Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010–2018 over China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Column-Averaged Dry-Air Mole Fraction of Carbon Dioxide (XCO2) from GOSAT
2.2.2. In-Situ CO2 Concentration Values from Ground-Based Station
3. Methodology
3.1. Spatio-Temporal Thin Plate Spline Interpolation
3.2. Multi-Fractal Detrended Fluctuation Analysis
4. Results
4.1. Accuracy Evaluation of the Interpolated Monthly XCO2 Concentration
4.2. Spatial Distribution of Multi-Fractal Scaling Behaviour
4.2.1. Atmospheric XCO2 Multi-Fractality of Four Typical Grid Points
4.2.2. Spatial Distribution of Multi-Fractal Scaling Behaviour
5. Discussions
6. Conclusions
- (I)
- We improved a spatio-temporal thin plate spline interpolation approach, and conducted interpolation of the monthly XCO2 concentrations over China from 2010−2018 based on GOSAT observations of XCO2. The interpolation accuracy of spatio-temporal thin plate spline interpolation approach was higher than a spatial thin plate spline interpolation one. The interpolated XCO2 concentration is highly accurate and is useful in analyzing multi-fractal scaling behaviours.
- (II)
- We found that the scaling behaviours of XCO2 concentration show a positive and persistent auto-correlation in most regions. The scaling behaviours of CO2 did not always obey power laws.
- (III)
- The multi-fractal strength of XCO2 concentration is different, i.e., strong in western China and weak in eastern China. There are two types of multi-fractal sources: one is long-range correlations, and the other is both long-range correlations and a broad probability density function. Two types are mainly distributed in southern and middle China with a triangle-shaped pattern and in northern China with an inverted-triangle-shaped pattern, respectively. Two external forces are likely to have influences on multi-fractality: the climatic change like atmospheric temperature and the carbon emission/absorption.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, J.T.; Ding, Y.; Griggs, D.J.Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of Earth as a system.Science2000,290, 291–296. [Google Scholar] [CrossRef]
- Canadell, J.G.; Quere, C.L.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks.Proc. Natl. Acad. Sci. USA2007,104, 18866–18870. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Quere, C.L.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions.Proc. Natl. Acad. Sci. USA2007,104, 10288–10293. [Google Scholar] [CrossRef] [PubMed]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscienlny-Bunde, E.; Bunde, A.; Havlin, S.; Stanley, H.E. Multi-fractal detrended fluctuation analysis of non-stationary time series.Physica A2002,316, 87–114. [Google Scholar] [CrossRef]
- Ihlen, E.A.F. Introduction to Multi-Fractal Detrended Fluctuation Analysis in Matlab.Front. Physiol.2012,3, 141. [Google Scholar] [CrossRef] [PubMed]
- Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of air temperature multi-fractal characteristics over Greece.Atmosphere2019,10, 45. [Google Scholar] [CrossRef]
- Burgueño, A.; Lana, X.; Serra, C.; Martínez, M.D. Daily extreme temperature multi-fractals in Catalonia (NE Spain).Phys. Lett. A2014,378, 874–885. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J.P.; Liu, X.W.; Li, F. Multi-fractal scaling comparison of the air temperature and the surface temperature over China.Phys. A Stat. Mech. Its Appl.2016,462, 783–792. [Google Scholar] [CrossRef]
- Gao, L.; Fu, Z. Comparative analysis to multi-fractal behaviors of relative humidity and temperature over China.Acta Sci. Nat. Univ. Pekin.2012,48, 399–404. [Google Scholar]
- Gómez-Gómez, J.; Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; Ravé, E.G.; Jiménez-Hornero, F.J. Multi-Fractal Detrended Fluctuation Analysis of Temperature in Spain (1960–2019).Phys. A Stat. Mech. Its Appl.2021,578, 126118. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.N.; Zhao, X. Scaling behaviors of precipitation over China.Theor. Appl. Climatol.2017,128, 63–70. [Google Scholar] [CrossRef]
- Barreto, I.D.C.; Stosic, T. Multi-Fractal Analysis of Rainfall in Coastal Area in Pernambuco, Brazil.Res. Soc. Dev.2021,10, e15410212424. [Google Scholar] [CrossRef]
- Kim, K.; You, C.H.; Lee, D.I. Multi-fractal structures in the temperature and the humidity.J. Korean Phys. Soc.2010,57, 296–299. [Google Scholar] [CrossRef]
- Shen, C.H.; Li, C.L.; Si, Y.L. A detrended cross-correlation analysis of meteorological and API data in Nanjing, China.Phys. A Stat. Mech. Its Appl.2015,419, 417–428. [Google Scholar] [CrossRef]
- Yuan, N.M.; Fu, Z.T. Different spatial cross-correlation patterns of temperature records over China: A DCCA study on different time scales.Phys. A Stat. Mech. Its Appl.2014,400, 71–79. [Google Scholar] [CrossRef]
- Shen, C.H. The influence of a scaling exponent on ρDCCA: A spatial cross-correlation pattern of precipitation records over eastern China.Phys. A Stat. Mech. Its Appl.2019,516, 579–590. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Xiao, R.; Shi, H.B.; Li, G.H.; Zhou, X.F. Statistical regularities of carbon emission trading market: Evidence from European Union allowances.Phys. A Stat. Mech. Its Appl.2015,426, 9–15. [Google Scholar] [CrossRef]
- Benz, E.; Truck, S. Modeling the price dynamics of CO2 emission allowances.Energy Econ.2009,31, 4–15. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, N.W.; Choi, K.H.; Yoon, S.M. Analysis of the informational efficiency of the EU carbon emission trading market: Asymmetric MFDFA approach.Energies2020,13, 2171. [Google Scholar] [CrossRef]
- Feng, Z.H.; Zou, L.L.; Wei, Y.M. Carbon price volatility: Evidence from EUETS.Appl. Energy2011,88, 590–598. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Yamasaki, K.; Tenenbaum, J.N.; Stanley, H.E. Carbon-dioxide emissions trading and hierarchical structure in worldwide finance and commodities markets.Phys. Rev. E2013,87, 012814. [Google Scholar] [CrossRef] [PubMed]
- Bozkus, S.K.; Kahyaoglu, H.; Lawali, A.M.M. Multi-fractal analysis of atmospheric carbon emissions and OECD industrial production index.Int. J. Clim. Chang. Str.2020,12, 411–430. [Google Scholar] [CrossRef]
- Zheng, Z.Y. CO2 market data analysis. In Proceedings of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent System, Shenyang, China, 8–12 June 2015; pp. 109–114. [Google Scholar]
- Patra, P.K.; Santhanam, M.S.; Manimaran, P.; Takigawa, M.; Nakazawa, T. 1/f Noise and Multi-Fractality in Atmospheric CO2 Records. Available online:https://arxiv.53yu.com/abs/nlin/0610038 (accessed on 10 June 2022).
- Dutta, S.; Ghosh, D.; Chatterjee, S. A multi-fractal analysis of time series of atmospheric CO2 concentration.Int. J. Global. Warm2018,14, 403–416. [Google Scholar] [CrossRef]
- Maruyama, F. Relationship between the atmospheric CO2 and climate indices by wavelet-based multi-fractal analysis.J. Geo-Sci. Environ. Prot.2019,7, 38–51. [Google Scholar]
- Varotsos, C.A.; Efstathiou, M.N. The observational and empirical thermospheric CO2 and NO power do not exhibit power-law behavior: An indication of their reliability.J. Atmos. Sol.-Terr. Phys.2018,168, 1–7. [Google Scholar] [CrossRef]
- Bie, N.; Lei, L.P.; He, Z.H.; Zeng, Z.C.; Liu, L.Y.; Zhang, B.; Cai, B.F. Specific patterns of XCO2 observed by GOSAT during 2009–2016 and assessed with model simulations over China.Sci. China. Earth. Sci.2020,63, 384–394. [Google Scholar] [CrossRef]
- NIES GOSAT Project.Global Greenhouse Gas Observation by Satellite; NIES: Ibaraki, Japan, 2012. [Google Scholar]
- Algorithm Theoretical Basis Document for CO2 and CH4 Column Amounts Retrieval from GOSAT TANSO-FTS SWIR, NIES-GOSAT-PO-017, V1.0, 2010. Available online:https://www.gosat.nies.go.jp/en/ (accessed on 10 June 2022).
- Chevallier, F.; Maksyutov, S.; Bousquet, P.; Breon, F.M.; Saito, R.; Yoshida, Y.; Yokota, T. On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations.Geophys. Res. Lett.2009,36, L19807. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A.; et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity.Geophys. Res. Lett.2011,38, 351–365. [Google Scholar] [CrossRef]
- Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P.O.; Toon, G.C.; Wunch, D.; Roehl, C.M.; Notholt, J.; et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.Atmos. Meas. Tech.2011,4, 1061–1076. [Google Scholar] [CrossRef]
- Liu, D.; Lei, L.P.; Guo, L.J.; Zeng, Z.C. A cluster of CO2 change characteristics with GOSAT observations for viewing the spatial pattern of CO2 emission and absorption.Atmosphere2015,6, 1695–1713. [Google Scholar] [CrossRef]
- Guo, M.; Xu, J.W.; Wang, X.F.; He, H.S.; Li, J.; Wu, L. Estimating CO2 concentration during the growing season from MODIS and GOSAT in East Asia.Int. J. Remote Sens.2015,36, 4363–4383. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Jing, Y.; Xie, Y. Spatio-temporal characteristics of global atmospheric CO2 mole fractions (XCO2) retrieved from remotely sensed data.Infrared Millim.-Wave Terahertz Technol. II2012,8562, 121–128. [Google Scholar] [CrossRef]
- Uddin, M.S.; Czajkowski, K.P. Performance assessment of spatial interpolation methods for the estimation of atmospheric carbon dioxide in the wider geographic extent.J. Geo-Vis. Spat. Anal.2022,6, 10. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Lei, L.P.; Guo, L.J.; Zhang, L.; Zhang, B. Incorporating temporal variability to improve geo-statistical analysis of satellite-observed CO2 in China.Chin. Sci. Bull.2013,58, 1948–1954. [Google Scholar] [CrossRef]
- Graler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat.R J.2016,8, 204–218. [Google Scholar] [CrossRef]
- Wang, J.N.; Cai, B.F.; Dong, C.; Liu, L.C.; Zhou, Y.; Zhang, Z.S.; Xue, W.B. China 10 km carbon dioxide emissions grid dataset and spatial characteristic analysis.China Environ. Sci.2014,34, 1–6. [Google Scholar]
- Bookstein, F.L. Principal Warps:Thin-plate spline and the decomposition of deformations.IEEET. Pattern. Anal.1989,11, 567–585. [Google Scholar] [CrossRef]
- Eberly, D.; Thin-Plate Spline. Geometric Tools 2002, 116. Available online:https://www.geometrictools.com/ (accessed on 10 June 2022).
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides.Phys. Rev. E1994,49, 1685. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and uncorrelated regions in heart-rate fluctuations during sleep.Phys. Rev. Lett.2000,85, 3736. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; Mcrae, J.E.; Terpenning, I. STL: A seasonal trend decomposition procedure based on Loess.J. Off. Stat.1990,6, 3–33. [Google Scholar]
Year | MAE | MSE | RMSE |
---|---|---|---|
2010 | 1.61 | 4.43 | 2.11 |
2011 | 1.59 | 4.99 | 2.23 |
2012 | 1.40 | 3.47 | 1.86 |
2013 | 1.46 | 4.24 | 2.06 |
2014 | 1.49 | 4.43 | 2.10 |
2015 | 1.39 | 3.37 | 1.84 |
2016 | 1.52 | 4.77 | 2.19 |
2017 | 1.38 | 3.80 | 1.95 |
2018 | 1.51 | 4.14 | 2.03 |
average | 1.48 | 4.18 | 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; He, X.; Wu, R.; Shen, C. Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010–2018 over China.Entropy2022,24, 817. https://doi.org/10.3390/e24060817
Ma Y, He X, Wu R, Shen C. Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010–2018 over China.Entropy. 2022; 24(6):817. https://doi.org/10.3390/e24060817
Chicago/Turabian StyleMa, Yiran, Xinyi He, Rui Wu, and Chenhua Shen. 2022. "Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010–2018 over China"Entropy 24, no. 6: 817. https://doi.org/10.3390/e24060817
APA StyleMa, Y., He, X., Wu, R., & Shen, C. (2022). Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010–2018 over China.Entropy,24(6), 817. https://doi.org/10.3390/e24060817