Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor
Abstract
:1. Summary
2. Data Description
2.1. Data Collection and Processing
2.2. Study Area
2.3. Specifications of Each Sample File
3. Methods
3.1. Validation and Data Curation
3.2. Forecast Parametric Model
3.3. Clear-Sky Radiation and Its Regression Correlation
3.4. Quality and Solar Energy Dataset Noise
4. Handling and Applicability of the Forecasted Solar Energy Dataset
4.1. Findings and Conclusions
4.2. Limitations
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wenham, S.R.; Green, M.A.; Watt, M.E.; Corkish, R.; Sproul, A.Applied Photovoltaics, 3rd ed; Routledge: London, UK, 2011. [Google Scholar] [CrossRef]
- Iqbal, M.An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada; New York, NY, USA, 1983. [Google Scholar]
- Duf, J.A.; Beckman, W.A.Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- IEA; IRENA; UNSD; World Bank; WHO.Tracking SDG 7: The Energy Progress Report 2023; World Bank: Washington, DC, USA, 2023; Available online:https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/sdg7-report2023-full-report_web.pdf?sfvrsn=669e8626_3&download=true (accessed on 16 December 2023).
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Temporal Variability of Solar Energy Availability in the Conditions of the Southern Region of Mozambique.Am. J. Energy Nat. Resour.2023,2, 27–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L. Estimation of Daily Average Shortwave Solar Radiation under Clear-Sky Conditions by the Spatial Downscaling and Temporal Extrapolation of Satellite Products in Mountainous Areas.Remote Sens.2022,14, 2710. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique.Energies2024,17, 2613. [Google Scholar] [CrossRef]
- Mucomole, F.V.; Silva, C.S.A.; Magaia, L.L. Quantifying the Variability of Solar Energy Fluctuations at High–Frequencies through Short-Scale Measurements in the East–Channel of Mozambique Conditions.Am. J. Energy Nat. Resour.2024,3, 21–40. [Google Scholar] [CrossRef]
- McCandless, T.; Jiménez, P.A. Examining the Potential of a Random Forest Derived Cloud Mask from GOES-R Satellites to Improve Solar Irradiance Forecasting.Energies2020,13, 1671. [Google Scholar] [CrossRef] [PubMed]
- Abuella, M.; Chowdhury, B. Random forest ensemble of support vector regression models for solar power forecasting. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Inman, R.H.; Pedro, H.T.C.; Coimbra, C.F.M. Solar forecasting methods for renewable energy integration.Prog. Energy Combust. Sci.2013,39, 535–576. [Google Scholar] [CrossRef]
- Babar, B.; Luppino, L.T.; Boström, T.; Anfinsen, S.N. Random forest regression for improved mapping of solar irradiance at high latitudes.Sol. Energy2020,198, 81–92. [Google Scholar] [CrossRef]
- Saffaripour, M.H.; Mehrabian, M.A.; Bazargan, H. Predicting solar radiation fluxes for solar energy system applications.Int. J. Environ. Sci. Technol.2013,10, 761–768. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations.Environ. Model. Softw.2005,20, 1263–1271. [Google Scholar] [CrossRef]
- Benghanem, M.; Joraid, A.A. A multiple correlation between different solar parameters in Medina, Saudi Arabia.Renew. Energy2007,32, 2424–2435. [Google Scholar] [CrossRef]
- Arsham, A.; Rosenberg, P.; Little, M. Effects of stopping criterion on the growth of trees in regression random forests.N. Engl. J. Stat. Data Sci.2022,1, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Jogunuri, S.; Josh, F.T.; Stonier, A.A.; Peter, G.; Jayaraj, J.; Jaganathan, S.; Joseph, J.J.; Ganji, V. Random forest machine learning algorithm based seasonal multi-step ahead short-term solar photovoltaic power output forecasting.IET Renew. Power Gener.2024,11, 1–16. [Google Scholar] [CrossRef]
- Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.J. Neurosci. Methods2013,220, 85–91. [Google Scholar] [CrossRef]
- Klink, K. Trends and Interannual Variability of Wind Speed Distributions in Minnesota.J. Clim.2002,15, 3311–3317. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees.J. Clean. Prod.2018,203, 810–821. [Google Scholar] [CrossRef]
- Cerralbo, P.; Grifoll, M.; Moré, J.; Bravo, M.; Afif, A.S.; Espino, M. Wind variability in a coastal area (Alfacs Bay, Ebro River delta).Adv. Sci. Res.2015,12, 11–21. [Google Scholar] [CrossRef]
- Sahin, G.; Isik, G.; van Sark, W.G. Predictive modeling of PV solar power plant efficiency considering weather conditions: A comparative analysis of artificial neural networks and multiple linear regression.Energy Rep.2023,10, 2837–2849. [Google Scholar] [CrossRef]
- Klein, S.A.; Cooper, P.I.; Freeman, T.L.; Beekman, D.M.; WBeckman, A.; Duffie, J.A. A method of simulation of solar processes and its application.Sol. Energy1975,17, 29–37. [Google Scholar] [CrossRef]
- Twidell, J.; Weir, T.Renewable Energy Resources, 3rd ed.; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Myhre, G.; Stordal, F.; Johnsrud, M.; Diner, D.J.; Geogdzhayev, I.V.; Haywood, J.M.; Holben, B.N.; Holzer-Popp, T.; Ignatov, A.; Kahn, R.A.; et al. Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000.Atmos. Chem. Phys.2005,5, 1697–1719. [Google Scholar] [CrossRef]
- Levy, R.C.; Munchak, L.A.; Mattoo, S.; Patadia, F.; Remer, L.A.; Holz, R.E. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance.Atmos. Meas. Tech.2015,8, 4083–4110. [Google Scholar] [CrossRef]
- Penner, J.E.; Zhang, S.Y.; Chin, M.; Chuang, C.C.; Feichter, J.; Feng, Y.; Geogdzhayev, I.V.; Ginoux, P.; Herzog, M.; Higurashi, A.; et al. A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity.J. Atmos. Sci.2002,59, 441–460. [Google Scholar] [CrossRef]
- Wu, Y.; de Graaf, M.; Menenti, M. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions.J. Geophys. Res. Atmos.2017,122, 8801–8815. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, L.; Xia, L.; Zhao, D.; Tang, J. Improvement of aerosol optical depth retrieval using visibility data in China during the past 50 years.J. Geophys. Res. Atmos.2014,119, 13370–13387. [Google Scholar] [CrossRef]
- Arola, A.; Koskela, T. On the sources of bias in aerosol optical depth retrieval in the UV range.J. Geophys. Res. Atmos.2004,109, D08209. [Google Scholar] [CrossRef]
- Chylek, P.; Henderson, B.; Mishchenko, M. Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval.J. Geophys. Res. Atmos.2003,108, 4764. [Google Scholar] [CrossRef]
- Yan, X.; Luo, N.; Liang, C.; Zang, Z.; Zhao, W.; Shi, W. Simplified and Fast Atmospheric Radiative Transfer model for satellite-based aerosol optical depth retrieval.Atmos. Environ.2020,224, 117362. [Google Scholar] [CrossRef]
- Yagli, G.M.; Yang, D.; Srinivasan, D. Automatic hourly solar forecasting using machine learning models.Renew. Sustain. Energy Rev.2019,105, 487–498. [Google Scholar] [CrossRef]
- Kleissl, J. Current State of the Art in Solar Forecasting. 2010. Available online:https://escholarship.org/uc/item/4fx8983f (accessed on 21 September 2024).
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. A Systematic Review on the Accessibility of Spatial and Temporal Variability of Solar Energy Availability on a Short Scale Measurement.Am. J. Energy Nat. Resour.2024,3, 60–85. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Duchaud, J.-L.; Gutiérrez, L.A.G.; Bright, J.M.; Yang, D. Benchmarks for solar radiation time series forecasting.Renew. Energy2022,191, 747–762. [Google Scholar] [CrossRef]
- Atique, S.; Noureen, S.; Roy, V.; Subburaj, V.; Bayne, S.; Macfie, J. Forecasting of total daily solar energy generation using ARIMA: A case study. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 114–119. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł.; Rabayah, H.S.; Abendeh, R.M.; Alawneh, R. ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations.Energies2023,16, 5029. [Google Scholar] [CrossRef]
- Stevović, I.; Mirjanić, D.; Stevović, S. Possibilities for wider investment in solar energy implementation.Energy2019,180, 495–510. [Google Scholar] [CrossRef]
- Aryaputera, A.W.; Yang, D.; Zhao, L.; Walsh, W.M. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging.Sol. Energy2015,122, 1266–1278. [Google Scholar] [CrossRef]
- Persson, C.; Bacher, P.; Shiga, T.; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees.Sol. Energy2017,150, 423–436. [Google Scholar] [CrossRef]
- Anand, M.P.; Rajapakse, A.; Bagen, B. Stochastic Model for Generating Synthetic Hourly Global Horizontal Solar Radiation Data Sets Based on Auto Regression Characterization.Int. Energy J.2020,20, 181–200. [Google Scholar]
- Amjad, D.; Mirza, S.; Raza, D.; Sarwar, F.; Kausar, S. A Statistical Modeling for spatial-temporal variability analysis of solar energy with respect to the climate in the Punjab Region.Bahria Univ. Res. J. Earth Sci.2023,7, 10. [Google Scholar]
Station | GHI (W/m2) | Longitude (°) | Latitude (°) | AOT (675 nm) | AOT (440 nm) | Precipitable Water (cm) | Pressure (mbars) | Ozone (cm) | NO2 (cm) | Temperature (K) |
---|---|---|---|---|---|---|---|---|---|---|
Ocua | 351.13 | 39.39 | −11.55 | 0.15 | 0.29 | 2.69 | 958.61 | 2.62 | 0.0014 | 272.99 |
Chiputo | 399.67 | 31.67 | −14.97 | 0.14 | 0.30 | 2.13 | 1016.35 | 2.63 | 0.0014 | 299.89 |
Vanduzi | 477.19 | 35.04 | −19.73 | 0.18 | 0.34 | 3.47 | 1010.30 | 2.83 | 0.0018 | 308.26 |
Choa-1 | 355.49 | 33.24 | −17.79 | 0.14 | 0.30 | 2.13 | 1016.08 | 2.63 | 0.0014 | 299.96 |
Choa-2 | 354.66 | 33.24 | −17.79 | 0.14 | 0.30 | 2.13 | 1016.08 | 2.63 | 0.0014 | 299.96 |
Nanhupo-1 | 352.64 | 39.51 | −15.97 | 0.15 | 0.29 | 2.59 | 958.43 | 2.61 | 0.0015 | 272.99 |
Nanhupo-2 | 349.65 | 39.51 | −15.97 | 0.15 | 0.29 | 2.59 | 958.44 | 2.61 | 0.0015 | 272.99 |
Massangulo-1 | 345.91 | 35.44 | −13.91 | 0.15 | 0.30 | 2.59 | 958.42 | 2.61 | 0.0015 | 272.99 |
Massangulo-2 | 430.09 | 35.44 | −13.91 | 0.15 | 0.30 | 2.59 | 958.42 | 2.61 | 0.0015 | 272.99 |
Lugela | 367.99 | 36.71 | −16.47 | 0.14 | 0.29 | 2.60 | 958.35 | 2.61 | 0.0014 | 272.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor.Data2025,10, 37. https://doi.org/10.3390/data10030037
Mucomole FV, Silva CAS, Magaia LL. Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor.Data. 2025; 10(3):37. https://doi.org/10.3390/data10030037
Chicago/Turabian StyleMucomole, Fernando Venâncio, Carlos Augusto Santos Silva, and Lourenço Lázaro Magaia. 2025. "Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor"Data 10, no. 3: 37. https://doi.org/10.3390/data10030037
APA StyleMucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2025). Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor.Data,10(3), 37. https://doi.org/10.3390/data10030037