Entropy Analysis of a Railway Network’s Complexity
Abstract
:1. Introduction
2. The Portuguese Railway System
3. Fractal Dimension of the Portuguese Railway Network
- Repeat:
- -
- cover the fractal objectS with a grid consisting of squares (the boxes) with size,
- -
- find the number of boxes that include part of the fractal,
- -
- decreaseϵ.
- The fractal dimension is the slope of the log-log plot of vs.ϵ, i.e.,
4. Entropy and SSP Analysis of the Portuguese Railway Network
4.1. Entropy of the Railway Network
4.2. The SSP of the Railway Network Entropy
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Benguigui, L.; Daoud, M. Is the suburban railway system a fractal?Geogr. Anal.1991,23, 362–368. [Google Scholar] [CrossRef]
- Benguigui, L. The fractal dimension of some railway networks.J. Phys. I1992,2, 385–388. [Google Scholar] [CrossRef]
- Kim, K.S.; Benguigui, L.; Marinov, M. The fractal structure of Seoul’s public transportation system.Cities2003,20, 31–39. [Google Scholar] [CrossRef]
- Sun, Z. The study of fractal approach to measure urban rail transit network morphology.J. Transp. Syst. Eng. Inf. Technol.2007,7, 29–38. [Google Scholar]
- Ionescu, C.M.The Human Respiratory System—An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics; Springer: London, UK, 2013. [Google Scholar]
- Ionescu, C.; Machado, J.A.T. Mechanical properties and impedance model for the branching network of the sapping system in the leaf ofHydrangea Macrophylla.Nonlinear Dyn.2010,60, 207–216. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.T. Fractional order models of leaves.J. Vib. Control2014,20, 998–1008. [Google Scholar] [CrossRef]
- Park, H.W.; Choe, J.; Kang, J.M. Pressure behavior of transport in fractal porous media using a Fractional Calculus approach.Energy Sources2000,22, 881–890. [Google Scholar]
- Magin, R.L.Fractional Calculus in Bioengineering; Begell House: Redding, CT, USA, 2006. [Google Scholar]
- Lopes, A.M.; Machado, J.A.T.; Mata, M.E. Analysis of global terrorism dynamics by means of entropy and state space portrait.Nonlinear Dyn.2016,85, 1547–1560. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.T. State Space Analysis of Forest Fires.J. Vib. Control2016,22, 2153–2164. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.T. Integer and Fractional Order Entropy Analysis of Earthquake Data-series.Nonlinear Dyn.2016,84, 79–90. [Google Scholar] [CrossRef]
- Valério, N.; Mata, M.E. The Concise Economic History of Portugal: A Comprehensive Guide.J. Bus. Hist.2011,54, 818–820. [Google Scholar]
- Justino, D.A Formação do Espaço Económico Nacional; Vega Editores: Lisboa, Portugal, 1989. (In Portuguese) [Google Scholar]
- Machado, J.A.T.; Mata, M.E. Multidimensional Scaling Analysis of the Dynamics of a Country Economy.Sci. World J.2013,2013, 594587. [Google Scholar]
- Da Silveira, L.E.; Alves, D.; Lima, N.M.; Alcântara, A.; Puig, J. Population and Railways in Portugal, 1801–1930.J. Interdiscip. Hist.2011,42, 29–52. [Google Scholar] [CrossRef]
- Valério, N.; Costa, S.D. Acessibilidade das várias regiões de Portugal a meios de Transporte Modernos em diferentes épocas. InEstudos em Homenagem a Joaquim Romero Magalhães—Economia, Instituições e Império; Garrido, A., Costa, L.F., Duarte, L.M., Eds.; Almedina: Coimbra, Portugal, 2012; pp. 491–521. (In Portuguese) [Google Scholar]
- Wikipedia. Available online:http://pt.wikipedia.org/wiki/Categoria:Linhas_ferrovi%C3%A1rias_de_Portugal (accessed on 31 October 2016).
- Google Earth. Available online:https://www.google.com/earth/ (accessed on 31 October 2016).
- Berry, M.V. Diffractals.J. Phys. A Math. Gen.1979,12, 781–797. [Google Scholar] [CrossRef]
- Fleckinger-Pelle, J.; Lapidus, M. Tambour fractal: Vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien.Comptes Rendus de l’Académie des Sciences Série I Mathématique1988,306, 171–175. (In French) [Google Scholar]
- Schroeder, M.Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise; W.H. Freeman: New York, NY, USA, 1991. [Google Scholar]
- Khinchin, A.I.Mathematical Foundations of Information Theory; Courier Dover Publications: New York, NY, USA, 1957; Volume 434. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics.J. Stat. Phys.1988,52, 479–487. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. InFourth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Oakland, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Ubriaco, M.R. Entropies based on fractional calculus.Phys. Lett. A2009,373, 2516–2519. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity.Phys. Rev. E2002,66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Maximum entropy principle and power-law tailed distributions.Eur. Phys. J. B Condens. Matter Complex Syst.2009,70, 3–13. [Google Scholar] [CrossRef]
- Sharma, B.D.; Taneja, I.J. Entropy of type (α,β) and other generalized measures in information theory.Metrika1975,22, 205–215. [Google Scholar] [CrossRef]
- Sharma, B.D.; Mittal, D.P. New nonadditive measures of entropy for discrete probability distributions.J. Math. Sci.1975,10, 28–40. [Google Scholar]
- Asgarani, S.; Mirza, B. Two-Parameter entropies,Sk,r, and their dualities.Phys. A Stat. Mech. Appl.2015,417, 185–192. [Google Scholar] [CrossRef]
- Asgarani, S. A set of new three-parameter entropies in terms of a generalized incomplete Gamma function.Phys. A Stat. Mech. Appl.2013,392, 1972–1976. [Google Scholar] [CrossRef]
- Wada, T.; Suyari, H. A two-parameter generalization of Shannon–Khinchin axioms and the uniqueness theorem.Phys. Lett. A2007,368, 199–205. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Vedral, V. Distributions and channel capacities in generalized statistical mechanics.Phys. Lett. A1998,247, 211–217. [Google Scholar] [CrossRef]
- Beck, C. Generalised information and entropy measures in physics.Contemp. Phys.2009,50, 495–510. [Google Scholar] [CrossRef]
- Naudts, J. Generalized thermostatistics based on deformed exponential and logarithmic functions.Phys. A Stat. Mech. Appl.2004,340, 32–40. [Google Scholar] [CrossRef]
- Abe, S.; Beck, C.; Cohen, E.G. Superstatistics, thermodynamics, and fluctuations.Phys. Rev. E2007,76, 031102. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, P. On certainty and generalized information measures.Int. J. Contemp. Math. Sci.2010,5, 1035–1043. [Google Scholar]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions.EPL2011,93, 20006. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B.An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I.Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J.Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Gorenflo, R.; Mainardi, F.Fractional Calculus; Springer: Wien, Austria, 1997. [Google Scholar]
- Oldham, K.B.; Spanier, J.The Fractional Calculus: Integrations and Differentiations of Arbitrary Order; Dover Publications: New York, NY, USA, 1974. [Google Scholar]
- Zhang, Y.; Baleanu, D.; Yang, X. On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics.Entropy2014,16, 6254–6262. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J.Models and Numerical Methods; World Scientific: Boston, MA, USA, 2012; Volume 3. [Google Scholar]
- Mainardi, F.Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Luo, Y.; Chen, Y.Fractional Order Motion Controls; Wiley: West Sussex, UK, 2012. [Google Scholar]
- Sheng, H.; Chen, Y.; Qiu, T.Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications; Springer: London, UK, 2012. [Google Scholar]
- Silva, M.F.; Machado, J.A.T.; Lopes, A. Fractional order control of a hexapod robot.Nonlinear Dyn.2004,38, 417–433. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.T.; Pinto, C.M.; Galhano, A.M. Fractional dynamics and MDS visualization of earthquake phenomena.Comput. Math. Appl.2013,66, 647–658. [Google Scholar] [CrossRef]
- Nigmatullin, R.R.; Omay, T.; Baleanu, D. On fractional filtering versus conventional filtering in economics.Commun. Nonlinear Sci. Numer. Simul.2010,15, 979–986. [Google Scholar] [CrossRef]
- Omay, T.; Baleanu, D. Solving technological change model by using fractional calculus. InInnovation Policies, Business Creation and Economic Development; Springer: New York, NY, USA, 2009; pp. 3–12. [Google Scholar]
- Machado, J.A.T.; Mata, M.E. Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn.Commun. Nonlinear Sci. Numer. Simul.2015,22, 396–406. [Google Scholar] [CrossRef]
- Pan, I.; Korre, A.; Das, S.; Durucan, S. Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise.Nonlinear Dyn.2012,70, 2445–2461. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Jalab, H.A. Existence of Ulam stability for iterative fractional differential equations based on fractional entropy.Entropy2015,17, 3172–3181. [Google Scholar] [CrossRef]
- Machado, J.A.T. Fractional Order Generalized Information.Entropy2014,16, 2350–2361. [Google Scholar] [CrossRef]
- Valério, D.; Trujillo, J.J.; Rivero, M.; Machado, J.A.T.; Baleanu, D. Fractional calculus: A survey of useful formulas.Eur. Phys. J. Spec. Top.2013,222, 1827–1846. [Google Scholar] [CrossRef]
- Esteban, M.D.; Morales, B. A summary on entropy statistics.Kybernetika–Praha1995,31, 337–346. [Google Scholar]
- Willems, J.C.; Polderman, J.W.Introduction to Mathematical Systems Theory: A Behavioral Approach; Springer: New York, NY, USA, 1997. [Google Scholar]
- Machado, J.A.T.; Mata, M.E.; Lopes, A.M. Fractional state space analysis of economic systems.Entropy2015,17, 5402–5421. [Google Scholar] [CrossRef]
- Holoborodko, P. Smooth Noise Robust Differentiators. Available online:http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators (accessed on 31 October 2016).
- Gentile, G.; Noekel, K.Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems; Springer: New York, NY, USA, 2016. [Google Scholar]
- Tavasszy, L.; de Jong, G.Modelling Freight Transport; Elsevier: New York, NY, USA, 2014. [Google Scholar]
- Crisalli, U.; Comi, A.; Rosati, L. A methodology for the assessment of rail-road freight transport policies.Procedia Soc. Behav. Sci.2013,87, 292–305. [Google Scholar] [CrossRef]
- Nuzzolo, A.; Crisalli, U.; Comi, A. An aggregate transport demand model for import and export flow simulation.Transport2015,30, 43–54. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valério, D.; Lopes, A.M.; Tenreiro Machado, J.A. Entropy Analysis of a Railway Network’s Complexity.Entropy2016,18, 388. https://doi.org/10.3390/e18110388
Valério D, Lopes AM, Tenreiro Machado JA. Entropy Analysis of a Railway Network’s Complexity.Entropy. 2016; 18(11):388. https://doi.org/10.3390/e18110388
Chicago/Turabian StyleValério, Duarte, António M. Lopes, and José A. Tenreiro Machado. 2016. "Entropy Analysis of a Railway Network’s Complexity"Entropy 18, no. 11: 388. https://doi.org/10.3390/e18110388
APA StyleValério, D., Lopes, A. M., & Tenreiro Machado, J. A. (2016). Entropy Analysis of a Railway Network’s Complexity.Entropy,18(11), 388. https://doi.org/10.3390/e18110388