf.2020,9, 545. https://doi.org/10.3390/ijgi9090545
Bassier M, Vincke S, De Winter H, Vergauwen M. Drift Invariant Metric Quality Control of Construction Sites Using BIM and Point Cloud Data.ISPRS International Journal of Geo-Information. 2020; 9(9):545. https://doi.org/10.3390/ijgi9090545
Chicago/Turabian StyleBassier, Maarten, Stan Vincke, Heinder De Winter, and Maarten Vergauwen. 2020. "Drift Invariant Metric Quality Control of Construction Sites Using BIM and Point Cloud Data"ISPRS International Journal of Geo-Information 9, no. 9: 545. https://doi.org/10.3390/ijgi9090545
APA StyleBassier, M., Vincke, S., De Winter, H., & Vergauwen, M. (2020). Drift Invariant Metric Quality Control of Construction Sites Using BIM and Point Cloud Data.ISPRS International Journal of Geo-Information,9(9), 545. https://doi.org/10.3390/ijgi9090545