Nonlinear Predictive Control of a Hydropower System Model
Abstract
:1. Introduction
2. Nonlinear Predictive Control
2.1. System Model
2.2. Nonlinear Predictive Control Theory
3. The Model of a Hydropower Plant
4. Main Results
Elapsed CPU Time (ms) | |
---|---|
Offline part | 5370 |
Online part | 11569 |
Number of Step | Performance Index | Number of Step | Performance Index |
---|---|---|---|
1 | 0.117856 | 101 | 0.0022 |
11 | 0.039339 | 111 | 0.012638 |
21 | 0.030683 | 121 | 0.006103 |
31 | 0.050499 | 131 | 0.001474 |
41 | 0.077429 | 141 | 0.000687 |
51 | 0.119509 | 151 | 0.001066 |
61 | 0.016413 | 161 | 0.00026 |
71 | 0.005165 | 171 | 0.000517 |
81 | 0.010286 | 181 | 0.001085 |
91 | 0.002602 | 191 | 0.000607 |
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Edward, G.R.; Xu, J.C. Mekong hydropower development.Science2011,332, 178–179. [Google Scholar]
- Mahmoud, M.; Dutton, K.; Denman, M. Design and simulation of a nonlinear fuzzy controller for a hydropower plant.Electr. Power Syst. Res.2005,73, 87–99. [Google Scholar] [CrossRef]
- Li, C.L.; Zhou, J.Z.; Ouyang, S.; Ding, X.L.; Chen, L. Improved decomposition-coordination and discrete differential dynamic programming for optimization of large-scale hydropower system.Energ. Convers. Manag.2014,84, 363–373. [Google Scholar] [CrossRef]
- Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á.; Wilhelmi, J.R. Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation.Renew. Energy2015,83, 245–255. [Google Scholar] [CrossRef]
- Márquez, J.L.; Molina, M.G.; Pacas, J.M. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications.Int. J. Hydrog. Energy2010,35, 5772–5777. [Google Scholar] [CrossRef]
- Mahmoud, M.; Dutton, K.; Denman, M. Dynamical modelling and simulation of a cascaded reserevoirs hydropower plant.Electr. Power Syst. Res.2004,70, 129–139. [Google Scholar] [CrossRef]
- Zoby, M.R.G.; Yanagihara, J.I. Primary control system and stability analysis of a hydropower plant. InPower Plants and Power Systems Control 2006; Westwick, D., Ed.; Elsevier: Kidlington, UK; Burlington, MA, USA, 2007; pp. 165–170. [Google Scholar]
- Ren, M.; Wu, D.; Zhang, J.; Jiang, M. Minimum entropy-based cascade control for governing hydroelectric turbines.Entropy2014,16, 3136–3148. [Google Scholar] [CrossRef]
- Ying, H. Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme.Inf. Sci.2000,123, 281–293. [Google Scholar] [CrossRef]
- Clarke, D.W. Adaptive predictive control.Annu. Rev. Control1996,20, 83–94. [Google Scholar] [CrossRef]
- Miller, D.E. A new approach to adaptive control: No nonlinearities.Syst. Control Lett.2003,49, 67–79. [Google Scholar] [CrossRef]
- Mei, R.; Chen, M.; Guo, W.W. Robust adaptive control scheme for optical tracking telescopes with unknown disturbances.Opt. Int. J. Light Electron Opt.2015,126, 1185–1190. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, J.; Jiang, M.; Tian, Y.; Hou, G. Statistical information based single neuron adaptive control for non-gaussian stochastic systems.Entropy2012,14, 1154–1164. [Google Scholar] [CrossRef]
- Hu, B.; Michel, A.N. Robustness analysis of digital feedback control systems with time-varying sampling periods.J. Franklin Inst.2000,337, 117–130. [Google Scholar] [CrossRef]
- Stich, M.; Beta, C. Control of pattern formation by time-delay feedback with global and local contributions.Physica D2010,239, 1681–1691. [Google Scholar] [CrossRef]
- Xin, B.G.; Wu, Z.H. Projective synchronization of chaotic discrete dynamical systems via linear state error feedback control.Entropy2015,17, 2677–2687. [Google Scholar] [CrossRef]
- Bidarvatan, M.; Shahbakhti, M.; Jazayeri, S.A.; Koch, C.R. Cycle-to-cycle modeling and sliding mode control of blended-fuel HCCI engine.Control Eng. Pract.2014,24, 79–91. [Google Scholar] [CrossRef]
- Tian, X.M.; Fei, S.M. Robust control of a class of uncertain fractional-order chaotic systems with input nonlinearity via an adaptive sliding mode technique.Entropy2014,16, 729–746. [Google Scholar] [CrossRef]
- Yashar, T.; Wang, J.D. Chaos control and synchronization of a hyperchaotic Zhou system by integral sliding mode control.Entropy2014,16, 6539–6552. [Google Scholar]
- Chen, D.Y.; Zhao, W.L.; Ma, X.Y.; Zhang, R.F. No-chattering sliding mode control chaos in Hindmarsh—Rose neurons with uncertain parameters.Comput. Math. Appl.2011,61, 3161–3171. [Google Scholar] [CrossRef]
- Long, L.J.; Zhao, J. Adaptive fuzzy tracking control of switched uncertain nonlinear systems with unstable.Fuzzy Sets Syst.2015,273, 49–67. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings.Energy Build.2015,97, 86–97. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, M.Q.; Zhang, S.L. RobustH∞ finite-time control for discrete Markovian jump systems with disturbances of probabilistic distributions.Entropy2015,17, 346–367. [Google Scholar] [CrossRef]
- Grüne, L.; Pannek, J.Nonlinear Model Predictive Control; Springer: London, UK, 2011. [Google Scholar]
- Chen, H.; Allgower, F. A quasi-infnite horizon nonlinear model predictive control scheme with guaranteed stability.Automatica1998,34, 1205–1217. [Google Scholar] [CrossRef]
- Chen, C.C.; Shaw, L. On receding horizon feedback control.Automatica1982,18, 349–352. [Google Scholar] [CrossRef]
- Mayne, D.Q. Model predictive control: Recent developments and future promise.Automatica2014,50, 2967–2986. [Google Scholar] [CrossRef]
- Xu, J.; Huang, X.L.; Mu, X.M.; Wang, S.L. Model predictive control based on adaptive hinging hyperplanes mode.J. Process Control2012,22, 1821–1831. [Google Scholar] [CrossRef]
- Martí, R.; Lucia, S.; Sarabia, D.; Paulen, R.; Engell, S.; de Prada, C. Improving scenario decomposition algorithms for robust nonlinear model predictive control.Comput. Chem. Eng.2015,79, 30–45. [Google Scholar] [CrossRef]
- Zeng, X.H.; Yang, N.N.; Wang, J.N.; Song, D.F.; Zhang, N.; Shang, M.L.; Liu, J.X. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus.Mech. Syst. Signal Process.2015,60, 785–798. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, Y.; Zhu, Q.M. Nash-optimization enhanced distributed model predictive control applied to the Shell benchmark problem.Inf. Sci.2005,170, 329–349. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Mou, H.G.; Jian, L. Predictive control of solid oxide fuel cell based on an improved Takagi-Sugeno fuzzy model.J. Power Sources2009,93, 699–705. [Google Scholar] [CrossRef]
- Roubos, J.A.; Mollov, S.; Babuska, R.; Verbruggen, H.B. Fuzzy model-based predictive control using Takagi-Sugeno models.Int. J. Approx. Reason.1999,22, 3–30. [Google Scholar] [CrossRef]
- Sarimveis, H.; Bafas, G. Fuzzy model predictive control of non-linear processes using genetic algorithms.Fuzzy Sets Syst.2003,139, 59–80. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Wang, Y. Input-to-state stability for discrete time nonlinear systems.Automatica2001,37, 875–867. [Google Scholar] [CrossRef]
- Xu, B.B.; Chen, D.Y.; Zhang, H.; Wang, F.F. Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system.Chaos Soliton. Fract.2015,75, 50–61. [Google Scholar] [CrossRef]
- Shen, Z.Y.Hydraulic Turbine Reglation, 3rd ed.; China Water Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Chen, D.Y.; Ding, C.; Do, Y.H.; Ma, X.Y.; Zhao, H.; Wang, Y.C. Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control.J. Franklin Inst.2014,351, 4596–4618. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Chen, D.; Ma, X. Nonlinear Predictive Control of a Hydropower System Model.Entropy2015,17, 6129-6149. https://doi.org/10.3390/e17096129
Zhang R, Chen D, Ma X. Nonlinear Predictive Control of a Hydropower System Model.Entropy. 2015; 17(9):6129-6149. https://doi.org/10.3390/e17096129
Chicago/Turabian StyleZhang, Runfan, Diyi Chen, and Xiaoyi Ma. 2015. "Nonlinear Predictive Control of a Hydropower System Model"Entropy 17, no. 9: 6129-6149. https://doi.org/10.3390/e17096129
APA StyleZhang, R., Chen, D., & Ma, X. (2015). Nonlinear Predictive Control of a Hydropower System Model.Entropy,17(9), 6129-6149. https://doi.org/10.3390/e17096129