Effects of Difenoconazole onTubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Test Animal
2.3. QA/QC (Quality Assurance/Quality Control) Procedure
2.4. Median Lethal Concentration Determination
2.5. Behavioral Observation
2.6. Oxidative Stress Biomarkers
2.7. Integrated Biomarker Response (IBR)
2.8. Histological Alterations
2.9. Statistical Analysis
3. Results and Discussion
3.1. Acute Toxicity Assessments (96 h)
3.1.1. Determination of the Lethal Concentrations
3.1.2. General Unified Threshold Model of Survival (GUTS) Analysis
3.1.3. Evaluation of the Toxicity Factors
3.2. Sublethal Exposure Assessment
3.2.1. Alterations in Oxidative Stress Enzyme
3.2.2. Integrated Biomarker Response
3.2.3. Correlation Analysis
3.2.4. Histological Alterations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment.Int. J. Environ. Res. Public Health2021,18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Bondareva, L.; Fedorova, N. Pesticides: Behavior in Agricultural Soil and Plants.Molecules2021,26, 5370. [Google Scholar] [CrossRef]
- Voiculescu, D.I.; Roman, D.L.; Ostafe, V.; Isvoran, A. A Cheminformatics Study Regarding the Human Health Risks Assessment of the Stereoisomers of Difenoconazole.Molecules2022,27, 4682. [Google Scholar] [CrossRef] [PubMed]
- Kumar Goswami, S.; Singh, V.; Chakdar, H.; Choudhary, P. Harmful Effects of Fungicides-Current Status.Int. J. Agric. Environ. Biotechnol. Cit. IJAEB2018,11, 1025–1033. [Google Scholar]
- Rad, A.K.; Zarei, M.; Astaikina, A.; Streletskii, R.; Etesami, H. Fungicide and Pesticide Fallout on Aquatic Fungi. InFreshwater Mycology: Perspectives of Fungal Dynamics in Freshwater Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–191. [Google Scholar] [CrossRef]
- Ray, S.; Shaju, S.T. Bioaccumulation of Pesticides in Fish Resulting Toxicities in Humans through Food Chain and Forensic Aspects.Environ. Anal. Health Toxicol.2023,38, e2023017. [Google Scholar] [CrossRef]
- Gill, H.K.; Garg, H.; Gill, H.K.; Garg, H. Pesticides: Environmental Impacts and Management Strategies.Pestic.—Toxic Asp.2014,8, 10-5772. [Google Scholar] [CrossRef]
- Schleiffer, M.; Speiser, B. Presence of Pesticides in the Environment, Transition into Organic Food, and Implications for Quality Assurance along the European Organic Food Chain—A Review.Environ. Pollut.2022,313, 120116. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale.Nat. Geosci.2021,14, 206–210. [Google Scholar] [CrossRef]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health.Biomolecules2019,9, 521. [Google Scholar] [CrossRef]
- Heusinkveld, H.J.; Molendijk, J.; Van den Berg, M.; Westerink, R.H.S. Azole Fungicides Disturb Intracellular Ca2+ in an Additive Manner in Dopaminergic PC12 Cells.Toxicol. Sci.2013,134, 374–381. [Google Scholar] [CrossRef]
- Assress, H.A.; Selvarajan, R.; Nyoni, H.; Mamba, B.B.; Msagati, T.A. Antifungal Azoles and Azole Resistance in the Environment: Current Status and Future Perspectives—A Review.Rev. Environ. Sci. Bio/Technol.2021,20, 1011–1041. [Google Scholar] [CrossRef]
- Bhagat, J.; Singh, N.; Nishimura, N.; Shimada, Y. A Comprehensive Review on Environmental Toxicity of Azole Compounds to Fish.Chemosphere2021,262, 128335. [Google Scholar] [CrossRef]
- Bossche, H.V.; Willemsens, G.; Marichal, P. Anti-Candida Drugs—The Biochemical Basis for Their Activity.Crit. Rev. Microbiol.1987,15, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, L.N.; Heick, T.M. Azole Use in Agriculture, Horticulture, and Wood Preservation—Is It Indispensable?Front. Cell Infect. Microbiol.2021,11, 806. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, J.; Fang, D. An Histological, Oxidative and Immune Changes in Response to 9,10-Phenanthrenequione, Retene and Phenanthrene in Takifugu Obscurus Liver.J. Environ. Sci. Health Part A2020,55, 827–836. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Liu, F.; FangWang; Dong, J.; Zhao, P. Difenoconazole Causes Cardiotoxicity in Common Carp (Cyprinus carpio): Involvement of Oxidative Stress, Inflammation, Apoptosis and Autophagy.Chemosphere2022,306, 135562. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Reasoned Opinion on the Modification of the Existing MRLs for Difenoconazole in Peppers and Aubergines.EFSA J.2014,12, 3676. [Google Scholar] [CrossRef]
- Satapornvanit, K.; Baird, D.J.; Little, D.C.; Milwain, G.K.; Van Den Brink, P.J.; Beltman, W.H.; Nogueira, A.J.; Daam, M.A.; Domingues, I.; Kodithuwakku, S.S.; et al. Risks of Pesticide Use in Aquatic Ecosystems Adjacent to Mixed Vegetable and Monocrop Fruit Growing Areas in Thailand.Australas. J. Ecotoxicol.2004,10, 85–95. [Google Scholar]
- Zhang, W.; Jiang, F.; Ou, J.F. Global Pesticide Consumption and Pollution: With China as a Focus.Proc. Int. Acad. Ecol. Environ. Sci.2011,1, 125–144. [Google Scholar]
- Latiff, K.A.; Bakar, N.K.A.; Isa, N.M. Preliminary Study of Difenoconazole Residues in Rice Paddy Watersheds.Malays. J. Sci.2010,29, 73–79. [Google Scholar] [CrossRef]
- Schäfer, R.B.; Pettigrove, V.; Rose, G.; Allinson, G.; Wightwick, A.; Von Der Ohe, P.C.; Shimeta, J.; Kühne, R.; Kefford, B.J. Effects of Pesticides Monitored with Three Sampling Methods in 24 Sites on Macroinvertebrates and Microorganisms.Environ. Sci. Technol.2011,45, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, J.; Chankvetadze, B.; Cheng, Y.; Xu, J.; Liu, X.; Li, Y.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral Triazole Fungicide Difenoconazole: Absolute Stereochemistry, Stereoselective Bioactivity, Aquatic Toxicity, and Environmental Behavior in Vegetables and Soil.Environ. Sci. Technol.2013,47, 3386–3394. [Google Scholar] [CrossRef]
- Chen, Y.; Zang, L.; Liu, M.; Zhang, C.; Shen, G.; Du, W.; Sun, Z.; Fei, J.; Yang, L.; Wang, Y.; et al. Ecological Risk Assessment of the Increasing Use of the Neonicotinoid Insecticides along the East Coast of China.Environ. Int.2019,127, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Stenrød, M.; Wu, C.; Almvik, M.; Holten, R.; Clarke, J.L.; Yuan, S.; Wu, X.; Xu, J.; Dong, F.; et al. Degradation of Difenoconazole in Water and Soil: Kinetics, Degradation Pathways, Transformation Products Identification and Ecotoxicity Assessment.J. Hazard. Mater.2021,418, 126303. [Google Scholar] [CrossRef]
- Mu, X.; Pang, S.; Sun, X.; Gao, J.; Chen, J.; Chen, X.; Li, X.; Wang, C. Evaluation of Acute and Developmental Effects of Difenoconazole via Multiple Stage Zebrafish Assays.Environ. Pollut.2013,175, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Pal, E.; Almasri, H.; Paris, L.; Diogon, M.; Pioz, M.; Cousin, M.; Sené, D.; Tchamitchian, S.; Tavares, D.A.; Delbac, F.; et al. Toxicity of the Pesticides Imidacloprid, Difenoconazole and Glyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses.Toxics2022,10, 104. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Pan, X.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. Ecological Risk Assessment for Difenoconazole in Aquatic Ecosystems Using a Web-Based Interspecies Correlation Estimation (ICE)-Species Sensitivity Distribution (SSD) Model.Chemosphere2022,289, 133236. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Difenoconazole.EFSA J.2011,9, 1967. [Google Scholar] [CrossRef]
- Hinfray, N.; Porcher, J.M.; Brion, F. Inhibition of Rainbow Trout (Oncorhynchus Mykiss) P450 Aromatase Activities in Brain and Ovarian Microsomes by Various Environmental Substances.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2006,144, 252–262. [Google Scholar] [CrossRef]
- Mu, X.; Chai, T.; Wang, K.; Zhu, L.; Huang, Y.; Shen, G.; Li, Y.; Li, X.; Wang, C. The Developmental Effect of Difenoconazole on Zebrafish Embryos: A Mechanism Research.Environ. Pollut.2016,212, 18–26. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Bello, B.K.; Zhang, T.; Yang, H.; Wang, K.; Dong, J. Difenoconazole Causes Spleen Tissue Damage and Immune Dysfunction of Carp through Oxidative Stress and Apoptosis.Ecotoxicol. Environ. Saf.2022,237, 113563. [Google Scholar] [CrossRef] [PubMed]
- Dornelas, A.S.P.; de Jesus Ferreira, J.S.; Silva, L.C.R.; de Souza Saraiva, A.; Cavallini, G.S.; Gravato, C.A.S.; da Maia Soares, A.M.V.; Almeida Sarmento, R. The Sexual Reproduction of the Nontarget PlanarianGirardia tigrina Is Affected by Ecologically Relevant Concentrations of Difenoconazole: New Sensitive Tools in Ecotoxicology.Environ. Sci. Pollut. Res.2022,29, 27095–27103. [Google Scholar] [CrossRef] [PubMed]
- Dhara, K.; Das, U.N.; Pal, P.; Saha, N.C.; Saha, S. Temperature-Optimized, Hormone-Induced Spawning of Asian Striped Dwarf Catfish, Mystus Vittatus in Early-Stage F1 Generation.Iran. J. Ichthyol.2023,10, 59–77. [Google Scholar]
- Chakraborty, D.; Saha, S.; Podder, S.; Saha, N.C.; Faggio, C. Generation of Oxidative Stress in Freshwater Oligochaete Tubifex Tubifex Due to Exposure to Aniline: Time and Concentration Dependent Toxicity Assessment.Chem. Ecol.2024,40, 260–275. [Google Scholar] [CrossRef]
- Ramesh, M.; Anitha, S.; Poopal, R.K.; Shobana, C. Evaluation of Acute and Sublethal Effects of Chloroquine (C18H26CIN3) on Certain Enzymological and Histopathological Biomarker Responses of a Freshwater FishCyprinus carpio.Toxicol. Rep.2018,5, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.C.; Banerjee, P.; Chatterjee, A.; Bhattacharya, R.; Saha, S.; Pastorino, P. Haematological, Biochemical, Enzymological Changes and Mitochondrial Dysfunction of Liver in Freshwater Climbing Perch Anabas Testudineus during Their Acute and Chronic Exposure to Sodium Fluoride.Environ. Toxicol. Pharmacol.2024,106, 104360. [Google Scholar] [CrossRef]
- Samajdar, I.; Saha, S.; Mandal, D.K. Chlorpyrifos Induced Oxidative Stress Responses and Alteration of Acetylcholinesterase Activity in the Olfactory Organ of Freshwater Minor Carp,Labeo Bata.Iran. J. Ichthyol.2023,10, 248–263. [Google Scholar]
- Hemalatha, D.; Muthukumar, A.; Rangasamy, B.; Nataraj, B.; Ramesh, M. Impact of Sublethal Concentration of a Fungicide Propiconazole on Certain Health Biomarkers of Indian Major CarpLabeo rohita.Biocatal. Agric. Biotechnol.2016,8, 321–327. [Google Scholar] [CrossRef]
- Veedu, S.K.; Ayyasamy, G.; Tamilselvan, H.; Ramesh, M. Single and Joint Toxicity Assessment of Acetamiprid and Thiamethoxam Neonicotinoids Pesticides on Biochemical Indices and Antioxidant Enzyme Activities of a Freshwater Fish Catla Catla.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2022,257, 109336. [Google Scholar] [CrossRef]
- McShan, D.; Ray, P.C.; Yu, H. Molecular Toxicity Mechanism of Nanosilver.J. Food Drug Anal.2014,22, 116–127. [Google Scholar] [CrossRef]
- Menezes, H.C.; Paulo, B.P.; Paiva, M.J.N.; Cardeal, Z.L. A Simple and Quick Method for the Determination of Pesticides in Environmental Water by HF-LPME-GC/MS.J. Anal. Methods Chem.2016,2016, 7058709. [Google Scholar] [CrossRef] [PubMed]
- Psillakis, E.; Kalogerakis, N. Hollow-Fibre Liquid-Phase Microextraction of Phthalate Esters from Water.J. Chromatogr. A2003,999, 145–153. [Google Scholar] [CrossRef]
- Atobatele, O.E.; Olutona, G.O. Distribution of Three Non-Essential Trace Metals (Cadmium, Mercury and Lead) in the Organs of Fish from Aiba Reservoir, Iwo, Nigeria.Toxicol. Rep.2015,2, 896–903. [Google Scholar] [CrossRef]
- Finney, D.J.; Tattersfield, F. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve.J. R. Stat. Soc.1947,110, 263. [Google Scholar] [CrossRef]
- Dhara, K.; Mukherjee, D.; Saha, N.C. Acute Toxicity of Cadmium to Benthic Oligochaete Worm, Branchiura Sowerbyi Beddard, 1982 and Juvenile Catfish, Clarias Batrachus Linnaeus, 1758.Proc. Zool. Soc.2015,68, 116–119. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels.Anal. Biochem.1971,44, 276–287. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase.J. Biol. Chem.1952,195, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.; Pabst, M.; Jakoby, W. Glutathione S-Transferases: The First Enzymatic Step in Mercapturic Acid Formation.J. Biol. Chem.1974,249, 7130–7139. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction.Anal. Biochem.1979,95, 351–358. [Google Scholar] [CrossRef]
- Devin, S.; Burgeot, T.; Giambérini, L.; Minguez, L.; Pain-Devin, S. The Integrated Biomarker Response Revisited: Optimization to Avoid Misuse.Environ. Sci. Pollut. Res. Int.2014,21, 2448–2454. [Google Scholar] [CrossRef]
- Sharma, P.; Garai, P.; Banerjee, P.; Saha, S.; Chukwuka, A.V.; Chatterjee, S.; Saha, N.C.; Faggio, C. Behavioral Toxicity, Histopathological Alterations and Oxidative Stress in Tubifex Tubifex Exposed to Aromatic Carboxylic Acids-Acetic Acid and Benzoic Acid: A Comparative Time-Dependent Toxicity Assessment.Sci. Total Environ.2023,876, 162739. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.; Srivastava, P.P.; Krishna, G.; Paul, T.; Pal, P.; Gupta, S.; Varghese, T.; Jayant, M. An Integrated Biomarker Approach for Explaining the Potency of Exogenous Glucose on Transportation Induced Stress inLabeo rohita Fingerlings.Sci. Rep.2021,11, 5713. [Google Scholar] [CrossRef] [PubMed]
- Beliaeff, B.; Burgeot, T. Integrated Biomarker Response: A Useful Tool for Ecological Risk Assessment.Environ. Toxicol. Chem.2002,21, 1316–1322. [Google Scholar] [CrossRef]
- Finney, D.J. Statisical Logic in the Monitoring of Reactions to Therapeutic Drugs.Methods Inf. Med.1971,10, 237–245. [Google Scholar]
- Ayoola, S.O. Histopathology of Nile Tilapia (Oreochromis niloticus) Juveniles Exposed to Aqueous and Ethanolic Extracts of Ipomoea Aquatica Leaf.Int. J. Fish. Aquac.2011,3, 244–257. [Google Scholar] [CrossRef]
- Ahmad, H.; Rahman, M.R.A.; Nasir, S.F.J.A.; Baharudin, N.S.H. Acute and Chronic Toxicity of Difenoconazole Fungicide on Freshwater Shrimp (Macrobrachium lanchesteri).Int. J. Environ. Eng.2022,11, 183. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Zhang, C.; Jiang, W.; Li, X. Environmental Hormone Effects and Bioaccumulation of Propiconazole and Difenoconazole in Procypris Merus.Bull. Environ. Contam. Toxicol.2022,109, 823–830. [Google Scholar] [CrossRef]
- Jiménez, K.; Solano, K.; Scholz, C.; Redondo-López, S.; Mena, F. Early Toxic Effects in a Central American Native Fish (Parachromis dovii) Exposed to Chlorpyrifos and Difenoconazole.Environ. Toxicol. Chem.2021,40, 1938–1947. [Google Scholar] [CrossRef]
- Nataraj, B.; Hemalatha, D.; Malafaia, G.; Maharajan, K.; Ramesh, M. “Fishcide” Effect of the Fungicide Difenoconazole in Freshwater Fish (Labeo rohita): A Multi-Endpoint Approach.Sci. Total Environ.2023,857, 159425. [Google Scholar] [CrossRef]
- Sadeghi, M.S.; Peery, S. Evaluation of Toxicity and Lethal Concentration (LC50) of Silver and Selenium Nanoparticle in Different Life Stages of the Fish Tenualosa Ilish (Hamilton 1822).Oceanogr. Fish Open Access J.2018,7, 120–128. [Google Scholar] [CrossRef]
- Chukwuka, A.V.; Saha, S.; Mukherjee, D.; Banerjee, P.; Dhara, K.; Saha, N.C. Deltamethrin-Induced Respiratory and Behavioral Effects and Adverse Outcome Pathways (AOP) in Short-Term Exposed Mozambique Tilapia, Oreochromis Mossambicus.Toxics2022,10, 701. [Google Scholar] [CrossRef]
- Saha, S.; Chandra Saha, N.; Chatterjee, A.; Banerjee, P.; Garai, P.; Sharma, P.; Patnaik, L.; Nayak, S.; Dhara, K.; Chukwuka, A.V.; et al. Integrated Multi-Biomarker Responses in Mozambique Tilapia, Oreochromis Mossambicus under Acute and Chronic Diazinon® Exposures.Chem. Ecol.2023,39, 235–255. [Google Scholar] [CrossRef]
- Walum, E. Acute Oral Toxicity.Environ. Health Perspect.1998,106, 497. [Google Scholar] [CrossRef]
- Chinedu, E.; Arome, D.; Ameh, F.S. A New Method for Determining Acute Toxicity in Animal Models.Toxicol. Int.2013,20, 224. [Google Scholar] [CrossRef] [PubMed]
- Bakr, R.F.A.; Kamel, A.M.; Sheba, S.A.; Abdel-Haleem, D.R. A Mathematical Model for Estimating the LC50 (or LD50) among an Insect Life Cycle.Egypt. Acad. J. Biol. Sci. A Entomol.2010,3, 75–81. [Google Scholar] [CrossRef]
- López, O.; Hernández, A.F.; Rodrigo, L.; Gil, F.; Pena, G.; Serrano, J.L.; Parrón, T.; Villanueva, E.; Pla, A. Changes in Antioxidant Enzymes in Humans with Long-Term Exposure to Pesticides.Toxicol. Lett.2007,171, 146–153. [Google Scholar] [CrossRef]
- Diken, M.E.; Doğan, S.; Doğan, M.; Turhan, Y. In Vitro Effects of Some Pesticides on Glutathione-s Transferase Activity.Fresenius Environ. Bull.2017,26, 6634. [Google Scholar]
- Faggio, C.; Pagano, M.; Alampi, R.; Vazzana, I.; Felice, M.R. Cytotoxicity, Haemolymphatic Parameters, and Oxidative Stress Following Exposure to Sub-Lethal Concentrations of Quaternium-15 in Mytilus Galloprovincialis.Aquat. Toxicol.2016,180, 258–265. [Google Scholar] [CrossRef]
- Hajam, M.E.; Plavan, G.I.; Kandri, N.I.; Dumitru, G.; Nicoara, M.N.; Zerouale, A.; Faggio, C. Evaluation of Softwood and Hardwood Sawmill Wastes Impact on the Common Carp “Cyprinus carpio” and Its Aquatic Environment: An Oxidative Stress Study.Environ. Toxicol. Pharmacol.2020,75, 103327. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, H.; Sung, G.H.; Seo, S.A.; Kim, K.I.; Kang, Y.J.; Kang, J.C. Toxic Effects on Hematological Parameters and Oxidative Stress in Juvenile Olive Flounder, Paralichthys Olivaceus Exposed to Waterborne Zinc.Aquac. Rep.2019,15, 100225. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.J.; Kim, K.W.; Hwang, I.K.; Kim, D.H.; Oh, C.W.; Lee, J.S.; Kang, J.C. Growth Performance, Oxidative Stress, and Non-Specific Immune Responses in Juvenile Sablefish, Anoplopoma Fimbria, by Changes of Water Temperature and Salinity.Fish Physiol. Biochem.2017,43, 1421–1431. [Google Scholar] [CrossRef]
- Cao, Q.; Steinman, A.D.; Yao, L.; Xie, L. Toxicological and Biochemical Responses of the EarthwormEisenia fetida to Cyanobacteria Toxins.Sci. Rep.2017,7, 15954. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Bhattacharya, R.; Chatterjee, S.; Saha, N.C. Acute Toxicity of Organophosphate Pesticide Profenofos, Pyrethroid Pesticide λ Cyhalothrin and Biopesticide Azadirachtin and Their Sublethal Effects on Growth and Oxidative Stress Enzymes in Benthic Oligochaete Worm, Tubifex Tubifex.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2021,242, 108943. [Google Scholar] [CrossRef]
- Van der Oost, R.; Beyer, J.; Vermeulen, N.P.E. Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review.Environ. Toxicol. Pharmacol.2003,13, 57–149. [Google Scholar] [CrossRef] [PubMed]
- Bagnyukova, T.V.; Vasylkiv, O.Y.; Storey, K.B.; Lushchak, V.I. Catalase Inhibition by Amino Triazole Induces Oxidative Stress in Goldfish Brain.Brain Res.2005,1052, 180–186. [Google Scholar] [CrossRef]
- Livingstone, D.R. The Fate of Organic Xenobiotics in Aquatic Ecosystems: Quantitative and Qualitative Differences in Biotransformation by Invertebrates and Fish.Comp. Biochem. Physiol. A Mol. Integr. Physiol.1998,120, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Destro, A.L.F.; Silva, S.B.; Gregório, K.P.; de Oliveira, J.M.; Lozi, A.A.; Zuanon, J.A.S.; Salaro, A.L.; da Matta, S.L.P.; Vilela, R.G.; Freitas, M.B. Effects of Subchronic Exposure to Environmentally Relevant Concentrations of the Herbicide Atrazine in the Neotropical Fish Astyanax Altiparanae.Ecotoxicol. Environ. Saf.2021,208, 111601. [Google Scholar] [CrossRef]
- Maity, S.; Banerjee, R.; Goswami, P.; Chakrabarti, M.; Mukherjee, A. Oxidative Stress Responses of Two Different Ecophysiological Species of Earthworms (Eutyphoeus waltoni andEisenia fetida) Exposed to Cd-Contaminated Soil.Chemosphere2018,203, 307–317. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, C.; Wang, J.; Liang, Y.; Gong, X.; You, L.; Ji, C.; Wang, S.L.; Wang, C.; Chi, X. Difenoconazole Induces Cardiovascular Toxicity through Oxidative Stress-Mediated Apoptosis in Early Life Stages of Zebrafish (Danio rerio).Ecotoxicol. Environ. Saf.2021,216, 112227. [Google Scholar] [CrossRef]
- Mosleh, Y.Y.; Paris-Palacios, S.; Ahmed, M.T.; Mahmoud, F.M.; Osman, M.A.; Biagianti-Risbourg, S. Effects of Chitosan on Oxidative Stress and Metallothioneins in Aquatic Worm Tubifex Tubifex (Oligochaeta, Tubificidae).Chemosphere2007,67, 167–175. [Google Scholar] [CrossRef]
- Faheem, M.; Lone, K.P. Oxidative Stress and Histopathologic Biomarkers of Exposure to Bisphenol-A in the Freshwater Fish,Ctenopharyngodon idella.Braz. J. Pharm. Sci.2018,53, 17003. [Google Scholar] [CrossRef]
- Huggett, R.J.; Klmerle, R.A.; Mehrle, P.M.; Dickson, K.L.; Fava, J.A.; McCarthy, J.F.; Parrish, R.; Dorn, P.B.; McFarland, V.; Lahvis, G. Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. InBiomarkers; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Sharbidre, A.A.; Metkari, V.; Patode, P. Effect of Diazinon on Acetylcholinesterase Activity and Lipid Peroxidation ofPoecilia reticulata.Res. J. Environ. Toxicol.2011,5, 152–161. [Google Scholar] [CrossRef]
- Shukla, S.; Jhamtani, R.C.; Dahiya, M.S.; Agarwal, R. Oxidative Injury Caused by Individual and Combined Exposure of Neonicotinoid, Organophosphate and Herbicide in Zebrafish.Toxicol. Rep.2017,4, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, S.; Mitroi, D.N.; Stan, M.S.; Staicu, C.A.; Cicirma, M.; Lucaciu, I.E.; Nita-Lazar, M.; Dinischiotu, A. Evaluation of Sub-Lethal Toxicity of Benzethonium Chloride inCyprinus carpio Liver.Appl. Sci.2020,10, 8485. [Google Scholar] [CrossRef]
- Song, P.; Gao, J.; Li, X.; Zhang, C.; Zhu, L.; Wang, J.; Wang, J. Phthalate Induced Oxidative Stress and DNA Damage in Earthworms (Eisenia fetida).Environ. Int.2019,129, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, V.; Aydoğan Kiliç, G. Antioxidative Responses in Tubifex Tubifex against Thallium Induced Oxidative Stress.Anadolu Univ. J. Sci. Technol. –C Life Sci. Biotechnol.2017,6, 75–85. [Google Scholar] [CrossRef]
- Sun, X.; Xia, B.; Cui, Z.; Chen, B. Integrated Biomarker Responses in the Hepatopancreas of the Bivalve, Mactra Veneriformis (Reeve, 1854) from the Yellow River Estuary, China.Indian J. Geo-Mar. Sci.2016,45, 388–398. [Google Scholar]
- Ferreira, N.G.C.; Morgado, R.; Santos, M.J.G.; Soares, A.M.V.M.; Loureiro, S. Biomarkers and Energy Reserves in the Isopod Porcellionides Pruinosus: The Effects of Long-Term Exposure to Dimethoate.Sci. Total Environ.2015,502, 91–102. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Chatterjee, A.; Chatterjee, S.; Saha, N.C. Oxidative Stress in Benthic Oligochaete Worm, Tubifex Tubifex Induced by Sublethal Exposure to a Cationic Surfactant Cetylpyridinium Chloride and an Anionic Surfactant Sodium Dodecyl Sulfate.Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.2021,240, 108906. [Google Scholar] [CrossRef]
- Chang, T.; Wei, B.; Wang, Q.; He, Y.; Wang, C. Toxicity Assessment of Municipal Sewage Treatment Plant Effluent by an Integrated Biomarker Response in the Liver of Crucian Carp (Carassius auratus).Environ. Sci. Pollut. Res. Int.2020,27, 7280–7288. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Velisek, J.; Grabic, R.; Li, P.; Kolarova, J.; Randak, T. Use of Hematological and Plasma Biochemical Parameters to Assess the Chronic Effects of a Fungicide Propiconazole on a Freshwater Teleost.Chemosphere2011,83, 572–578. [Google Scholar] [CrossRef] [PubMed]
Lethal Concentration | Concentration with 95% Confidence Intervals (mg/L) | ||||
---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||
Tubifex tubifex | LC10 | 1.884 [1.653–2.146] | 1.755 [1.545–1.994] | 1.752 [1.549–1.983] | 1.421 [1.227–1.645] |
LC20 | 2.320 [2.036–2.643] | 2.132 [1.876–2.422] | 2.106 [1.862–2.383] | 1.767 [1.525–2.046] | |
LC30 | 2.696 [2.367–3.071] | 2.453 [2.159–2.787] | 2.405 [2.125–2.721] | 2.067 [1.785–2.394] | |
LC40 | 3.065 [2.691–3.492] | 2.766 [2.434–3.142] | 2.693 [2.380–3.047] | 2.364 [2.041–2.738] | |
LC50 | 3.456 [3.034–3.937] | 3.094 [2.723–3.515] | 2.994 [2.646–3.387] | 2.680 [2.314–3.104] |
Time (Day) | LC50 (95% CI) | LC10 (95% CI) |
---|---|---|
1 | 3.900 (3.473–4.508) | 2.155 (1.895–2.291) |
2 | 2.865 (2.626–3.153) | 1.996 (1.708–2.118) |
3 | 2.522 (2.294–2.726) | 1.943 (1.644–2.064) |
4 | 2.351 (2.113–2.519) | 1.917 (1.611–2.037) |
7 | 2.131 (1.868–2.262) | 1.884 (1.570–2.003) |
21 | 1.936 (1.635–2.057) | 1.854 (1.533–1.975) |
50 | 1.880 (1.565–2.000) | 1.845 (1.523–1.967) |
100 | 1.860 (1.540–1.981) | 1.842 (1.519–1.964) |
Test Animal | Toxicity Factor (TF) | |||
---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | |
Tubifex tubifex | 1.000 | 1.117 | 1.154 | 1.289 |
Biomarker | Control | T1 (0.268 mg/L) | T2 (0.536 mg/L) |
---|---|---|---|
SOD | 0.00 | 1.95 | 4.82 |
CAT | 0.00 | 1.03 | 4.69 |
GST | 0.00 | 3.10 | 1.62 |
MDA | 0.00 | 1.39 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Saha, S.; Pastorino, P.; Saha, N.C. Effects of Difenoconazole onTubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis.Biology2025,14, 302. https://doi.org/10.3390/biology14030302
Saha S, Saha S, Pastorino P, Saha NC. Effects of Difenoconazole onTubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis.Biology. 2025; 14(3):302. https://doi.org/10.3390/biology14030302
Chicago/Turabian StyleSaha, Subhajit, Shubhajit Saha, Paolo Pastorino, and Nimai Chandra Saha. 2025. "Effects of Difenoconazole onTubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis"Biology 14, no. 3: 302. https://doi.org/10.3390/biology14030302
APA StyleSaha, S., Saha, S., Pastorino, P., & Saha, N. C. (2025). Effects of Difenoconazole onTubifex tubifex: Antioxidant Activity, Insights from GUTS Predictions, and Multi-Biomarker Analysis.Biology,14(3), 302. https://doi.org/10.3390/biology14030302