Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition


Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase and Microstructure at Low-Pressure
3.2. C0.1-Alloy under High P/low T and High P/high T
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts.Acta Mater.2017,122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects.Mater. Today2016,19, 349–362. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-entropy alloys: A critical review.Mater. Res. Lett.2014,2, 107–123. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys.Intermetallics2011,19, 698–706. [Google Scholar] [CrossRef]
- Kang, B.; Lee, J.; Ryu, H.J.; Hong, S.H. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process.Mater. Sci. Eng. A2018,712, 616–624. [Google Scholar] [CrossRef]
- Yao, M.J.; Pradeep, K.G.; Tasan, C.C.; Raabe, D. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility.Scr. Mater.2014,72–73, 5–8. [Google Scholar] [CrossRef]
- Patriarca, L.; Ojha, A.; Sehitoglu, H.; Chumlyakov, Y.I. Slip nucleation in single crystal FeNiCoCrMn high entropy alloy.Scr. Mater.2016,112, 54–57. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes.Adv. Eng. Mater.2004,6, 299–303. [Google Scholar] [CrossRef]
- Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements.Metall. Mater. Trans. A2005,36, 881–893. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ma, Z.L.; Wang, M.; Chen, Y.W.; Tan, Y.D.; Cheng, X.W. Design of novel low-density refractory high entropy alloys for high-temperature applications.Mater. Sci. Eng. A2019,755, 318–322. [Google Scholar] [CrossRef]
- Kang, M.; Lim, K.R.; Won, J.W.; Lee, K.S.; Na, Y.S. Al-Ti-Containing lightweight high-entropy alloys for intermediate temperature applications.Entropy2018,20, 355. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.M.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures.Mater. Res. Lett.2015,3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, U.; Zhang, C.; Yang, S. Mechanical and thermal properties of low-density Al20+xCr20−xMo20−yTi20V20+y alloys.Crystals2020,10, 278. [Google Scholar] [CrossRef] [Green Version]
- Bei, H. Multi-Component Solid Solution Alloys Having High Mixing Entropy. U.S. Patent No 9,150,945, 6 October 2015. [Google Scholar]
- Klimova, M.V.; Semenyuk, A.O.; Shaysultanov, D.G.; Salishchev, G.A.; Zherebtsov, S.V.; Stepanov, N.D. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys.J. Alloy. Compd.2019,811, 152000. [Google Scholar] [CrossRef]
- Joo, S.H.; Kato, H.; Jang, M.J.; Moon, J.; Kim, E.B.; Hong, S.J.; Kim, H.S. Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering.J. Alloy. Compd.2017,698, 591–604. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, H.Y.; Xie, Y.C.; Tang, Q.H.; Dai, P.Q. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: Microstructure and mechanical properties.Mater. Sci. Technol.2017,33, 2032–2039. [Google Scholar] [CrossRef]
- Shun, T.-T.; Du, Y.-C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy.J. Alloy. Compd.2009,478, 269–272. [Google Scholar] [CrossRef]
- Velo, I.L.; Gotor, F.J.; Alcalá, M.D.; Real, C.; Córdoba, J.M. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy.J. Alloy. Compd.2018,746, 1–8. [Google Scholar] [CrossRef]
- Guo, N.N.; Wang, L.; Luo, L.S.; Li, X.Z.; Chen, R.R.; Su, Y.Q.; Guo, J.J.; Fu, H.Z. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite.Intermetallics2016,69, 74–77. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, C.; Zhang, Y.; Feng, X.; Gu, Y.; Li, Z.; Jiao, H.; Tan, X.; Xu, H. The AC Soft Magnetic Properties of FeCoNixCuAl (1.0 ≤ x ≤ 1.75) High-Entropy Alloys.Mater. Res. Lett.2019,12, 4222. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gao, B.; Wang, Y.; Chen, X.; Xin, Y.; Tang, S.; Liu, B.; Liu, Y.; Song, M. Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys.J. Alloy. Compd.2019,792, 170–179. [Google Scholar] [CrossRef]
- Yan, J.; Knight, J.; Kunz, M.; Vennila Raju, S.; Chen, B.; Gleason, A.E.; Godwal, B.K.; Geballe, Z.; Jeanloz, R.; Clark, S.M. The resistive-heating characterization of laser heating system and LaB6 characterization of X-ray diffraction of beamline 12.2.2 at advanced light source.J. Phys. Chem. Solids2010,71, 1179–1182. [Google Scholar] [CrossRef]
- Bassett, W.A. Diamond anvil cell, 50th birthday.High Press. Res.2009,29, 163–186. [Google Scholar] [CrossRef]
- Kunz, M.; Yan, J.; Cornell, E.; Domning, E.E.; Yen, C.E.; Doran, A.; Beavers, C.M.; Treger, A.; Williams, Q.; MacDowell, A.A. Implementation and application of the peak scaling method for temperature measurement in the laser heated diamond anvil cell.Rev. Sci. Instrum.2018,89, 083903. [Google Scholar] [CrossRef] [Green Version]
- Raju, S.V.; Zaug, J.M.; Chen, B.; Yan, J.; Knight, J.W.; Jeanloz, R.; Clark, S.M. Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature.J. Appl. Phys.2011,110, 023521. [Google Scholar] [CrossRef]
- Pasternak, S.; Aquilanti, G.; Pascarelli, S.; Poloni, R.; Canny, B.; Coulet, M.-V.; Zhang, L. A diamond anvil cell with resistive heating for high pressure and high temperature X-ray diffraction and absorption studies.Rev. Sci. Instrum.2008,79, 085103. [Google Scholar] [CrossRef]
- Bhandari, U.; Zhang, C.; Zeng, C.; Guo, S.; Yang, S. Computational and experimental investigation of refractory high entropy alloy Mo15Nb20Re15Ta30W20.J. Mater. Res. Technol.2020,9, 8929–8936. [Google Scholar] [CrossRef]
- Yan, J.; Yang, S. An Alternative Thermal Equation of State for Solids at High Temperature High Pressure.Submitted to Minerals, under revision.
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration.High Press. Res.2015,35, 223–230. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures.J. Appl. Crystallogr.1969,2, 65–71. [Google Scholar]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals.Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character1913,88, 428–438. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Hawk, J.A.; Zhou, H.F.; Chen, M.W.; Gao, M.C. Mechanical properties of refractory high-entropy alloys: Experiments and modeling.J. Alloy. Compd.2017,696, 1139–1150. [Google Scholar] [CrossRef]
- Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. Main features of QUALX2.0 software for qualitative phase analysis.Powder Diffr.2017,32, S129–S134. [Google Scholar] [CrossRef]
- Shivam, V.; Basu, J.; Pandey, V.K.; Shadangi, Y.; Mukhopadhyay, N.K. Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy.Adv. Powder Technol.2018,29, 2221–2230. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element.Mater. Trans.2005,46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage thermochemical software and databases, 2010–2016.Calphad2016,54, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Rubinovich, L.; Polak, M. Site-specific segregation and compositional ordering in Ni-based ternary alloy nanoclusters computed by the free-energy concentration expansion method.Phys. Rev. B2004,69, 155405. [Google Scholar] [CrossRef] [Green Version]
- Polak, M.; Rubinovich, L. Stabilization and transformation of asymmetric configurations in small-mismatch alloy nanoparticles: The role of coordination dependent energetics.Phys. Chem. Chem. Phys.2014,16, 1569–1575. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Brady, M.P.; Lu, Z.P.; Maziasz, P.J.; Liu, C.T.; Pint, B.A.; More, K.L.; Meyer, H.M.; Payzant, E.A. Creep-resistant, Al2O3-forming austenitic stainless steels.Science2007,316, 433. [Google Scholar] [CrossRef]
Sample | C | Mo | Nb | Re | Ta | W | Hardness | ||
---|---|---|---|---|---|---|---|---|---|
100 gf | 500 gf | 2000 gf | |||||||
alloy | - | 14.43 ± 0.17 | 22.74 ± 0.38 | 15.29 ± 0.09 | 26.66 ± 0.19 | 20.90 ± 0.19 | 6.451 ± 0.140 | 6.035 ± 0.303 | 5.400 ± 0.213 |
C-doped | 0.06 | 14.32 ± 0.41 | 22.63 ± 0.54 | 18.12 ± 0.28 | 26.44 ± 0.32 | 18.43 ± 0.26 | 5.826 ± 0.104 | 5.905 ± 0.086 | 5.749 ± 0.203 |
(a) | C | Mo | Nb | Re | Ta | W | Elements | ||
---|---|---|---|---|---|---|---|---|---|
(b) | |||||||||
C | - | −67 | −102 | −101 | −60 | −42 | C | ||
Mo | 0.39 | - | −6 | −7 | −5 | 0 | Mo | ||
Nb | 0.95 | 0.56 | - | −26 | 0 | −8 | Nb | ||
Re | 0.65 | 0.26 | 0.3 | - | −24 | −4 | Re | ||
Ta | 1.05 | 0.66 | 0.1 | 0.4 | - | −7 | Ta | ||
W | 0.19 | 0.2 | 0.76 | 0.46 | 0.86 | - | W | ||
Elements | C | Mo | Nb | Re | Ta | W | (a) | ||
(b) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Bhandari, U.; Zeng, C.; Ding, H.; Guo, S.; Yan, J.; Yang, S. Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition.Entropy2020,22, 718. https://doi.org/10.3390/e22070718
Zhang C, Bhandari U, Zeng C, Ding H, Guo S, Yan J, Yang S. Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition.Entropy. 2020; 22(7):718. https://doi.org/10.3390/e22070718
Chicago/Turabian StyleZhang, Congyan, Uttam Bhandari, Congyuan Zeng, Huan Ding, Shengmin Guo, Jinyuan Yan, and Shizhong Yang. 2020. "Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition"Entropy 22, no. 7: 718. https://doi.org/10.3390/e22070718
APA StyleZhang, C., Bhandari, U., Zeng, C., Ding, H., Guo, S., Yan, J., & Yang, S. (2020). Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition.Entropy,22(7), 718. https://doi.org/10.3390/e22070718