Evaluating Habitat Suitability for the EndangeredSinojackia xylocarpa (Styracaceae) in China Under Climate Change Based on Ensemble Modeling and Gap Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Geographic Distribution Data
2.2. Selection and Filtering of Environmental Variables
2.3. Modeling Process
2.4. Suitable Habitat Partitions and Centroid Shift
2.5. Conservation Gap Analysis
3. Results
3.1. Model Performance
3.2. Main Environmental Factors
3.3. Potential Suitable Habitats in the Current
3.4. Potential Suitable Habitats in the Past
3.5. Potential Suitable Habitats in the Future
3.6. Centroid Shift Under Different Climate Scenarios
4. Discussion
4.1. Model Selection and Evaluation
4.2. Key Influencing Factors of S. xylocarpa
4.3. Current Suitable Area of S. xylocarpa
4.4. The Change in Suitable Areas in the Past and Future
4.5. Conservation Implications for S. xylocarpa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.L.; Shi, Y.T.; Yang, S.H. Molecular regulation of plant responses to environmental temperatures.Mol. Plant2020,13, 544–564. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.R.; Lu, X.; Zhang, G.F. Potentially differential impacts on niche overlap between Chinese endangeredZelkova schneideriana and its associated tree species under climate change.Front. Ecol. Evol.2023,11, 1218149. [Google Scholar] [CrossRef]
- Ye, X.Z.; Zhang, M.Z.; Yang, Q.Y.; Ye, L.Q.; Liu, Y.P.; Zhang, G.F.; Chen, S.P.; Lai, W.F.; Wen, G.W.; Zheng, S.Q.; et al. Prediction of suitable distribution of a critically endangered plantGlyptostrobus pensilis.Forests2022,13, 257. [Google Scholar] [CrossRef]
- Hu, H.H.Sinojackia, a new genus of Styracaceae from southeastern China.J. Arnold Arbor.1929,9, 130–131. [Google Scholar] [CrossRef]
- Huang, S.M.; Grimes, J. Styracaceae. InFlora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China, 1996; Volume 15, pp. 253–271. [Google Scholar]
- Liu, Z.H. Research progress ofSinojackia Hu.Jiangsu Agric. Sci.2017,45, 11–15. [Google Scholar]
- Hu, C.G. Preliminary survey report onSinojackia microcarpa.Anhui For. Sci. Technol.2018,44, 54–55. [Google Scholar]
- Luo, L.Q.Sinojackia xylocarpa var.leshanensis (Styracaceae), a new variety from Sichuan, China.Bull. Bot. Res.2005,25, 260–261. [Google Scholar]
- Yang, Q.F.; Cai, X.Z.; Chen, T. A study on the leaf venation ofChangiostyrax C. T. Chen andSinojackia Hu.Guihaia1997,17, 145–148. [Google Scholar]
- Yao, X.H.; Ye, Q.G.; Fritsch, P.; Cruz, B.; Huang, H.W. Phylogeny ofSinojackia (Styracaceae) based on DNA sequence and microsatellite data: Implications for taxonomy and conservation.Ann. Bot.2008,101, 651–662. [Google Scholar] [CrossRef]
- Luo, L.Q. A new synonym in the genusSinojackia (Styracaceae).J. Syst. Evol.2005,43, 561–564. [Google Scholar] [CrossRef]
- Luo, L.Q.; Luo, C. Taxonomic circumscription ofSinojackia xylocarpa (Styracaceae).J. Syst. Evol.2011,49, 163–164. [Google Scholar] [CrossRef]
- Yang, T.; Wang, S.T.; Wei, Z.X.; Jiang, M.X. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China.Plant Sci. J.2020,38, 627–635. [Google Scholar]
- Feng, M.; Zhang, J.S. Niche evolution and conservation of a Chinese endemic genusSinojackia (Styracaceae).Biology2024,13, 1085. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.J.; Peterson, A.T.; Ji, L.Q.; Hu, J.H. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling.Methods Ecol. Evol.2017,8, 1804–1812. [Google Scholar] [CrossRef]
- Hughes, A.C.; Orr, M.C.; Ma, K.; Costello, M.J.; Waller, J.; Provoost, P.; Yang, Q.M.; Zhu, C.D.; Qiao, H.J. Sampling biases shape our view of the natural world.Ecography2021,44, 1259–1269. [Google Scholar] [CrossRef]
- Wu, R.F.; Huang, S.M. Styracaceae. InFlora of China; Wu, Z.Y., Ed.; Science Press: Beijing, China, 1987; Volume 60, p. 144. [Google Scholar]
- Liu, Q.X.Flora of Jiangsu; Jiangsu Phoenix Science Press: Nanjing, China, 2015; Volume 4, p. 27. [Google Scholar]
- Chen, T.; Chen, Z.Y. The Geographical distribution of Styracaceae.Bull. Bot. Res.1995,16, 57–66. [Google Scholar]
- Hao, R.M.; Huang, Z.Y.; Liu, X.J.; Wang, Z.L.; Xu, H.Q.; Yao, Z.G. The natural distribution and characteristics of the rare and endangered plants in Jiangsu, China.Biodivers. Sci.2000,8, 153–162. [Google Scholar]
- Zhang, J.J.; Ye, Q.G.; Yao, X.H.; Huang, H.W. Spontaneous interspecific hybridization and patterns of pollen dispersal in ex situ populations of a tree species (Sinojackia xylocarpa) that is extinct in the wild.Conserv. Biol.2010,24, 246–255. [Google Scholar] [CrossRef]
- Xu, S.Q.; Ma, D.D.; Zhang, F.Y.; Xu, L.Y.; Li, X.P.; Chen, Z.H. A new record species of Styracaceae from Zhejiang Province.J. Zhejiang For. Sci. Technol.2022,42, 61–64. [Google Scholar]
- Martı’nez-Minaya, J.; Cameletti, M.; Conesa, D.; Pennino, M.G. Species distribution modeling: A statistical review with focus in spatio-temporal issues.Stoch. Environ. Res. Risk Assess.2018,32, 3227–3244. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.J.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists.Divers. Distrib.2011,17, 43–57. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.; Dormann, C.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A. A standard protocol for reporting species distribution models.Ecography2020,43, 1261–1277. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, G.F. Predicting the potential distribution of endangeredParrotia subaequalis in China.Forests2022,13, 1595. [Google Scholar] [CrossRef]
- Cai, H.W.; Zhang, G.F. Predicting the potential distribution of rare and endangeredEmmenopterys henryi in China under climate change.Ecol. Evol.2024,14, e70403. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change.Glob. Change Biol.2003,9, 1353–1362. [Google Scholar] [CrossRef]
- Liu, T.; Cai, H.W.; Zhang, G.F. Assessment of climate change impacts on the distribution of endangered and endemicChangnienia amoena (Orchidaceae) using ensemble modeling and gap analysis in China.Ecol. Evol.2024,14, e70636. [Google Scholar] [CrossRef]
- Sheng, N.; Li, B.J.; Xiong, Y.N.; Lu, C.G.; Lin, L.Garden Ornamental Trees in East China; Shanghai Science and Technology Press: Shanghai, China, 2012; pp. 156–157. [Google Scholar]
- Zhu, S.; Wei, X.F.; Lu, Y.X.; Zhang, D.W.; Wang, Z.F.; Ge, J.; Li, S.L.; Song, Y.F.; Yi, X.G.; Zhang, M.; et al. The jacktree genome and population genomics provides insights for the mechanisms of the germination obstacle and the conservation of endangered ornamental plants.Hortic. Res.2024,11, uhae166. [Google Scholar] [CrossRef]
- Li, J. Characteristics and cultivation techniques ofSinojackia.Anhui Agric. Sci. Bull.2014,20, 120–121. [Google Scholar]
- Huang, Z.Y.; Zhu, X.Y. The study on eco-geographical distribution, biology characteristics and propagation techniques ofSinojackia xylocarpa.J. Jiangsu For. Sci. Technol.1998,25, 15–18. [Google Scholar]
- Wang, S.T.; Wu, H.; Liu, M.T.; Zhang, J.X.; Liu, J.M.; Meng, H.J.; Xu, Y.N.; Qiao, X.J.; Wei, X.Z.; Lu, Z.J.; et al. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China.Biodivers. Sci.2018,26, 749–759. [Google Scholar] [CrossRef]
- Radosavljević, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation.J. Biogeogr.2014,41, 629–643. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses.PeerJ2017,5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.; Davis, F.W.; Ikegami, M.; Syphard, A.D.; Flint, L.; Flint, A.L.; Hannah, L. Modeling plant species distributions under future climates: How fine scale do climate projections need to be?Glob. Change Biol.2013,19, 473–483. [Google Scholar] [CrossRef]
- Coban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt modeling for predicting the current and future potential geographical distribution ofQuercus libani Olivier.Sustainability2020,12, 2671. [Google Scholar] [CrossRef]
- Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia.Forests2022,13, 715. [Google Scholar] [CrossRef]
- Su, Q.T.; Du, Z.X.; Luo, Y.; Zhou, B.; Xiao, Y.A.; Zou, Z.R. MaxEnt modeling for predicting the potential geographical distribution ofHydrocera triflora since the Last Interglacial and under future climate scenarios.Biology2024,13, 745. [Google Scholar] [CrossRef]
- Calixto, P.; Pereira, F.W.; Brum, F.T.; Brum, F.T.; Crivellari, L.B.; Moura, M.O. Climate change will threaten endemic frogs in the Araucaria Forest.Biodivers. Conserv.2025,34, 665–684. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas.Int. J. Climatol.2017,37, 4302–4315. [Google Scholar] [CrossRef]
- Stanton, J.C.; Pearson, R.G.; Horning, N.; Ersts, P.; Reşit Akçakaya, H. Combining static and dynamic variables in species distribution models under climate change.Methods Ecol. Evol.2012,3, 349–357. [Google Scholar] [CrossRef]
- Rota, F.; Scherrer, D.; Bergamini, A.; Price, B.; Walthert, L.; Baltensweiler, A. Unravelling the impact of soil data quality on species distribution models of temperate forest woody plants.Sci. Total Environ.2024,944, 173719. [Google Scholar] [CrossRef]
- Sillero, N.; Barbosa, A. Common mistakes in ecological niche models.Int. J. Geogr. Inf. Sci.2020,35, 213–226. [Google Scholar] [CrossRef]
- Wang, H.R.; Zhi, F.Y.; Zhang, G.F. Predicting impacts of climate change on suitable distribution of critically endangered tree speciesYulania zenii (W. C. Cheng) D. L. Fu in China.Forests2024,15, 883. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, H.C.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?Methods Ecol. Evol.2012,3, 327–338. [Google Scholar] [CrossRef]
- Chang, B.; Huang, C.; Chen, B.; Wang, Z.W.; He, X.Y.; Chen, W.; Huang, Y.Q.; Zhang, Y.; Yu, S. Predicting the potential distribution ofTaxus cuspidata in northeastern China based on the ensemble model.Ecosphere2024,15, e4965. [Google Scholar] [CrossRef]
- Liu, C.R.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data.Ecol. Evol.2015,6, 337–348. [Google Scholar] [CrossRef]
- Liu, C.R.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data.J. Biogeogr.2013,40, 778–789. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, T.T.; Zhang, X.X.; Yang, X.D.; Qin, F.; Zhang, W.D.; Wu, L.; Bussmann, R.W.; Yu, S.X. Distribution and conservation of near threatened plants in China.Plant Divers.2023,45, 272–283. [Google Scholar] [CrossRef]
- Yang, G.D.; Ji, X.Y.; Chen, L.; Zhong, Y.Q.; Zhai, F.F.; Yi, X.G.; Wang, X.R. Spatial distribution and environmental interpretation of wildSinojackia xylocarpa communities based on self-organizing map (SOM).Biodivers. Sci.2018,26, 1268–1276. [Google Scholar] [CrossRef]
- Jia, S.G.; Shen, Y.B. Research progress onSinojackia xylocarpa Hu.J. Jiangsu For. Sci. Technol.2007,34, 41–45. [Google Scholar]
- Yang, Y.B.; Liao, J.K.; Tang, M.S.Seed Plants of Taiwan; Forestry Bureau of the Agriculture Commission of the Executive: Taiwan, China, 2008; p. 124. [Google Scholar]
- Jin, X.H.; Zhou, Z.H.; Yuan, L.C.National Key Protected Wild Plants of China; Hubei Science and Technology Press: Wuhan, China, 2023; Volume 3, p. 362. [Google Scholar]
- He, X.; Ma, W.X.; Zhao, T.T.; Ma, H.X.; Liang, L.S.; Wang, G.X.; Yang, Z. Prediction of potential distribution of endangered speciesCorylus chinensis Franch. in climate change context.Forest Res.2022,35, 104–114. [Google Scholar]
- Wu, X.T.; Wang, M.Q.; Li, X.Y.; Yan, Y.D.; Dai, M.J.; Xie, W.Y.; Zhou, X.F.; Zhang, D.L.; Wen, Y.F. Response of distribution patterns of two closely related species inTaxus genus to climate change since Last Inter-Glacial.Ecol. Evol.2022,12, e9302. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.M.; Zhu, M.; Liu, W.J.Jiangsu’s Key Protected Species Atlas; Nanjing Normal University Press: Nanjing, China, 2021; pp. 30–31. [Google Scholar]
- Qin, H.N.Seed Plants of China: Checklist, Uses and Conservation Status; Hebei Science and Technology Press: Shijiazhuang, China, 2020; Volume 4, pp. 2277–2278. [Google Scholar]
- Zhang, G.F.; Xiong, T.S.; Sun, T.; Li, K.D.; Shao, L.Y. Diversity, distribution, and conservation of rare and endangered plant species in Jiangsu Province.Biodiv. Sci.2022,30, 31–40. [Google Scholar] [CrossRef]
- Yao, X.H.; Ye, Q.G.; Kang, M.; Huang, H.W. Geographic distribution and current status of the endangered generaSinoiackia andChangiostyrax.Biodiv. Sci.2005,13, 339–346. [Google Scholar] [CrossRef]
Category | Variable | Description | Unit | Percent Contribution (%) | ||
---|---|---|---|---|---|---|
LIG | MH | Current | ||||
Bioclimate | Bio1 | Annual mean temperature | °C | |||
Bio2 | Mean diurnal range (mean of monthly (max temp–min temp)) | °C | 5.1 | 0.5 | ||
Bio3 | Isothermality ((Bio2/Bio7) × 100) | % | 0.4 | 2.8 | 2.2 | |
Bio4 | Temperature seasonality (standard deviation × 100) | - | 19.1 | 1.5 | ||
Bio5 | Max temperature of warmest month | °C | 1.2 | |||
Bio6 | Min temperature of coldest month | °C | 0.6 | |||
Bio7 | Temperature annual range (Bio5–Bio6) | °C | 2.1 | |||
Bio8 | Mean temperature of wettest quarter | °C | 3.1 | 7.3 | ||
Bio9 | Mean temperature of driest quarter | °C | 1.9 | 2.7 | ||
Bio10 | Mean temperature of warmest quarter | °C | 21.7 | 9.6 | ||
Bio11 | Mean temperature of coldest quarter | °C | 16.6 | 15.5 | ||
Bio12 | Annual precipitation | mm | 4.4 | |||
Bio13 | Precipitation of wettest month | mm | 3.7 | 8.7 | ||
Bio14 | Precipitation of driest month | mm | ||||
Bio15 | Precipitation seasonality (coefficient of variation) | - | 6.5 | 27.5 | 0.9 | |
Bio16 | Precipitation of wettest quarter | mm | ||||
Bio17 | Precipitation of driest quarter | mm | 19.6 | 23.0 | 61.0 | |
Bio18 | Precipitation of warmest quarter | mm | 4.2 | 9.5 | 8.9 | |
Bio19 | Precipitation of coldest quarter | mm | ||||
Topography | Elevation | - | m | 5.4 | ||
Slope | - | ° | 0.2 | |||
Soil | T-BS | Topsoil Base Saturation | % | 0.5 | ||
T-CaCO3 | Topsoil Calcium Carbonate | % | 0.1 | |||
T-CEC-CLAY | Topsoil CEC (clay) | - | 0.7 | |||
T-CEC-SOIL | Topsoil CEC (soil) | - | 0.1 | |||
T-CLAY | Topsoil Clay Fraction | % | ||||
T-ECE | Topsoil Salinity (Elco) | S/m | ||||
T-ESP | Topsoil Sodicity (ESP) | - | 0.1 | |||
T-GRAVEL | Topsoil Gravel Content | % | 0.6 | |||
T-OC | Topsoil Organic Carbon | % | 0.1 | |||
T-PH-H2O | Topsoil pH (H2O) | - | ||||
T-REF-BULK | Topsoil Reference Bulk Density | kg/m3 | 0.1 | |||
T-SAND | Topsoil Sand Fraction | % | ||||
T-SILT | Topsoil Silt Fraction | % | 0.1 | |||
T-TEB | Topsoil TEB | - | ||||
T-TEXTURE | Topsoil TEXTURE | - | ||||
T-USDA-TEX | Topsoil USDA Texture Classification | - | 0.2 |
Model Name | Model Code | AUC | TSS |
---|---|---|---|
Artificial neural networks model | ANN | 0.8632 ± 0.1719 | 0.7324 ± 0.1882 |
Classification tree analysis model | CTA | 0.8930 ± 0.0722 | 0.7864 ± 0.1436 |
Flexible discriminant analysis model | FDA | 0.9274 ± 0.0429 | 0.7376 ± 0.0938 |
Generalized additive model | GAM | 0.7692 ± 0.1709 | 0.6320 ± 0.2128 |
Generalized boosting model | GBM | 0.9376 ± 0.0390 | 0.7089 ± 0.0548 |
Generalized linear model | GLM | 0.8468 ± 0.0817 | 0.6936 ± 0.1635 |
Maximum entropy model | MaxEnt | 0.9690 ± 0.0209 | 0.8918 ± 0.0398 |
Multivariate adaptive regression splines model | MARS | 0.8342 ± 0.1135 | 0.6704 ± 0.2276 |
Random forest model | RF | 0.9499 ± 0.0297 | 0.7130 ± 0.0867 |
Surface range envelope model | SRE | 0.5352 ± 0.0498 | 0.1920 ± 0.0056 |
Ensemble model | 0.9960 ±0.0641 | 0.9500 ±0.0610 |
Scenarios | Low Suitable Area | Moderately Suitable Area | Highly Suitable Area | Suitable Area (Moderately and Highly) | |||||
---|---|---|---|---|---|---|---|---|---|
Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | ||
Last Interglacial | 97.56 | ↑97.81 | 20.38 | ↓42.70 | 43.46 | ↑27.26 | 63.84 | ↓8.43 | |
Middle Holocene | 59.24 | ↑20.11 | 26.30 | ↓26.06 | 38.20 | ↑11.86 | 64.50 | ↓7.49 | |
Current | 49.32 | - | 35.57 | - | 34.15 | - | 69.72 | - | |
2050s | RCP2.6 | 57.36 | ↑16.30 | 30.98 | ↓12.90 | 28.83 | ↓15.58 | 59.81 | ↓14.21 |
RCP4.5 | 38.31 | ↓22.32 | 24.66 | ↓30.67 | 37.25 | ↑9.08 | 61.91 | ↓11.20 | |
RCP8.5 | 22.59 | ↓54.20 | 16.24 | ↓54.34 | 42.10 | ↑23.28 | 58.34 | ↓16.32 | |
2070s | RCP2.6 | 47.90 | ↓2.88 | 21.48 | ↓39.61 | 38.86 | ↑13.79 | 60.34 | ↓13.45 |
RCP4.5 | 75.56 | ↑53.20 | 30.06 | ↓15.49 | 29.16 | ↓14.61 | 59.22 | ↓15.06 | |
RCP8.5 | 64.34 | ↑30.45 | 31.44 | ↓11.61 | 41.33 | ↑21.02 | 72.77 | ↑4.37 | |
The mean value of six future climate scenarios | 51.01 | ↑3.43 | 25.81 | ↓27.44 | 36.26 | ↑6.18 | 62.07 | ↓10.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Wu, H.; Zhang, G. Evaluating Habitat Suitability for the EndangeredSinojackia xylocarpa (Styracaceae) in China Under Climate Change Based on Ensemble Modeling and Gap Analysis.Biology2025,14, 304. https://doi.org/10.3390/biology14030304
Hu C, Wu H, Zhang G. Evaluating Habitat Suitability for the EndangeredSinojackia xylocarpa (Styracaceae) in China Under Climate Change Based on Ensemble Modeling and Gap Analysis.Biology. 2025; 14(3):304. https://doi.org/10.3390/biology14030304
Chicago/Turabian StyleHu, Chenye, Hang Wu, and Guangfu Zhang. 2025. "Evaluating Habitat Suitability for the EndangeredSinojackia xylocarpa (Styracaceae) in China Under Climate Change Based on Ensemble Modeling and Gap Analysis"Biology 14, no. 3: 304. https://doi.org/10.3390/biology14030304
APA StyleHu, C., Wu, H., & Zhang, G. (2025). Evaluating Habitat Suitability for the EndangeredSinojackia xylocarpa (Styracaceae) in China Under Climate Change Based on Ensemble Modeling and Gap Analysis.Biology,14(3), 304. https://doi.org/10.3390/biology14030304