Enhancing the Phytochemicals and Antioxidant Abilities of Isoflavone-Enriched Soybean Leaves Through Inoculation withLacticaseibacillus paracasei LAB47 andLevilactobacillus brevis WCP02

Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of IESL
2.2. Medium, Reagents, and Instruments
2.3. Characteristic Screening of LAB Strains Isolated from Kimchi
2.4. Fermentation Condition Optimization for IESL
2.5. Characteristics of IESL According to the Processing Stage
2.5.1. Processing Conditions of IESL
2.5.2. Analysis of Physicochemical Properties
2.5.3. Fatty Acid Measurement
2.5.4. Measurement of Free Amino Acids
2.5.5. Extract Preparation
2.5.6. Measurement of Isoflavones
2.5.7. Measurement of TPC and TFC
2.5.8. Measurement of Antioxidant Activities
2.5.9. Measurement of the Digestive Enzyme Inhibitory Activities
2.5.10. Measurement of the DNA Protection Capacity
2.6. Statistical Analysis and Data Processing
3. Results and Discussion
3.1. Selection of LAB47 as the Optimal Fermentation Strain
3.1.1. Artificial Gastric Acidic Tolerance of the 13 LAB Strains
3.1.2. β-Glucosidase Activity of the 13 LAB Strains
3.1.3. GABA Production Ability of LAB
3.1.4. Isoflavone Conversion Rate of LAB
3.1.5. Identification of LAB47 Based on 16S rRNA Gene Sequencing
3.2. Fermentation Condition Optimization for IESL
3.2.1. Analysis of GA and GABA Contents According to Fermentation Conditions
3.2.2. Analysis of Isoflavone Contents According to Fermentation Conditions
3.3. Characteristics of IESL According to the Processing Stage
3.3.1. Phytochemical Properties of IESL According to the Processing Stage
3.3.2. Fatty Acid Contents of IESL According to the Processing Stage
3.3.3. Free Amino Acid Contents of IESL According to the Processing Stage
3.3.4. Isoflavone Contents of IESL According to the Processing Stage
3.3.5. TPC and TFC of IESL According to the Processing Stage
3.3.6. Antioxidant Activities of IESL According to the Processing Stage
3.3.7. Digestive Enzyme Activities of IESL According to the Processing Stage
3.3.8. DNA Damage Protecting Activity of IESL According to the Processing Stage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IESLs | Isoflavone-enriched soybean leaves |
RIESLs | Raw isoflavone-enriched soybean leaves |
SIESLs | Steamed isoflavone-enriched soybean leaves |
FIESLs | Fermented isoflavone-enriched soybean leaves |
References
- Yuk, H.J.; Song, Y.H.; Curtis-Long, M.J.; Kim, D.W.; Woo, S.G.; Lee, Y.B.; Uddin, Z.; Kim, C.Y.; Park, K.H. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves.J. Agric. Food Chem.2016,64, 7315–7324. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Cho, D.Y.; Jang, K.J.; Lee, J.H.; Jung, J.G.; Kim, M.J.; Jeong, J.B.; Haque, M.A.; Cho, K.M. Changes of γ-aminobutyric acid, phytoestrogens, and biofunctional properties of the isoflavone-enriched soybean (Glycine max) leaves during solid lactic acid fermentation.Fermentation2022,8, 525. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, B.; Hwang, C.E.; Haque, M.A.; Kim, S.C.; Lee, C.S.; Kang, S.S.; Cho, K.M.; Lee, D.H. Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks usingLactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties.J. Funct. Food2018,43, 17–28. [Google Scholar] [CrossRef]
- Wu, Q.; Tun, H.M.; Law, Y.-S.; Khafipour, E.; Shah, N.P. Common distribution ofgad operon inLactobacillus brevis and its GadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH.Front. Microbiol.2017,8, 206. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhu, D.; Xu, J.; Xu, X.; Liu, J. Bioaccessibility and application of soybean isoflavones: A review.Food Rev. Int.2023,39, 5948–5967. [Google Scholar] [CrossRef]
- Lu, F.; Wang, Y.; Wu, S.; Huang, W.; Yao, H.; Wang, S.; Shi, X.; Laborda, P.; Herrera-Balandrano, D.D. Germination time and in vitro gastrointestinal digestion impact on the isoflavone bioaccessibility and antioxidant capacities of soybean sprouts.Food Chem.2024,460, 140517. [Google Scholar] [CrossRef]
- Yogeswara, I.B.A.; Maneerat, S.; Haltrich, D. Glutamate decarboxylase from lactic acid bacteria—A key enzyme in GABA synthesis.Microorganisms2020,8, 1923. [Google Scholar] [CrossRef]
- Gaya, P.; Peirotén, Á.; Medina, M.; Landete, J.M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest.Int. J. Food Sci. Nutr.2016,67, 117–124. [Google Scholar] [CrossRef]
- Kim, Y.-L.; Nguyen, T.H.; Kim, J.-S.; Park, J.-Y.; Kang, C.-H. Isolation of γ-aminobutyric Acid (GABA)-producing lactic acid bacteria with anti-inflammatory effects from fermented foods in Korea.Fermentation2023,9, 612. [Google Scholar] [CrossRef]
- Liang, L.; Omedi, J.O.; Huang, W.; Zheng, J.; Zeng, Y.; Huang, J.; Zhang, B.; Zhou, L.; Li, N.; Gao, T.; et al. Antioxidant, flavor profile and quality of wheat dough bread incorporated with kiwifruit fermented by β-glucosidase producing lactic acid bacteria strains.Food Biosci.2022,46, 101450. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cho, D.Y.; Lee, J.H.; Lee, J.; Jeong, J.B.; Lee, J.H.; Lee, G.Y.; Jang, M.Y.; Cho, K.M. Enhancement of non-glycoside phytoestrogens and digestive enzymatic inhibition activity during bioprocessing of isoflavone-enriched soybean leaves by mycelia ofTricholoma matsutake.Food Biosci.2024,61, 104729. [Google Scholar] [CrossRef]
- Cong, S.; Zhang, X.; Ji, J.; Liu, X.; Hu, N. Isolation and identification of blueberry-derived lactic acid bacteria and their probiotic, antioxidant, and fermentation properties.Food Biosci.2024,62, 104497. [Google Scholar] [CrossRef]
- Hwang, C.E.; An, M.J.; Lee, H.Y.; Lee, B.W.; Kim, H.T.; Ko, J.M.; Baek, I.Y.; Seo, W.T.; Cho, K.M. Potential probioticLactobacillus plantarum P1201 to produce soy-yogurt with enhanced antioxidant activity.Food Sci. Technol.2014,46, 556–565. [Google Scholar] [CrossRef]
- Hwang, C.E.; Cho, D.Y.; Lee, J.H.; Lee, D.H.; Cho, K.M. Changes in active compounds and biological activities during fermentation of soy-powder milk by the mixtures of probiotics lactic acid bacteria.Food Sci. Preserv.2020,27, 769–780. [Google Scholar] [CrossRef]
- Tammekivi, E.; van der Werf, I.D.; Toom, L.; Herodes, K.; Leito, I. Comparison of derivatization methods for the quantitative gas chromatographic analysis of fatty acids.Anal. Methods2019,11, 1234–1241. [Google Scholar] [CrossRef]
- Belmonte-Herrera, B.H.; Domínguez-Avila, J.A.; Ayala-Zavala, J.F.; Valenzuela-Melendres, M.; Tortoledo-Ortiz, O.; González-Aguilar, G.A. Optimization and In Vitro Digestion of a Guava (Psidium guajava), Mamey (Pouteria sapota) and Stevia (Stevia rebaudiana) Functional Beverage.Foods2024,13, 142. [Google Scholar] [CrossRef]
- Adinortey, M.B.; Ansah, C.; Weremfo, A.; Adinortey, C.A.; Adukpo, G.E.; Ameyaw, E.O.; Nyarko, A.K. DNA damage protecting activity and antioxidant potential ofLaunaea taraxacifolia leaves extract.J. Nat. Sci. Biol. Med.2018,9, 6–13. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera.Food Chem.2017,214, 259–268. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, E.Y.; Lee, J.H. Comparative investigation on variations of nutritional components in whole seeds and seed coats of Korean black soybeans for different crop years and screening of their antioxidant and anti-aging properties.Food Chem. X2023,17, 100572. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Shafique, B.; Batool, M.; Kowalczewski, P.Ł.; Shehzad, Q.; Usman, M.; Manzoor, M.F.; Zahra, S.M.; Yaqub, S.; Aadil, R.M. Nutritional and health potential of probiotics: A review.Appl. Sci.2021,11, 11204. [Google Scholar] [CrossRef]
- Łubek-Nguyen, A.; Ziemichód, W.; Olech, M. Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications.Appl. Sci.2022,12, 3232. [Google Scholar] [CrossRef]
- Khan, S.A.; Liu, L.; Lai, T.; Zhang, R.; Wei, Z.; Xiao, J.; Deng, Y.; Zhang, M. Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria.J. Food Sci. Technol.2018,55, 4782–4791. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90.J. Food Compos. Anal.2011,24, 402–410. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, C.E.; Cho, E.J.; Song, Y.H.; Kim, S.C.; Cho, K.M. Improvement of nutritional components and in vitro antioxidative properties of soy-powder yogurts usingLactobacillus plantarum.J. Food Drug Anal.2018,26, 1054–1065. [Google Scholar] [CrossRef]
- Hwang, C.E.; Kim, S.C.; Lee, J.H.; Hong, S.Y.; Cho, K.M. Enhanced biological effect of fermented soy-powder milk withLactobacillus brevis increasing in γ-aminobutyric acid and isoflavone aglycone contents.J. Appl. Biol. Chem.2018,61, 245–255. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry.Front. Bioeng. Biotechnol.2021,9, 612285. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review.Int. J. Mol. Sci.2020,21, 995. [Google Scholar] [CrossRef]
- Kuerban, D.; Lu, J.; Huangfu, Z.; Wang, L.; Qin, Y.; Zhang, M. Optimization of Fermentation Conditions and Metabolite Profiling of Grape Juice Fermented with Lactic Acid Bacteria for Improved Flavor and Bioactivity.Foods2023,12, 2407. [Google Scholar] [CrossRef]
- Saeed, A.H.; Salam, A.I. Current limitations and challenges with lactic acid bacteria: A review.Food Nutr. Sci.2013,4, 73–87. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk.Microorganisms2020,8, 1348. [Google Scholar] [CrossRef]
- Zhuang, Y.; Dong, J.; He, X.; Wang, J.; Li, C.; Dong, L.; Zhang, Y.; Zhou, X.; Wang, H.; Yi, Y.; et al. Impact of heating temperature and fatty acid type on the formation of lipid oxidation products during thermal processing.Front. Nutr.2022,9, 913297. [Google Scholar] [CrossRef] [PubMed]
- van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers—A Systematic Review.Nutrients2020,12, 615. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids.Molecules2018,23, 2583. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Wagner, M.; George, S.; Morales, F.J. Impact of conventional sterilization and ohmic heating on the amino acid profile in vegetable baby foods.Innov. Food Sci. Emerg. Technol.2016,34, 24–28. [Google Scholar] [CrossRef]
- Izaguirre, J.K.; Barañano, L.; Castañón, S.; Alkorta, I.; Quirós, L.M.; Garbisu, C. Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria.Processes2021,9, 963. [Google Scholar] [CrossRef]
- Klopsch, R.; Baldermann, S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Bread enriched with legume microgreens and leaves—Ontogenetic and baking-driven changes in the profile of secondary plant metabolites.Front. Chem.2018,6, 322. [Google Scholar] [CrossRef]
- Qu, S.; Kwon, S.J.; Duan, S.; Lim, Y.J.; Eom, S.H. Isoflavone Changes in Immature and Mature Soybeans by Thermal Processing.Molecules2021,26, 7471. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, C.E.; Son, K.S.; Cho, K.M. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties.Food Chem.2019,272, 362–371. [Google Scholar] [CrossRef]
- Kim, I.-S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans.Antioxidants2021,10, 1064. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview.Future J. Pharm. Sci.2021,7, 25. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing.J. Agric. Food Chem.2008,56, 7165–7175. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.2020,94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids.Sci. Rep.2020,10, 2611. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods.J. Food Biochem.2020,44, e13394. [Google Scholar] [CrossRef]
- Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L.; et al. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63.Int. J. Mol. Sci.2023,24, 3652. [Google Scholar] [CrossRef]
- Huligere, S.S.; Chandana Kumari, V.B.; Alqadi, T.; Kumar, S.; Cull, C.A.; Amachawadi, R.G.; Ramu, R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters.Front. Microbiol.2023,13, 1042263. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Cho, D.-Y.; Jeong, J.-B.; Lee, J.-H.; Lee, G.-Y.; Jang, M.-Y.; Lee, J.-H.; Cho, K.-M. Chemical Compositions before and after Lactic Acid Fermentation of Isoflavone-Enriched Soybean Leaves and Their Anti-Obesity and Gut Microbiota Distribution Effects.Nutrients2024,16, 1693. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; Rosa, L.A.d.l.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, A.E. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions.Molecules2017,22, 669. [Google Scholar] [CrossRef]
- Kashtoh, H.; Baek, K.-H. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes.Plants2022,11, 2722. [Google Scholar] [CrossRef]
- Wang, W.T.; Liao, S.F.; Wu, Z.L.; Chang, C.W.; Wu, J.Y. Simultaneous study of antioxidant activity, DNA protection and anti-inflammatory effect ofVernonia amygdalina leaves extracts.PLoS ONE2020,15, e0235717. [Google Scholar] [CrossRef]
Isolates | Survival Rate (%)1 | |||||
---|---|---|---|---|---|---|
Incubation Time/pH Condition | ||||||
2 h/pH 2.0 | 4 h/pH 2.0 | 2 h/pH 2.5 | 4 h/pH 2.5 | 2 h/pH 3.0 | 4 h/pH 3.0 | |
LAB02 | nd2 | nd | nd | nd | 62.03 ± 3.12f | 26.96 ± 0.43cd |
LAB07 | 24.72 ± 1.06b | 6.26 ± 0.12b | 64.05 ± 2.50a | 26.39 ± 0.99ab | 89.60 ± 0.79b | 49.55 ± 2.01ab |
LAB10 | nd | nd | 0.12 ± 0.01d | nd | 3.00 ± 0.04j | nd |
LAB11 | 29.05 ± 0.60a | 9.25 ± 0.21a | 63.32 ± 1.32a | 28.57 ± 0.94a | 95.94 ± 1.21a | 51.96 ± 1.89a |
LAB12 | nd | nd | 0.22 ± 0.01d | nd | 4.10 ± 0.26ij | nd |
LAB20 | nd | nd | 0.60 ± 0.03d | nd | 2.31 ± 0.07j | nd |
LAB21 | 11.88 ± 0.11d | nd | 46.34 ± 1.20c | 7.36 ± 0.24d | 69.73 ± 0.68e | 25.89 ± 0.73d |
LAB22 | nd | nd | 0.10 ± 0.00d | nd | 16.79 ± 0.33h | 2.67 ± 0.06e |
LAB39 | nd | nd | 0.84 ± 0.04d | nd | 71.56 ± 3.14de | 30.66 ± 1.37c |
LAB44 | nd | nd | 0.18 ± 0.01d | nd | 50.00 ± 2.40g | 24.00 ± 0.39d |
LAB47 | 20.63 ± 0.41c | 4.61 ± 0.20c | 62.22 ± 2.96a | 24.75 ± 0.52b | 82.43 ± 2.57c | 46.02 ± 0.77b |
LAB48 | nd | nd | 1.59 ± 0.05d | nd | 9.95 ± 0.13i | nd |
LAB49 | 11.79 ± 0.38d | nd | 54.85 ± 2.03b | 19.16 ± 0.90c | 77.39 ± 1.89cd | 31.01 ± 1.59c |
Index1 | Food Processing Stages2 | ||
---|---|---|---|
RIESL | SIESL | FIESL | |
pH | 6.19 ± 0.01b | 6.17 ± 0.02b | 6.25 ± 0.02a |
Acidity (%, as lactic acid) | 2.07 ± 0.01b | 2.07 ± 0.01b | 2.16 ± 0.01a |
Viable cell numbers (log cfu/g) | nm3 | nm | 8.95± 0.08a |
Index1 | Food Processing Stages2 | ||
---|---|---|---|
RIESL | SIESL | FIESL | |
Total phenolic contents (GAE mg/g) | 27.19 ± 0.04b | 27.92 ± 0.08b | 33.73 ± 0.13a |
Total flavonoid contents (RE mg/g) | 11.68 ± 0.04b | 12.25 ± 0.01ab | 13.93 ± 0.03a |
DPPH radical scavenging IC50 (mg/mL) | 0.17 ± 0.01a | 0.21 ± 0.00b | 0.16 ± 0.01a |
ABTS radical scavenging IC50 (mg/mL) | 0.08 ± 0.00b | 0.09 ± 0.00a | 0.07 ± 0.00b |
Glucosidase inhibition IC50 (mg/mL) | 3.19 ± 0.09b | 3.60 ± 0.11a | 2.85 ± 0.08c |
Pancreatic-lipase inhibition IC50 (mg/mL) | 5.92 ± 0.19b | 6.58 ± 0.17a | 4.38 ± 0.11c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-Y.; Lee, J.-H.; Cho, D.-Y.; Jeong, J.-B.; Lee, G.-Y.; Jang, M.-Y.; Lee, J.-H.; Cho, K.-M. Enhancing the Phytochemicals and Antioxidant Abilities of Isoflavone-Enriched Soybean Leaves Through Inoculation withLacticaseibacillus paracasei LAB47 andLevilactobacillus brevis WCP02.Foods2025,14, 1008. https://doi.org/10.3390/foods14061008
Lee H-Y, Lee J-H, Cho D-Y, Jeong J-B, Lee G-Y, Jang M-Y, Lee J-H, Cho K-M. Enhancing the Phytochemicals and Antioxidant Abilities of Isoflavone-Enriched Soybean Leaves Through Inoculation withLacticaseibacillus paracasei LAB47 andLevilactobacillus brevis WCP02.Foods. 2025; 14(6):1008. https://doi.org/10.3390/foods14061008
Chicago/Turabian StyleLee, Hee-Yul, Ji-Ho Lee, Du-Yong Cho, Jong-Bin Jeong, Ga-Yong Lee, Mu-Yeun Jang, Jin-Hwan Lee, and Kye-Man Cho. 2025. "Enhancing the Phytochemicals and Antioxidant Abilities of Isoflavone-Enriched Soybean Leaves Through Inoculation withLacticaseibacillus paracasei LAB47 andLevilactobacillus brevis WCP02"Foods 14, no. 6: 1008. https://doi.org/10.3390/foods14061008
APA StyleLee, H.-Y., Lee, J.-H., Cho, D.-Y., Jeong, J.-B., Lee, G.-Y., Jang, M.-Y., Lee, J.-H., & Cho, K.-M. (2025). Enhancing the Phytochemicals and Antioxidant Abilities of Isoflavone-Enriched Soybean Leaves Through Inoculation withLacticaseibacillus paracasei LAB47 andLevilactobacillus brevis WCP02.Foods,14(6), 1008. https://doi.org/10.3390/foods14061008