Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus
Abstract
:1. Introduction
2. The Dataset
3. Mathematical Background
3.1. The Canberra Distance
3.2. The Classical and Fractional Jensen–Shannon Divergence
3.3. Multidimensional Scaling
3.4. Hierarchichal Clustering
4. Data Analysis and Results
4.1. Comparing and Visualizing Scientific Output by Means of MDS
4.2. Comparing and Visualizing Scientific Output by Means of HC
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bornmann, L.; Daniel, H.D. Selecting scientific excellence through committee peer review—A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants.Scientometrics2006,68, 427–440. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output.Proc. Natl. Acad. Sci. USA2005,102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornmann, L.; Daniel, H.D. What do we know about theh index?J. Am. Soc. Inf. Sci. Technol.2007,58, 1381–1385. [Google Scholar] [CrossRef]
- Egghe, L. How to improve theh-index.Scientist2006,20, 15–16. [Google Scholar]
- Van Raan, A.F. Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups.Scientometrics2006,67, 491–502. [Google Scholar] [CrossRef]
- Cronin, B.; Meho, L. Using theh-index to rank influential information scientists.J. Am. Soc. Inf. Sci. Technol.2006,57, 1275–1278. [Google Scholar] [CrossRef]
- Glänzel, W. On the opportunities and limitations of theH-index.Sci. Focus2006,1, 10–11. [Google Scholar]
- Ruscio, J. Taking Advantage of Citation Measures of Scholarly Impact: Hip Hiph Index!Perspect. Psychol. Sci.2016,11, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.D.; Jennions, M.D. Theh index and career assessment by numbers.Trends Ecol. Evol.2006,21, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Díaz, I.; Cortey, M.; Olvera, À.; Segalés, J. Use ofh-index and other bibliometric indicators to evaluate research productivity outcome on swine diseases.PLoS ONE2016,11, e0149690. [Google Scholar] [CrossRef] [PubMed]
- Asnafi, S.; Gunderson, T.; McDonald, R.J.; Kallmes, D.F. Association ofh-index of Editorial Board Members and Impact Factor among Radiology Journals.Acad. Radiol.2017,24, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Glänzel, W.; Schubert, A. A Hirsch-type index for journals.Scientometrics2006,69, 169–173. [Google Scholar] [CrossRef]
- Lacasse, J.R.; Hodge, D.R. Ranking Disciplinary Journals with the Google ScholarH-index.J. Soc. Work Educ.2017,47, 579–596. [Google Scholar]
- Banks, M.G. An extension of the Hirsch index: Indexing scientific topics and compounds.Scientometrics2006,69, 161–168. [Google Scholar] [CrossRef]
- Yaminfirooz, M.; Gholinia, H. Multipleh-index: A new scientometric indicator.Electron. Libr.2015,33, 547–556. [Google Scholar] [CrossRef]
- Sidiropoulos, A.; Katsaros, D.; Manolopoulos, Y. Generalized Hirschh-index for disclosing latent facts in citation networks.Scientometrics2007,72, 253–280. [Google Scholar] [CrossRef]
- Egghe, L. Dynamich-index: The Hirsch index in function of time.J. Am. Soc. Inf. Sci. Technol.2007,58, 452–454. [Google Scholar] [CrossRef]
- Bornmann, L.; Daniel, H.D. What do citation counts measure? A review of studies on citing behavior.J. Doc.2008,64, 45–80. [Google Scholar] [CrossRef]
- Iglesias, J.E.; Pecharromán, C. Scaling theh-index for different scientific ISI fields.Scientometrics2007,73, 303–320. [Google Scholar] [CrossRef]
- Würtz, M.; Schmidt, M. The stratifiedH-index.Ann. Epidemiol.2016,26, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Ausloos, M. Assessing the true role of coauthors in theh-index measure of an author scientific impact.Phys. A Stat. Mech. Its Appl.2015,422, 136–142. [Google Scholar] [CrossRef]
- Taber, D.F. Quantifying publication impact.Science2005,309, 2166. [Google Scholar] [CrossRef] [PubMed]
- Egghe, L. An improvement of theh-index: Theg-index.ISSI Newslett.2006,2, 8–9. [Google Scholar]
- Jin, B.H-index: An evaluation indicator proposed by scientist.Sci. Focus2006,1, 8–9. [Google Scholar]
- Kosmulski, M. A new Hirsch-type index saves time and works equally well as the originalh-index.ISSI Newslett.2006,2, 4–6. [Google Scholar]
- Zhang, C.T. Thee-index, complementing theh-index for excess citations.PLoS ONE2009,4, e5429. [Google Scholar] [CrossRef] [PubMed]
- Harzing, A.W.The Publish or Perish Book; Tarma Software Research: Melbourne, Australia, 2010. [Google Scholar]
- Jin, B.; Liang, L.; Rousseau, R.; Egghe, L. TheR-andAR-indices: Complementing theh-index.Chin. Sci. Bull.2007,52, 855–863. [Google Scholar] [CrossRef]
- Ruane, F.; Tol, R. Rational (successive)h-indices: An application to economics in the Republic of Ireland.Scientometrics2008,75, 395–405. [Google Scholar] [CrossRef]
- Guns, R.; Rousseau, R. Real and rational variants of theh-index and theg-index.J. Informetr.2009,3, 64–71. [Google Scholar] [CrossRef]
- Vinkler, P. Theπ-index: A new indicator for assessing scientific impact.J. Inf. Sci.2009,35, 602–612. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F. Ranking scientists.Nat. Phys.2015,11, 882–883. [Google Scholar] [CrossRef]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J.Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Gorenflo, R.; Mainardi, F.Fractional Calculus; Springer: New York, NY, USA, 1997. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J.Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Ionescu, C.M.The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Lopes, A.M.; Machado, J. Fractional order models of leaves.J. Vib. Control2014,20, 998–1008. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. The persistence of memory.Nonlinear Dyn.2015,79, 63–82. [Google Scholar] [CrossRef]
- Machado, J.; Lopes, A.M. Analysis of natural and artificial phenomena using signal processing and fractional calculus.Fract. Calc. Appl. Anal.2015,18, 459–478. [Google Scholar] [CrossRef]
- Machado, J.; Lopes, A.; Duarte, F.; Ortigueira, M.; Rato, R. Rhapsody in fractional.Fract. Calc. Appl. Anal.2014,17, 1188–1214. [Google Scholar] [CrossRef]
- Machado, J.; Mata, M.E.; Lopes, A.M. Fractional state space analysis of economic systems.Entropy2015,17, 5402–5421. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Computer programs for hierarchical polythetic classification (“similarity analyses”).Comput. J.1966,9, 60–64. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Mixed-Data Classificatory Programs I—Agglomerative Systems.Aust. Comput. J.1967,1, 15–20. [Google Scholar]
- Machado, J.T. Fractional Order Generalized Information.Entropy2014,16, 2350–2361. [Google Scholar] [CrossRef]
- Valério, D.; Trujillo, J.J.; Rivero, M.; Machado, J.T.; Baleanu, D. Fractional calculus: A survey of useful formulas.Eur. Phys. J. Spec. Top.2013,222, 1827–1846. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A.Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Cox, T.F.; Cox, M.A.Multidimensional Scaling; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hartigan, J.A.Clustering Algorithms; Wiley: Hoboken, NJ, USA, 1975. [Google Scholar]
- Aggarwal, C.C.; Hinneburg, A.; Keim, D.A.On the Surprising Behavior of Distance Metrics in High Dimensional Space; Springer: New York, NY, USA, 2001. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. The comparison of dendrograms by objective methods.Taxon1962,11, 33–40. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.T. Integer and fractional-order entropy analysis of earthquake data series.Nonlinear Dyn.2016,84, 79–90. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Lopes, A.M. Analysis and visualization of seismic data using mutual information.Entropy2013,15, 3892–3909. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.T. Analysis of temperature time-series: Embedding dynamics into the MDS method.Commun. Nonlinear Sci. Numer. Simul.2014,19, 851–871. [Google Scholar] [CrossRef]
Country | Number | Country | Number | Country | Number |
---|---|---|---|---|---|
Algeria | 1 | Greece | 1 | Russia | 6 |
Australia | 1 | Hungary | 1 | Serbia | 2 |
Austria | 1 | India | 5 | Singapore | 1 |
Belgium | 1 | Iran | 2 | Slovak Republic | 2 |
Brazil | 1 | Italy | 8 | South Africa | 1 |
Bulgaria | 2 | Japan | 1 | Spain | 7 |
Canada | 3 | Jordan | 1 | Switzerland | 1 |
Chile | 1 | Mexico | 1 | Turkey | 3 |
China | 4 | Netherlands | 1 | UA Emirates | 3 |
Egypt | 2 | Poland | 4 | UK | 1 |
France | 6 | Portugal | 6 | USA | 13 |
Germany | 5 | Romania | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, J.A.T.; Mendes Lopes, A. Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus.Entropy2017,19, 127. https://doi.org/10.3390/e19030127
Machado JAT, Mendes Lopes A. Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus.Entropy. 2017; 19(3):127. https://doi.org/10.3390/e19030127
Chicago/Turabian StyleMachado, José A. Tenreiro, and António Mendes Lopes. 2017. "Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus"Entropy 19, no. 3: 127. https://doi.org/10.3390/e19030127
APA StyleMachado, J. A. T., & Mendes Lopes, A. (2017). Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus.Entropy,19(3), 127. https://doi.org/10.3390/e19030127