Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases
Simple Summary
Abstract
1. Introduction
2. Summary of the Tryptophan Metabolism
2.1. Kyn Pathway
2.2. 5-HT Pathway
3. TDO2, the Key Rate-Limiting Enzyme in the Tryptophan Metabolic Pathway
3.1. The Evolution of TDO2
3.2. The Structure of TDO2
3.3. The Process of TDO2 Catalyzing the Degradation of Tryptophan
4. The Role of TDO2 in Digestive System Diseases
4.1. TDO2 and Malignant Digestive System Diseases
4.1.1. TDO2 and Oral Squamous Cell Carcinoma
4.1.2. TDO2 and Esophageal Cancer
4.1.3. TDO2 and Primary Liver Cancer
4.1.4. TDO2 and Pancreatic Cancer
4.1.5. TDO2 and Gastric Cancer
4.1.6. TDO2 and Colorectal Cancer
Disease Type | Expression of TDO2 | Sample | Functions | Mechanisms | Ref. |
---|---|---|---|---|---|
Oral squamous cell carcinoma | TDO2 ↑ | Patient tissue TCGA-HNSC dataset | [72] | ||
Oral squamous cell carcinoma | TDO2 ↑ | Patient tissue | Possess the ability to undergo chemotaxis toward T cells but induce the transformation of CD4 T cells into Tregs and cause CD8 T cell dysfunction | [73] | |
Oral squamous cell carcinoma | TDO2 ↑ | Patient tissue HNSCC cell line | Decrease the number and activity of T cells, inhibit antitumor immunity in OSCC | [74] | |
Esophageal cancer | TDO2 ↑ | Patient tissue | Associated with tumor stage, recurrence status, and poor outcome | [78] | |
Esophageal cancer | TDO2 ↑ | Patient tissue ESCC cell lines Mouse tissue | Promote tumor cell proliferation, migration, and colony formation | TDO2/AKT/GSK3β/IL-8 | [82] |
Liver cancer | TDO2 ↑ | Patient tissue liver cancer cell lines | Correlated with the poor prognosis, promote tumor cell proliferation | TDO2/Kyn/AhR/IL-6, STAT3 and TIM4/NF-κB | [86] |
Liver cancer | TDO2 ↑ | Patient tissue, liver cancer cell lines, mouse tissue | Correlated with poor prognosis, promote cancer cell migration and invasion | TDO2/Wnt5a | [87] |
Liver cancer | TDO2 ↑ | Patient tissue, liver cancer cell lines, orthotopic mouse tissue | Promote the EMT of hepatocellular carcinoma, participate in the metastasis and invasion of HCC | TDO2/Kyn/AhR | [90] |
Liver cancer | TDO2 ↑ | HCCLM3 cell lines, mouse tissue, | Promote tumor cell proliferation, metastasis, and invasion | miR-126-5p/TDO2 PI3K/AKT and Wnt | [93] |
Liver cancer | TDO2 ↑ | Patient tissue | Correlated with poor prognosis and promote cell migration, invasion, and proliferation | CircZNF566/miR-4738-3p/TDO2 | [95] |
Liver cancer | TDO2 ↑ | deCODE study, FinnGen Consortium | Used as diagnostic indicators of liver cancer | [106] | |
Liver cancer | TDO2 ↓ | GEO dataset | [107] | ||
Liver cancer | TDO2 ↓ | Patient tissue | Correlated with a poor prognosis and adverse clinical outcomes | TDO2/P21, P27 | [108] |
Liver cancer | TDO2 ↓ | GEO, patient tissue cDNA, HCC cell line | Inhibit cell proliferation and migration and promote apoptosis of HCC | SNHG17/ TDO2 | [112] |
Pancreatic cancer | TDO2 ↑ | KPIC cells Mouse tissue | Modulate the migration and invasion of PC cells | TDO2/Kyn/ AhR | [114] |
Pancreatic cancer | TDO2 ↑ | GEO | [117] | ||
Pancreatic cancer | TDO2 ↑ | Patient tissue, mouse tissue | Promote the catalysis of tryptophan to kynurenine and PDAC development | PVT1/p-TDO2 | [122] |
Gastric cancer | TDO2 ↑ | Patient tissue | [128] | ||
Gastric cancer | TDO2 ↑ | GEO | Correlated with both progressive disease and clinical outcome | [129] | |
Colorectal cancer | TDO2 ↑ | Patient tissue | Correlated with poor prognosis | [134] | |
Colorectal cancer | TDO2 ↑ | Patient serum, patient tissue | Correlated with poor prognosis | [135] | |
Colorectal cancer | TDO2 ↑ | Patient tissue, CRC cell lines | Associated with the tumor clinical stage in CRC and a poor outcome, promote the proliferation, migration, and invasion abilities as well as colony formation abilitie of cells | TDO2/KYNU/AhR | [136] |
Colorectal cancer | TDO2 ↑ | Patient tissue, mouse tissue, CRC cell lines | Increase glycolysis to drive anabolic cancer cell growth | TCF4/TDO2/AhR/CXCL5 | [131] |
Colon cancer (liver metastasis) | TDO2 ↑ | Patient tissue, mouse tissue, CRC cell lines | Promote liver metastasis of colon cancer, maintain csc characteristics | TDO2/AhR/ LGR5 (PD-L1) | [141] |
4.2. TDO2 and Benign Digestive System Diseases
4.2.1. TDO2 and Periodontitis
4.2.2. TDO2 and Viral Hepatitis
4.2.3. TDO2 and Nonalcoholic Fatty Liver Disease
4.2.4. TDO2 and Alcohol-Related Liver Disease
4.2.5. TDO2 and Inflammatory Bowel Disease
Disease Type | Expression of TDO2 | Sample | Functions | Mechanisms | Ref. |
---|---|---|---|---|---|
Periodontitis | TDO2 ↑ | GEO | Involved in interleukin-10 signaling and inflammatory response | [64] | |
Viral hepatitis | TDO2 ↑ | Mouse tissue Mouse serum primary murine hepatocytes | Correlated with immune responses and viral replication | IFN-I /TDO2 | [66] |
Nonalcoholic fatty liver disease | TDO2 ↑ | Mouse tissue primary murine hepatocytes | Strengthen hepatic lipid deposition and liver fibrosis | TDO2/NF-κB | [67] |
Alcohol-related liver disease | TDO2 ↑ | Patient tissue, mouse tissue, mouse hepatoma cells | Disrupts NAD de novo synthesis with accumulation of Kyn, Kyna, and AA | PPARα/TDO2 | [68] |
Ulcerative colitis | TDO2 ↑ | patient tissue | Presence of initial activity and then prolong remission for more than 5 years | [65] | |
Crohn’s disease (CD) and ulcerative colitis | TDO2 ↑ | Gene Expression Omnibus (GEO) dataset | Maintain a high level of NAD-dependent proinflammatory signaling | [158] | |
Acute colitis | TDO2 ↑ | mouse tissue, mouse serum | Affect Trp metabolism | Trp/KynKyna | [159] |
5. Application of Targeting TDO2 in Digestive System Disease Treatment
5.1. The Specific Inhibitors of TDO2
5.1.1. TDO2 Specific Inhibitors Derived from Chemical Synthesis
5.1.2. TDO2 Specific Inhibitors Derived from Natural Products
5.2. The Dual Inhibitors of IDO1/TDO2
5.2.1. Dual Inhibitors of IDO1/TDO2 Derived from Chemical Synthesis
5.2.2. Dual Inhibitors of IDO1/TDO2 Derived from Natural Products
5.2.3. Dual Inhibitors of IDO1/TDO2 Derived from Artificial Intelligence
Targeted Agents | Object | Molecules Targeted | Outcomes | Ref. |
---|---|---|---|---|
680C91 | Primary normal human lung fibroblasts (NHLFs), CL1-5 human lung adenocarcinoma cell lines, and human lung cancer cells A549, mouse | TDO2 | Improved T-cell response and DC function and decreased tumor metastasis | [162] |
LM10 | Mastocytoma P815, mouse | TDO2 | Prevent the growth of P815 tumor cells, show obvious signs of toxicity to mice | [164] |
Aminoisoxazoles | Rat, dog, and human whole blood, SW48 cells, A172 cells | TDO2 | Inhibit the activity of TDO2 | [165] |
PF045102/ EOS200809 | Colon carcinoma line CT26, MC38, mouse | TDO2 | Improve the efficacy of checkpoint inhibitors | [166] |
EPL-1410 | Colon carcinoma line CT26, melanoma line B16F10, mouse | IDO1/TDO2 | Reduce the levels of biomarkers (Kyn/Trp) in plasma, tumor-draining lymph nodes, and tumor tissue without eliciting any treatment-related adverse clinical symptoms or weight loss | [170] |
AT-0174 | Human non-small-cell lung cancer cells and mouse Lewis lung cells, mouse | IDO1/TDO2 | Enhance antitumor immunity in platinum-resistant non-small-cell lung cancer | [29] |
AT-0174 | Glioma cell line GL261, mouse | IDO1/TDO2 | Synergizes with temozolomide to improve survival in an orthotopic mouse model of glioblastoma | [171] |
RY103 | Glioma cell lines U87MG, U251, A172, and GL261, patient samples | IDO1/TDO2 | Inhibit the migration, invasion, and growth of glioma cells | [172] |
RY103 | Pancreatic cancer cell lines KPIC, PANC1, and Pan02, mouse | IDO1/TDO2 | Inhibit the migration and invasion of pancreatic cancer cells | [114] |
RY103 | Glioma cell line GL261, U87MG, U251, U251, mouse, patient samples | IDO1/TDO2 | Suppress Trp-GCN2-mediated angiogenesis and counter immunosuppression in glioblastoma | [173] |
M4112 | Patient samples, mice with CT26-KSA tumors | IDO1/TDO2 | Decrease the kynurenine: tryptophan ratio in the liver and tumor | [174] |
Sodium tanshinone IIA sulfonate (STS) | Colon carcinoma line CT26, mouse | IDO1/TDO2 | Inhibit tumor growth, combined therapy with STS plus anti-PD1 is more effective | [30] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Togashi, K. Applications of artificial intelligence to endoscopy practice: The view from Japan Digestive Disease Week 2018.Dig. Endosc.2019,31, 270–272. [Google Scholar] [CrossRef]
- Wang, B.; Ding, D.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Chang, H.; Gao, Z.; Yu, Z. The Role of Protein Arginine Methyltransferases in Pathogenesis and Treatment of Digestive System Carcinoma.Mol. Cancer Ther.2023,22, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Fassan, M.; Scarpa, A.; Remo, A.; De Maglio, G.; Troncone, G.; Marchetti, A.; Doglioni, C.; Ingravallo, G.; Perrone, G.; Parente, P.; et al. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice.Pathologica2020,112, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xie, C.; Ren, K.; Xu, X. Prognostic Value of the Naples Prognostic Score in Patients with Gastrointestinal Cancers: A Meta-Analysis.Nutr. Cancer2023,75, 1520–1530. [Google Scholar] [CrossRef]
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Jensen, E.T.; Kim, H.P.; Egberg, M.D.; Lund, J.L.; Moon, A.M.; Pate, V.; Barnes, E.L.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2021.Gastroenterology2022,162, 621–644. [Google Scholar] [CrossRef] [PubMed]
- Jardim, S.R.; de Souza, L.M.P.; de Souza, H.S.P. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress?Int. J. Environ. Res. Public Health2023,20, 3640. [Google Scholar] [CrossRef]
- Huang, J.; Lucero-Prisno, D.E., 3rd; Zhang, L.; Xu, W.; Wong, S.H.; Ng, S.C.; Wong, M.C.S. Updated epidemiology of gastrointestinal cancers in East Asia.Nat. Rev. Gastroenterol. Hepatol.2023,20, 271–287. [Google Scholar] [CrossRef]
- Loras, C. Endoscopic Stenting for Inflammatory Bowel Disease Strictures.Gastrointest. Endosc. Clin. N. Am.2022,32, 699–717. [Google Scholar] [CrossRef]
- Vallianou, N.; Christodoulatos, G.S.; Karampela, I.; Tsilingiris, D.; Magkos, F.; Stratigou, T.; Kounatidis, D.; Dalamaga, M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives.Biomolecules2021,12, 56. [Google Scholar] [CrossRef]
- Cha, B.; Noh, J.H.; Ahn, J.Y.; Lee, J.S.; Kim, G.H.; Na, H.K.; Jung, K.W.; Lee, J.H.; Kim, D.H.; Choi, K.D.; et al. Clinical Outcomes of Patients with Benign Peptic Ulcer Bleeding After an Emergency Endoscopy Based on Patient Location.Dig. Dis. Sci.2023,68, 1539–1550. [Google Scholar] [CrossRef]
- Gao, H.; Zheng, S.; Yuan, X.; Xie, J.; Xu, L. Causal association between inflammatory bowel disease and 32 site-specific extracolonic cancers: A Mendelian randomization study.BMC Med.2023,21, 389. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease.Lancet2021,397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Issever, K.; Kuloglu, E.; Sengul, D.; Muhtaroglu, A.; Dulger, A.C. Helicobacter Pylori and Celiac Disease Antibody Positivity Have a Higher Prevalence in Patients with Distal Gastrectomy: A Cross-Sectional Retrospective Study.Cureus2023,15, e42976. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Yue, L.; Shi, J.; Shao, M.; Wu, T. Role of IDO and TDO in Cancers and Related Diseases and the Therapeutic Implications.J. Cancer2019,10, 2771–2782. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses.Trends Immunol.2013,34, 137–143. [Google Scholar] [CrossRef]
- Werner, E.R.; Bitterlich, G.; Fuchs, D.; Hausen, A.; Reibnegger, G.; Szabo, G.; Dierich, M.P.; Wachter, H. Human macrophages degrade tryptophan upon induction by interferon-gamma.Life Sci.1987,41, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Capece, L.; Arrar, M.; Roitberg, A.E.; Yeh, S.R.; Marti, M.A.; Estrin, D.A. Substrate stereo-specificity in tryptophan dioxygenase and indoleamine 2,3-dioxygenase.Proteins2010,78, 2961–2972. [Google Scholar] [CrossRef]
- Théate, I.; van Baren, N.; Pilotte, L.; Moulin, P.; Larrieu, P.; Renauld, J.C.; Hervé, C.; Gutierrez-Roelens, I.; Marbaix, E.; Sempoux, C.; et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues.Cancer Immunol. Res.2015,3, 161–172. [Google Scholar] [CrossRef]
- Kim, J.W.; Nam, K.H.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, S.H.; Chang, H.; Lee, J.O.; Kim, Y.J.; Lee, H.S.; et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer.Gastric Cancer2016,19, 42–52. [Google Scholar] [CrossRef]
- Chevolet, I.; Speeckaert, R.; Haspeslagh, M.; Neyns, B.; Krüse, V.; Schreuer, M.; Van Gele, M.; Van Geel, N.; Brochez, L. Peritumoral indoleamine 2,3-dioxygenase expression in melanoma: An early marker of resistance to immune control?Br. J. Dermatol.2014,171, 987–995. [Google Scholar] [CrossRef]
- Vanderstraeten, A.; Luyten, C.; Verbist, G.; Tuyaerts, S.; Amant, F. Mapping the immunosuppressive environment in uterine tumors: Implications for immunotherapy.Cancer Immunol. Immunother.2014,63, 545–557. [Google Scholar] [CrossRef]
- Ragaini, S.; Wagner, S.; Marconi, G.; Parisi, S.; Sartor, C.; Nanni, J.; Cristiano, G.; Talami, A.; Olivi, M.; Ocadlikova, D.; et al. An IDO1-related immune gene signature predicts overall survival in acute myeloid leukemia.Blood Adv.2022,6, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Lu, Y.; Zhang, X.; Zhao, C.; Wang, J.; Guan, Q.; Feng, Y.; Gao, M.; Yu, J.; et al. CD58 alterations govern antitumor immune responses by inducing PD-L1 and IDO in diffuse large B-cell lymphoma.Cancer Res.2024,84, 2123–2140. [Google Scholar] [CrossRef]
- Puccetti, P.; Fallarino, F.; Italiano, A.; Soubeyran, I.; MacGrogan, G.; Debled, M.; Velasco, V.; Bodet, D.; Eimer, S.; Veldhoen, M.; et al. Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers.PLoS ONE2015,10, e0122046. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.; Yin, Z.; Zheng, X.; Yan, C.; Xu, K.; Eunice, F.Y.; Gao, Y. Potential of Targeting TDO2 as the Lung Adenocarcinoma Treatment.J. Proteome Res.2024,23, 1341–1350. [Google Scholar] [CrossRef]
- Pacheco, J.H.L.; Elizondo, G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment.Biochem. Pharmacol.2023,217, 115804. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Wang, Y.; Wang, Y.; Cheng, M.; Dong, W.; Wei, W.; Zhao, Y.; Chang, Y. TDO2-overexpressed Dendritic Cells Possess Tolerogenicity and Ameliorate Collagen-induced Arthritis by Modulating the Th17/Regulatory T Cell Balance.J. Immunol.2024,212, 941–950. [Google Scholar] [CrossRef]
- Crump, L.S.; Floyd, J.L.; Kuo, L.W.; Post, M.D.; Bickerdike, M.; O’Neill, K.; Sompel, K.; Jordan, K.R.; Corr, B.R.; Marjon, N.; et al. Targeting Tryptophan Catabolism in Ovarian Cancer to Attenuate Macrophage Infiltration and PD-L1 Expression.Cancer Res. Commun.2024,4, 822–833. [Google Scholar] [CrossRef]
- Wu, C.; Spector, S.A.; Theodoropoulos, G.; Nguyen, D.J.M.; Kim, E.Y.; Garcia, A.; Savaraj, N.; Lim, D.C.; Paul, A.; Feun, L.G.; et al. Dual inhibition of IDO1/TDO2 enhances anti-tumor immunity in platinum-resistant non-small cell lung cancer.Cancer Metab.2023,11, 7. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Liu, D.; Luo, Q.; Du, P.; Zhang, H.; Wu, W. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice.Front. Pharmacol.2022,13, 870848. [Google Scholar] [CrossRef]
- Thackray, S.J.; Mowat, C.G.; Chapman, S.K. Exploring the mechanism of tryptophan 2,3-dioxygenase.Biochem. Soc. Trans.2008,36, 1120–1123. [Google Scholar] [CrossRef]
- Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond.Nat. Rev. Drug Discov.2019,18, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Opitz, C.A.; Somarribas Patterson, L.F.; Mohapatra, S.R.; Dewi, D.L.; Sadik, A.; Platten, M.; Trump, S. The therapeutic potential of targeting tryptophan catabolism in cancer.Br. J. Cancer2020,122, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J. The kynurenine pathway: A finger in every pie.Mol. Psychiatry2020,25, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.N.; Tain, Y.L. Developmental Programming and Reprogramming of Hypertension and Kidney Disease: Impact of Tryptophan Metabolism.Int. J. Mol. Sci.2020,21, 8705. [Google Scholar] [CrossRef]
- Zulpaite, R.; Miknevicius, P.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation.Int. J. Mol. Sci.2021,22, 1921. [Google Scholar] [CrossRef]
- Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease.Adv. Clin. Chem.2020,95, 165–218. [Google Scholar] [CrossRef]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review.Front. Endocrinol.2019,10, 158. [Google Scholar] [CrossRef]
- Correia, A.S.; Vale, N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways.Int. J. Mol. Sci.2022,23, 8493. [Google Scholar] [CrossRef]
- Kotake, Y.; Masayama, I. The intermediary metabolism of tryptophan. XVIII. The mechanism of formation of kynurenine from tryptophan.Z. Physiol. Chem.1936,243, 237–244. [Google Scholar] [CrossRef]
- Searles, L.L.; Voelker, R.A. Molecular characterization of the Drosophila vermilion locus and its suppressible alleles.Proc. Natl. Acad. Sci. USA1986,83, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Lee, I.S.; Tsubaki, M.; Kido, R. Tryptophan 2,3-dioxygenase in Saccharomyces cerevisiae.Can. J. Microbiol.1995,41, 19–26. [Google Scholar] [CrossRef]
- Ishimura, Y.; Nozaki, M.; Hayaishi, O. The oxygenated form of L-tryptophan 2,3-dioxygenase as reaction intermediate.J. Biol. Chem.1970,245, 3593–3602. [Google Scholar] [CrossRef]
- Matsumura, M.; Osada, K.; Aiba, S. L-tryptophan 2,3-dioxygenase of a moderate thermophile, Bacillus brevis. Purification, properties and a substrate-mediated stabilization of the quaternary structure.Biochim. Biophys. Acta1984,786, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ball, H.J.; Jusof, F.F.; Bakmiwewa, S.M.; Hunt, N.H.; Yuasa, H.J. Tryptophan-catabolizing enzymes—Party of three.Front. Immunol.2014,5, 485. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Muhleman, D.; Dietz, G.; Sherman, M.; Forest, G.L. Sequence of human tryptophan 2,3-dioxygenase (TDO2): Presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat.Genomics1995,29, 390–396. [Google Scholar] [CrossRef]
- Dang, Y.; Dale, W.E.; Brown, O.R. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway.Free Radic. Biol. Med.2000,28, 615–624. [Google Scholar] [CrossRef]
- Ishiguro, I.; Naito, J.; Saito, K.; Nagamura, Y. Skin L-tryptophan-2,3-dioxygenase and rat hair growth.FEBS Lett.1993,329, 178–182. [Google Scholar] [CrossRef]
- Haber, R.; Bessette, D.; Hulihan-Giblin, B.; Durcan, M.J.; Goldman, D. Identification of tryptophan 2,3-dioxygenase RNA in rodent brain.J. Neurochem.1993,60, 1159–1162. [Google Scholar] [CrossRef]
- Tatsumi, K.; Higuchi, T.; Fujiwara, H.; Nakayama, T.; Egawa, H.; Itoh, K.; Fujii, S.; Fujita, J. Induction of tryptophan 2,3-dioxygenase in the mouse endometrium during implantation.Biochem. Biophys. Res. Commun.2000,274, 166–170. [Google Scholar] [CrossRef]
- Li, J.S.; Han, Q.; Fang, J.; Rizzi, M.; James, A.A.; Li, J. Biochemical mechanisms leading to tryptophan 2, 3-dioxygenase activation.Arch. Insect Biochem. Physiol. Publ. Collab. Entomol. Soc. Am.2007,64, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.P.; Pan, Z.Z.; Luo, D.Y. TDO as a therapeutic target in brain diseases.Metab. Brain Dis.2016,31, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Wu, D.; Gu, J.; Ouyang, S.; Ding, W.; Liu, Z.-J. Structural and functional analyses of human tryptophan 2,3-dioxygenase.Proteins Struct. Funct. Bioinform.2014,82, 3210–3216. [Google Scholar] [CrossRef]
- Lewis-Ballester, A.; Forouhar, F.; Kim, S.-M.; Lew, S.; Wang, Y.; Karkashon, S.; Seetharaman, J.; Batabyal, D.; Chiang, B.-Y.; Hussain, M. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2, 3-dioxygenase.Sci. Rep.2016,6, 35169. [Google Scholar] [CrossRef]
- Lewis-Ballester, A.; Batabyal, D.; Egawa, T.; Lu, C.; Lin, Y.; Marti, M.A.; Capece, L.; Estrin, D.A.; Yeh, S.R. Evidence for a ferryl intermediate in a heme-based dioxygenase.Proc. Natl. Acad. Sci. USA2009,106, 17371–17376. [Google Scholar] [CrossRef]
- Chung, L.W.; Li, X.; Sugimoto, H.; Shiro, Y.; Morokuma, K. ONIOM study on a missing piece in our understanding of heme chemistry: Bacterial tryptophan 2,3-dioxygenase with dual oxidants.J. Am. Chem. Soc.2010,132, 11993–12005. [Google Scholar] [CrossRef] [PubMed]
- Capece, L.; Lewis-Ballester, A.; Yeh, S.R.; Estrin, D.A.; Marti, M.A. Complete reaction mechanism of indoleamine 2,3-dioxygenase as revealed by QM/MM simulations.J. Phys. Chem. B2012,116, 1401–1413. [Google Scholar] [CrossRef]
- Munn, D.H.; Sharma, M.D.; Baban, B.; Harding, H.P.; Zhang, Y.; Ron, D.; Mellor, A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase.Immunity2005,22, 633–642. [Google Scholar] [CrossRef]
- Jasperson, L.K.; Bucher, C.; Panoskaltsis-Mortari, A.; Taylor, P.A.; Mellor, A.L.; Munn, D.H.; Blazar, B.R. Indoleamine 2, 3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality.Blood J. Am. Soc. Hematol.2008,111, 3257–3265. [Google Scholar] [CrossRef]
- Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells.J. Immunol.2010,185, 3190–3198. [Google Scholar] [CrossRef]
- Denison, M.S.; Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals.Annu. Rev. Pharmacol. Toxicol.2003,43, 309–334. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.T.; Deng, Y.N.; Yi, H.M.; Wang, G.Y.; Fu, B.S.; Chen, W.J.; Liu, W.; Tai, Y.; Peng, Y.W.; Zhang, Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation.Oncogenesis2016,5, e198. [Google Scholar] [CrossRef]
- Do, M.T.; Kim, H.G.; Tran, T.T.; Khanal, T.; Choi, J.H.; Chung, Y.C.; Jeong, T.C.; Jeong, H.G. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.Toxicol. Appl. Pharmacol.2014,280, 138–148. [Google Scholar] [CrossRef]
- Zhan, C.; Zhou, Z.; Huang, Y.; Huang, S.; Lin, Z.; He, F.; Song, Z. Exploration of the shared gene signatures and molecular mechanisms between periodontitis and inflammatory bowel disease: Evidence from transcriptome data.Gastroenterol. Rep.2023,11, goad041. [Google Scholar] [CrossRef]
- Camarillo, G.F.; Goyon, E.I.; Zuñiga, R.B.; Salas, L.A.S.; Escárcega, A.E.P.; Yamamoto-Furusho, J.K. Gene Expression Profiling of Mediators Associated with the Inflammatory Pathways in the Intestinal Tissue from Patients with Ulcerative Colitis.Mediators Inflamm.2020,2020, 9238970. [Google Scholar] [CrossRef] [PubMed]
- Lercher, A.; Popa, A.M.; Viczenczova, C.; Kosack, L.; Klavins, K.; Agerer, B.; Opitz, C.A.; Lanz, T.V.; Platten, M.; Bergthaler, A. Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis.PLoS Pathog.2020,16, e1008973. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, M. TDO2 deficiency attenuates the hepatic lipid deposition and liver fibrosis in mice with diet-induced non-alcoholic fatty liver disease.Heliyon2023,9, e22464. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Chen, G.-y.; Xie, G.; Hao, L.; Guo, W.; Sun, X.; Jia, W.; Zhang, Q.; Zhou, Z.; Zhong, W. Activation of PPARα-catalase pathway reverses alcoholic liver injury via upregulating NAD synthesis and accelerating alcohol clearance.Free Radic. Biol. Med.2021,174, 249–263. [Google Scholar] [CrossRef]
- Zeng, D.; Wang, X.; Zhang, S.; Zheng, A.; Huang, Q.; Cao, L. Pyroptosis-related gene-based prognostic signature for predicting the overall survival of oral squamous cell carcinoma patients.Front. Surg.2022,9, 903271. [Google Scholar] [CrossRef]
- Geeleher, P.; Cox, N.J.; Huang, R.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines.Genome Biol.2014,15, R47. [Google Scholar] [CrossRef]
- Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral Squamous Cell Carcinoma and Concomitant Primary Tumors, What Do We Know? A Review of the Literature.Curr. Oncol.2023,30, 3721–3734. [Google Scholar] [CrossRef] [PubMed]
- Calanca, N.; Francisco, A.L.N.; Bizinelli, D.; Kuasne, H.; Barros Filho, M.C.; Flores, B.C.T.; Pinto, C.A.L.; Rainho, C.A.; Soares, M.B.P.; Marchi, F.A.; et al. DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas.Biomed. Pharmacother.2023,167, 115559. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lu, H.; Xie, W.; Wang, D.; Shan, Z.; Xing, X.; Wang, X.M.; Fang, J.; Dong, W.; Dai, W.; et al. TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma.J. Clin. Investig.2022,132, e157649. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, M.; Chaisuparat, R.; Ghita, I.; Bentzen, S.M.; Dyalram, D.; Ord, R.A.; Lubek, J.E.; Younis, R.H. Immuno-oncologic signature of malignant transformation in oral squamous cell carcinoma.Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol.2023,136, 612–622. [Google Scholar] [CrossRef]
- Xue, S.T.; Zheng, B.; Cao, S.Q.; Ding, J.C.; Hu, G.S.; Liu, W.; Chen, C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis.Mol. Cancer2022,21, 69. [Google Scholar] [CrossRef]
- Abnet, C.C.; Arnold, M.; Wei, W.Q. Epidemiology of Esophageal Squamous Cell Carcinoma.Gastroenterology2018,154, 360–373. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024.CA Cancer J. Clin.2024,74, 12–49. [Google Scholar] [CrossRef]
- Pham Quoc, T.; Oue, N.; Sekino, Y.; Yamamoto, Y.; Shigematsu, Y.; Sakamoto, N.; Sentani, K.; Uraoka, N.; Yasui, W. TDO2 Overexpression Is Associated with Cancer Stem Cells and Poor Prognosis in Esophageal Squamous Cell Carcinoma.Oncology2018,95, 297–308. [Google Scholar] [CrossRef]
- Xu, Y.; Liao, C.; Liu, R.; Liu, J.; Chen, Z.; Zhao, H.; Li, Z.; Chen, L.; Wu, C.; Tan, H.; et al. IRGM promotes glioma M2 macrophage polarization through p62/TRAF6/NF-κB pathway mediated IL-8 production.Cell Biol. Int.2019,43, 125–135. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, G.; Jiang, Z.; Li, N.; Zhang, X. Survival analysis with regard to PD-L1 and CD155 expression in human small cell lung cancer and a comparison with associated receptors.Oncol. Lett.2019,17, 2960–2968. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer.Nat. Rev. Drug Discov.2018,17, 887–904. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Li, Y.; Zhou, X.; Zhai, W.; Wu, Y.; Chen, G.; Gou, S.; Sui, X.; Zhao, W.; et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway.Acta Pharm. Sin. B2021,11, 2835–2849. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.2024,74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease.Clin. Gastroenterol. Hepatol.2023,21, 1978–1991. [Google Scholar] [CrossRef]
- Everhart, J.E.; Ruhl, C.E. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas.Gastroenterology2009,136, 1134–1144. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, L.; Lin, J.; Ke, K.; Yang, W. Constitutive TDO2 expression promotes liver cancer progression by an autocrine IL-6 signaling pathway.Cancer Cell Int.2021,21, 538. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiang, Y.; Zong, Q.-B.; Dai, Z.-T.; Wu, H.; Zhang, H.-M.; Huang, Y.; Shen, C.; Wang, J.; Lu, Z.-X.; et al. TDO2 modulates liver cancer cell migration and invasion via the Wnt5a pathway.Int. J. Oncol.2022,60, 72. [Google Scholar] [CrossRef]
- Giannelli, G.; Koudelkova, P.; Dituri, F.; Mikulits, W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma.J. Hepatol.2016,65, 798–808. [Google Scholar] [CrossRef]
- Yuan, K.; Xie, K.; Lan, T.; Xu, L.; Chen, X.; Li, X.; Liao, M.; Li, J.; Huang, J.; Zeng, Y. TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin.Cell Death Differ.2020,27, 1355–1368. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Li, S.; Chen, Z.; Wu, J.; Cao, W.; Wo, Q.; Qin, X.; Xu, J. TDO2 promotes the EMT of hepatocellular carcinoma through Kyn-AhR pathway.Front. Oncol.2021,10, 562823. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Cairns, M.J. Identifying miRNAs, targets and functions.Brief. Bioinform.2014,15, 1–19. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer.Int. J. Mol. Sci.2020,21, 1723. [Google Scholar] [CrossRef]
- Ai, Y.; Luo, S.; Wang, B.; Xiao, S.; Wang, Y. MiR-126-5p Promotes Tumor Cell Proliferation, Metastasis and Invasion by Targeting TDO2 in Hepatocellular Carcinoma.Molecules2022,27, 443. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance.Trends Cancer2020,6, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Weng, J.; Song, F.; Li, L.; Xiao, C.; Yang, W.; Xu, J. Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression.Cell Death Dis.2020,11, 452. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, V.; Xu, X.; Livingstone, J.; Soares, F.; Jeon, J.; Zeng, Y.; Hua, J.T.; Petricca, J.; Guo, H.; et al. Widespread and Functional RNA Circularization in Localized Prostate Cancer.Cell2019,176, 831–843.e22. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs.Nat. Biotechnol.2014,32, 453–461. [Google Scholar] [CrossRef]
- Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression.Hepatology2017,66, 1151–1164. [Google Scholar] [CrossRef]
- Zhu, Z.; Rong, Z.; Luo, Z.; Yu, Z.; Zhang, J.; Qiu, Z.; Huang, C. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis.Mol. Cancer2019,18, 126. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges.Nature2013,495, 384–388. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013,495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B. Apolipoprotein E isoforms, serum cholesterol, and cancer. 1986.Int. J. Epidemiol.2004,33, 9. [Google Scholar] [CrossRef]
- Murphy, N.; Jenab, M.; Gunter, M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions.Nat. Rev. Gastroenterol. Hepatol.2018,15, 659–670. [Google Scholar] [CrossRef]
- Lawler, T.; Warren Andersen, S. Serum 25-Hydroxyvitamin D and Cancer Risk: A Systematic Review of Mendelian Randomization Studies.Nutrients2023,15, 422. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Zhang, X.J.; Cai, J.; Li, H. NAFLD: An Emerging Causal Factor for Cardiovascular Disease.Physiology2023,38, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Tang, L.; Yao, J.; Tan, G. Identifying Proteins and Amino Acids Associated with Liver Cancer Risk: A Study Utilizing Mendelian Randomization and Bulk RNA Sequencing Analysis.J. Pers. Med.2024,14, 262. [Google Scholar] [CrossRef]
- Bai, W.X.; Gao, J.; Qian, C.; Zhang, X.Q. A bioinformatics analysis of differentially expressed genes associated with liver cancer.Zhonghua Gan Zang Bing Za Zhi2017,25, 435–439. [Google Scholar] [CrossRef]
- Yu, C.; Rao, D.; Zhu, H.; Liu, Q.; Huang, W.; Zhang, L.; Liang, H.; Song, J.; Ding, Z. TDO2 Was Downregulated in Hepatocellular Carcinoma and Inhibited Cell Proliferation by Upregulating the Expression of p21 and p27.Biomed. Res. Int.2021,2021, 4708439. [Google Scholar] [CrossRef]
- Ricciuti, B.; Mencaroni, C.; Paglialunga, L.; Paciullo, F.; Crinò, L.; Chiari, R.; Metro, G. Long noncoding RNAs: New insights into non-small cell lung cancer biology, diagnosis and therapy.Med. Oncol.2016,33, 18. [Google Scholar] [CrossRef]
- Pecero, M.L.; Salvador-Bofill, J.; Molina-Pinelo, S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer.Cell. Oncol.2019,42, 1–12. [Google Scholar] [CrossRef]
- Fattahi, S.; Kosari-Monfared, M.; Golpour, M.; Emami, Z.; Ghasemiyan, M.; Nouri, M.; Akhavan-Niaki, H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine.J. Cell. Physiol.2020,235, 3189–3206. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lin, J.; Zhang, J.; Song, Z.; Zheng, D.; Chen, F.; Zhuang, X.; Li, A.; Liu, X. LncRNA SNHG17 Contributes to Proliferation, Migration, and Poor Prognosis of Hepatocellular Carcinoma.Can. J. Gastroenterol. Hepatol.2021,2021, 9990338. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, H.; Lu, M.; Zhang, Y.; Lu, B.; You, L.; Zhang, T.; Dai, M.; Zhao, Y. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis.Cancer Lett.2021,520, 1–11. [Google Scholar] [CrossRef]
- Liang, H.; Li, T.; Fang, X.; Xing, Z.; Zhang, S.; Shi, L.; Li, W.; Guo, L.; Kuang, C.; Liu, H.; et al. IDO1/TDO dual inhibitor RY103 targets Kyn-AhR pathway and exhibits preclinical efficacy on pancreatic cancer.Cancer Lett.2021,522, 32–43. [Google Scholar] [CrossRef]
- Dhillon, J.; Betancourt, M. Pancreatic Ductal Adenocarcinoma.Monogr. Clin. Cytol.2020,26, 74–91. [Google Scholar] [CrossRef]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer.Lancet2016,388, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, X.; Chang, Q.; Wang, Y.; Yang, W.; Liu, L. IL2RA is a prognostic indicator and correlated with immune characteristics of pancreatic ductal adenocarcinoma.Medicine2022,101, e30966. [Google Scholar] [CrossRef]
- Bhatheja, K.; Field, J. Schwann cells: Origins and role in axonal maintenance and regeneration.Int. J. Biochem. Cell Biol.2006,38, 1995–1999. [Google Scholar] [CrossRef]
- Zhou, Y.; Shurin, G.V.; Zhong, H.; Bunimovich, Y.L.; Han, B.; Shurin, M.R. Schwann Cells Augment Cell Spreading and Metastasis of Lung Cancer.Cancer Res.2018,78, 5927–5939. [Google Scholar] [CrossRef]
- Göhrig, A.; Detjen, K.M.; Hilfenhaus, G.; Körner, J.L.; Welzel, M.; Arsenic, R.; Schmuck, R.; Bahra, M.; Wu, J.Y.; Wiedenmann, B.; et al. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer.Cancer Res.2014,74, 1529–1540. [Google Scholar] [CrossRef]
- Swanson, B.J.; McDermott, K.M.; Singh, P.K.; Eggers, J.P.; Crocker, P.R.; Hollingsworth, M.A. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion.Cancer Res.2007,67, 10222–10229. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ye, Y.; Tan, Z.; Liu, Y.; Li, Y.; Hu, W.; Liang, K.; Egranov, S.D.; Huang, L.A.; Zhang, Z.; et al. Tumor-associated nonmyelinating Schwann cell–expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion.Sci. Adv.2023,9, eadd6995. [Google Scholar] [CrossRef] [PubMed]
- Tirino, G.; Pompella, L.; Petrillo, A.; Laterza, M.M.; Pappalardo, A.; Caterino, M.; Orditura, M.; Ciardiello, F.; Galizia, G.; De Vita, F. What’s New in Gastric Cancer: The Therapeutic Implications of Molecular Classifications and Future Perspectives.Int. J. Mol. Sci.2018,19, 2659. [Google Scholar] [CrossRef] [PubMed]
- Katai, H.; Ishikawa, T.; Akazawa, K.; Isobe, Y.; Miyashiro, I.; Oda, I.; Tsujitani, S.; Ono, H.; Tanabe, S.; Fukagawa, T.; et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007).Gastric Cancer2018,21, 144–154. [Google Scholar] [CrossRef]
- Andersson, P.; McGuire, J.; Rubio, C.; Gradin, K.; Whitelaw, M.L.; Pettersson, S.; Hanberg, A.; Poellinger, L. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors.Proc. Natl. Acad. Sci. USA2002,99, 9990–9995. [Google Scholar] [CrossRef]
- Perrot-Applanat, M.; Pimpie, C.; Vacher, S.; Bieche, I.; Pocard, M.; Baud, V. Differential Expression of Genes Involved in Metabolism and Immune Response in Diffuse and Intestinal Gastric Cancers, a Pilot Ptudy.Biomedicines2022,10, 240. [Google Scholar] [CrossRef]
- Mansorunov, D.; Apanovich, N.; Apanovich, P.; Kipkeeva, F.; Muzaffarova, T.; Kuzevanova, A.; Nikulin, M.; Malikhova, O.; Karpukhin, A. Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis.Diagnostics2021,11, 2370. [Google Scholar] [CrossRef]
- Mansorunov, D.; Apanovich, N.; Kipkeeva, F.; Nikulin, M.; Malikhova, O.; Stilidi, I.; Karpukhin, A. The Correlation of Ten Immune Checkpoint Gene Expressions and Their Association with Gastric Cancer Development.Int. J. Mol. Sci.2022,23, 13846. [Google Scholar] [CrossRef]
- Pham, Q.T.; Taniyama, D.; Akabane, S.; Takashima, T.; Maruyama, R.; Sekino, Y.; Sentani, K.; Yasui, W.; Oue, N. Essential Roles of TDO2 in Gastric Cancer: TDO2 Is Associated with Cancer Progression, Patient Survival, PD-L1 Expression, and Cancer Stem Cells.Pathobiology2023,90, 44–55. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.2019,14, 89–103. [Google Scholar] [CrossRef]
- Lee, R.; Li, J.; Li, J.; Wu, C.J.; Jiang, S.; Hsu, W.H.; Chakravarti, D.; Chen, P.; LaBella, K.A.; Li, J.; et al. Synthetic Essentiality of Tryptophan 2,3-Dioxygenase 2 in APC-Mutated Colorectal Cancer.Cancer Discov.2022,12, 1702–1717. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.R. AJCC 8th Edition: Colorectal Cancer.Ann. Surg. Oncol.2018,25, 1454–1455. [Google Scholar] [CrossRef]
- Chen, I.C.; Lee, K.H.; Hsu, Y.H.; Wang, W.R.; Chen, C.M.; Cheng, Y.W. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer.Dis. Markers2016,2016, 8169724. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Han, B.; Zhang, H.; Liu, H.; Zhang, F.; Niu, R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma.Onco Targets Ther.2021,14, 2259–2277. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.H.; Chen, P.C.; Yeh, Y.M.; Lin, B.W.; Yang, K.D.; Shen, M.R.; Lin, P.C. The Expression Quantitative Trait Loci in Immune Response Genes Impact the Characteristics and Survival of Colorectal Cancer.Diagnostics2022,12, 315. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, B.; Yang, C.; Lin, Y.; Zhang, Z.; Wang, S.; Ye, Y.; Shen, Z. TDO2 knockdown inhibits colorectal cancer progression via TDO2–KYNU–AhR pathway.Gene2021,792, 145736. [Google Scholar] [CrossRef]
- Crotti, S.; Fraccaro, A.; Bedin, C.; Bertazzo, A.; Di Marco, V.; Pucciarelli, S.; Agostini, M. Tryptophan Catabolism and Response to Therapy in Locally Advanced Rectal Cancer (LARC) Patients.Front. Oncol.2020,10, 583228. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes.Science2013,339, 1546–1558. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases.Dev. Cell2009,17, 9–26. [Google Scholar] [CrossRef]
- Bertocchi, A.; Carloni, S.; Ravenda, P.S.; Bertalot, G.; Spadoni, I.; Lo Cascio, A.; Gandini, S.; Lizier, M.; Braga, D.; Asnicar, F.; et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver.Cancer Cell2021,39, 708–724.e11. [Google Scholar] [CrossRef]
- Miyazaki, T.; Chung, S.; Sakai, H.; Ohata, H.; Obata, Y.; Shiokawa, D.; Mizoguchi, Y.; Kubo, T.; Ichikawa, H.; Taniguchi, H.; et al. Stemness and immune evasion conferred by the TDO2-AHR pathway are associated with liver metastasis of colon cancer.Cancer Sci.2022,113, 170–181. [Google Scholar] [CrossRef]
- Nascimento, P.C.; Castro, M.M.L.; Magno, M.B.; Almeida, A.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. Association Between Periodontitis and Cognitive Impairment in Adults: A Systematic Review.Front. Neurol2019,10, 323. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis—A comprehensive review.J. Clin. Periodontol.2017,44 (Suppl. S18), S94–S105. [Google Scholar] [CrossRef] [PubMed]
- Imai, J.; Ichikawa, H.; Kitamoto, S.; Golob, J.L.; Kaneko, M.; Nagata, J.; Takahashi, M.; Gillilland, M.G., 3rd; Tanaka, R.; Nagao-Kitamoto, H.; et al. A potential pathogenic association between periodontal disease and Crohn’s disease.JCI Insight2021,6, e148543. [Google Scholar] [CrossRef]
- Rehermann, B.; Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection.Nat. Rev. Immunol.2005,5, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Duhalde Vega, M.; Aparicio, J.L.; Mandour, M.F.; Retegui, L.A. The autoimmune response elicited by mouse hepatitis virus (MHV-A59) infection is modulated by liver tryptophan-2,3-dioxygenase (TDO).Immunol. Lett.2020,217, 25–30. [Google Scholar] [CrossRef]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease.Nat. Rev. Immunol.2015,15, 87–103. [Google Scholar] [CrossRef]
- Wu, H.; Jin, M.; Han, D.; Zhou, M.; Mei, X.; Guan, Y.; Liu, C. Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: Regulation of lipid metabolism via PANDER-AKT pathway.Biochem. Biophys. Res. Commun.2015,458, 862–868. [Google Scholar] [CrossRef]
- Tomasiewicz, K.; Flisiak, R.; Halota, W.; Jaroszewicz, J.; Lebensztejn, D.; Lisik, W.; Małkowski, P.; Pawłowska, M.; Piekarska, A.; Simon, K.; et al. Recommendations for the management of non-alcoholic fatty liver disease (NAFLD).Clin. Exp. Hepatol.2018,4, 153–157. [Google Scholar] [CrossRef]
- Younossi, Z.M. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications for liver transplantation.Liver Transpl.2018,24, 166–170. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016,64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Tripodi, G.L.; Kareinen, I.; Berg, M.; Forteza, M.J.; Gisterå, A.; Griepke, S.; Casagrande, F.B.; Martins, J.O.; Abdalla, D.S.P.; et al. Genetic Deficiency of Indoleamine 2,3-dioxygenase Aggravates Vascular but Not Liver Disease in a Nonalcoholic Steatohepatitis and Atherosclerosis Comorbidity Model.Int. J. Mol. Sci.2022,23, 5203. [Google Scholar] [CrossRef]
- Gao, B.; Bataller, R. Alcoholic liver disease: Pathogenesis and new therapeutic targets.Gastroenterology2011,141, 1572–1585. [Google Scholar] [CrossRef]
- Rowe, I.A. Lessons from epidemiology: The burden of liver disease.Dig. Dis.2017,35, 304–309. [Google Scholar] [CrossRef]
- Altamirano, J.; Bataller, R. Alcoholic liver disease: Pathogenesis and new targets for therapy.Nature Rev. Gastroenterol. Hepatol.2011,8, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Ohnishi, M.; Iguchi, S.; Sano, K.; Umezawa, C. Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway.Toxicol. Appl. Pharmacol.1999,158, 71–80. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Lenti, M.V.; Giuffrida, P.; Vanoli, A.; Corazza, G.R. New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract.Autoimmun. Rev.2015,14, 1161–1169. [Google Scholar] [CrossRef]
- Wnorowski, A.; Wnorowska, S.; Kurzepa, J.; Parada-Turska, J. Alterations in Kynurenine and NAD(+) Salvage Pathways during the Successful Treatment of Inflammatory Bowel Disease Suggest HCAR3 and NNMT as Potential Drug Targets.Int. J. Mol. Sci.2021,22, 13497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-P.; Wu, J.; Quan, W.; Zhou, Y.; Hong, H.; Niu, G.-Y.; Ting, L.; Huang, S.-B.; Qiao, C.-M.; Zhao, W.-J.; et al. DSS-induced acute colitis causes dysregulated tryptophan metabolism in brain: An involvement of gut microbiota.J. Nutr. Biochem.2023,115, 109282. [Google Scholar] [CrossRef]
- Sari, S.; Tomek, P.; Leung, E.; Reynisson, J. Discovery and Characterisation of Dual Inhibitors of Tryptophan 2,3-Dioxygenase (TDO2) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Using Virtual Screening.Molecules2019,24, 4346. [Google Scholar] [CrossRef]
- Paccosi, S.; Cecchi, M.; Silvano, A.; Fabbri, S.; Parenti, A. Different effects of tryptophan 2,3-dioxygenase inhibition on SK-Mel-28 and HCT-8 cancer cell lines.J. Cancer Res. Clin. Oncol.2020,146, 3155–3163. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Hung, J.Y.; Chiang, S.Y.; Jian, S.F.; Wu, C.Y.; Lin, Y.S.; Tsai, Y.M.; Chou, S.H.; Tsai, M.J.; Kuo, P.L. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis.Oncotarget2016,7, 27584–27598. [Google Scholar] [CrossRef] [PubMed]
- Salter, M.; Hazelwood, R.; Pogson, C.I.; Iyer, R.; Madge, D.J. The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat.Biochem. Pharmacol.1995,49, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Pilotte, L.; Larrieu, P.; Stroobant, V.; Colau, D.; Dolusic, E.; Frédérick, R.; De Plaen, E.; Uyttenhove, C.; Wouters, J.; Masereel, B.; et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase.Proc. Natl. Acad. Sci. USA2012,109, 2497–2502. [Google Scholar] [CrossRef]
- Pei, Z.; Mendonca, R.; Gazzard, L.; Pastor, R.; Goon, L.; Gustafson, A.; VanderPorten, E.; Hatzivassiliou, G.; Dement, K.; Cass, R.; et al. Aminoisoxazoles as Potent Inhibitors of Tryptophan 2,3-Dioxygenase 2 (TDO2).ACS Med. Chem. Lett.2018,9, 417–421. [Google Scholar] [CrossRef]
- Schramme, F.; Crosignani, S.; Frederix, K.; Hoffmann, D.; Pilotte, L.; Stroobant, V.; Preillon, J.; Driessens, G.; Van den Eynde, B.J. Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors.Cancer Immunol. Res.2020,8, 32–45. [Google Scholar] [CrossRef]
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development.Phytother. Res.2021,35, 4660–4702. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Ip, S.P.; Ko, K.M.; Tsai, S.H.; Xian, Y.F.; Che, C.T. Effects of peony glycosides on mice exposed to chronic unpredictable stress: Further evidence for antidepressant-like activity.J. Ethnopharmacol.2009,124, 316–320. [Google Scholar] [CrossRef]
- Liang, X.; Su, T.; Wu, P.; Dai, Y.; Chen, Y.; Wang, Q.; Cao, C.; Chen, F.; Wang, Q.; Wang, S. Identification of paeoniflorin from Paeonia lactiflora pall. As an inhibitor of tryptophan 2,3-dioxygenase and assessment of its pharmacological effects on depressive mice.J. Ethnopharmacol.2023,317, 116714. [Google Scholar] [CrossRef]
- Gullapalli, S.; Roychowdhury, A.; Khaladkar, T.; Sawargave, S.; Janrao, R.; Kalhapure, V.; Urunkar, G.; Kulathingal, J.; Lekkala, R.R.; Bhadra, S. EPL-1410, a novel fused heterocycle based orally active dual inhibitor of IDO1/TDO2, as a potential immune-oncology therapeutic.Cancer Res.2018,78, 10.1158. [Google Scholar] [CrossRef]
- Bickerdike, M.J.; Nafia, I.; Bessede, A.; Chen, C.B.; Wangpaichitr, M. AT-0174, a novel dual IDO1/TDO2 enzyme inhibitor, synergises with temozolomide to improve survival in an orthotopic mouse model of glioblastoma.BMC Cancer2024,24, 889. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Xing, Z.; Tao, B.; Li, T.; Yang, D.; Li, W.; Zheng, Y.; Kuang, C.; Yang, Q. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway.Signal Transduct. Target. Ther.2020,5, 10. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Li, X.; He, Z.N.T.; Fang, X.; Liang, H.; Kuang, C.; Li, A.; Yang, Q. IDO1 Inhibitor RY103 Suppresses Trp-GCN2-Mediated Angiogenesis and Counters Immunosuppression in Glioblastoma.Pharmaceutics2024,16, 870. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.; Eder, J.P.; Piha-Paul, S.A.; Gimmi, C.; Hussey, E.; Zhang, S.; Hildebrand, V.; Hosagrahara, V.; Habermehl, C.; Moisan, J.; et al. Preclinical investigations and a first-in-human phase I trial of M4112, the first dual inhibitor of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2, in patients with advanced solid tumors.J. Immunother. Cancer2020,8, e000870. [Google Scholar] [CrossRef]
- He, S.M.; Song, W.L.; Cong, K.; Wang, X.; Dong, Y.; Cai, J.; Zhang, J.J.; Zhang, G.H.; Yang, J.L.; Yang, S.C.; et al. Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylicapnos scandens by transcriptome analysis.Sci. Rep.2017,7, 9119. [Google Scholar] [CrossRef]
- Bao, M.-F.; Yang, X.-N.; Wu, J.; Liu, J.-X.; Cai, X.-H. Discovery and biological evaluation of a new type of dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase from ethnomedicinal plant Dactylicapnos scandens.Phytochemistry2023,214, 113794. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Li, X.; Yang, J.; Rao, X.; Hu, Y.; Xi, J.; Tao, L.; Wang, J.; Du, L.; et al. The role of artificial intelligence in drug screening, drug design, and clinical trials.Front. Pharmacol.2024,15, 1459954. [Google Scholar] [CrossRef]
- Hasselgren, C.; Oprea, T.I. Artificial Intelligence for Drug Discovery: Are We There Yet?Annu. Rev. Pharmacol. Toxicol.2024,64, 527–550. [Google Scholar] [CrossRef]
- Turon, G.; Hlozek, J.; Woodland, J.G.; Kumar, A.; Chibale, K.; Duran-Frigola, M. First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa.Nat. Commun.2023,14, 5736. [Google Scholar] [CrossRef]
- Janet, J.P.; Mervin, L.; Engkvist, O. Artificial intelligence in molecular de novo design: Integration with experiment.Curr. Opin. Struct. Biol.2023,80, 102575. [Google Scholar] [CrossRef]
- Tran, T.T.V.; Surya Wibowo, A.; Tayara, H.; Chong, K.T. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives.J. Chem. Inf. Model.2023,63, 2628–2643. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.2004,3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: A critical review.Curr. Med. Chem.2013,20, 2839–2860. [Google Scholar] [CrossRef] [PubMed]
- Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances.Curr. Top. Med. Chem.2014,14, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Richards, T.; Brin, E. Cell based functional assays for IDO1 inhibitor screening and characterization.Oncotarget2018,9, 30814–30820. [Google Scholar] [CrossRef]
- Tomek, P.; Palmer, B.D.; Flanagan, J.U.; Sun, C.; Raven, E.L.; Ching, L.M. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.Eur. J. Med. Chem.2017,126, 983–996. [Google Scholar] [CrossRef]
- Hanif, N.; Sari, S. Discovery of novel IDO1/TDO2 dual inhibitors: A consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis.J. Biomol. Struct. Dyn.2024, 1–17. [Google Scholar] [CrossRef]
- Aboomar, N.M.; Essam, O.; Hassan, A.; Bassiouny, A.R.; Arafa, R.K. Exploring a repurposed candidate with dual hIDO1/hTDO2 inhibitory potential for anticancer efficacy identified through pharmacophore-based virtual screening and in vitro evaluation.Sci. Rep.2024,14, 9386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xie, X.; Xue, Y.; Chen, Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases.Biology2025,14, 295. https://doi.org/10.3390/biology14030295
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases.Biology. 2025; 14(3):295. https://doi.org/10.3390/biology14030295
Chicago/Turabian StyleWang, Zhengsen, Xianxian Xie, Yu Xue, and Yixuan Chen. 2025. "Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases"Biology 14, no. 3: 295. https://doi.org/10.3390/biology14030295
APA StyleWang, Z., Xie, X., Xue, Y., & Chen, Y. (2025). Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases.Biology,14(3), 295. https://doi.org/10.3390/biology14030295