Exponential Stability of Hopfield Neural Network Model with Non-Instantaneous Impulsive Effects
Abstract
:1. Introduction
2. Preliminaries
- (i)
- , are uniformly AP sequences, where.
- (ii)
- For any, there exists a number which is positive, such that if and are the points in the same continuous interval and, then.
- (iii)
- For any, there exists a relatively dense set ΓofAP, such that if, then for all satisfying the condition.
- (H1)
- The sequences, and,, are uniformly AP and,,.
- (H2)
- The matrix function is AP in the sense of Bohr.
- (H3)
- The sequence is AP.
- (H4)
- The functions are AP in the sense of Bohr, andand there exists an such that for,
- (H5)
- The functions are AP in the sense of Bohr, and
- (H6)
- The functions, are AP in the sense of Bohr, the sequences are AP and there exists a such thatwhere.
- (H7)
- The sequence of functions is AP uniformly with respect to, and there exists an such thatfor. if and only if.
- (a)
- ;
- (b)
- ;
- (c)
- ;
- (d)
- ;
- (e)
- ;
- (f)
- ;
- (g)
- ,,,,.
- (i)
- There exists a constant such that which is uniformly with respect to.
- (ii)
- For any, there exists N which is a positive integer such that the number of elements in the sequences on each interval of length p does not exceed N. We can choose.
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viviani, P.; Drocco, M.; Baccega, D.; Colonnelli, I.; Aldinucci, M. Deep learning at scale. In Proceedings of the 2019 IEEE 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, 13–15 February 2019; pp. 124–131. [Google Scholar]
- Wouafo, H.; Chavet, C.; Coussy, P. Clone-Based encoded neural networks to design efficient associative memories.IEEE Trans. Neural Netw. Learn. Syst.2019,30, 3186–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, F.T.; Kinser, J.M.; Caulfield, H.J. A neural bridge from syntactic to statistical pattern recognition.Neural Netw.1999,12, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Kriegeskorte, N. Deep neural networks: A new framework for modeling biological vision and brain information processing.Annu. Rev. Vis. Sci.2015,1, 417–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calise, A.J.; Rysdyk, R.T. Nonlinear adaptive flight control using neural networks.IEEE Control. Syst. Mag.1998,18, 14–25. [Google Scholar]
- McCulloch, W.S.; Pits, W. A logical calculus of the ideas immanent in nervous activity.Bull. Math. Biophys.1943,5, 115–133. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities.Proc. Natl. Acad. Sci. USA1982,79, 2554–2558. [Google Scholar] [CrossRef] [Green Version]
- Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons.Proc. Natl. Acad. Sci. USA1984,81, 3088–3092. [Google Scholar] [CrossRef] [Green Version]
- Arbib, M.A.Brains, Machines and Mathematics; Springer: New York, NY, USA, 1987. [Google Scholar]
- Haykin, S.Neural Networks: A Comprehensive Foundation; Prentice-Hall: Ehglewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Stamova, I.; Stamov, G.Applied Impulsive Mathematical Models; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Li, M.M.; Wang, J.R.; O’Regan, D. Positive almost periodic solution for a noninstantaneous impulsive Lasota-Wazewska model.Bull. Iran. Math. Soc.2019,46, 851–864. [Google Scholar] [CrossRef]
- Hernández, E.; O’Regan, D.; Benxax, M.A. On a new class of abstract integral equations and applications.Appl. Math. Comput.2012,219, 2271–2277. [Google Scholar] [CrossRef]
- Wang, J.R.; Fečkan, M. A general class of impulsive evolution equations.Topol. Methods Nonlinear Anal.2015,46, 915–933. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y.; Lin, Z. On a new class of impulsive fractional differential equations.Appl. Math. Comput.2014,242, 649–657. [Google Scholar] [CrossRef]
- Wang, J.R.; Fečkan, M.Non-Instantaneous Impulsive Differential Equations; IOP: London, UK, 2018. [Google Scholar]
- Guan, Y.; Fečkan, M.; Wang, J.R. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows.Discret. Contin. Dyn. Syst.2021,41, 1157–1176. [Google Scholar] [CrossRef]
- Bohr, H. Zur theorie der fast periodischen funktionen: I. eine verallgemeinerung der theorie der fourierreihen.Acta Math.1925,45, 29–127. [Google Scholar] [CrossRef]
- Chen, X.X. Almost periodic solutions of nonlinear delay population equation with feedback control.Nonlinear Anal. Real World Appl.2007,8, 62–72. [Google Scholar]
- Chen, X.X.; Chen, F.D. Almost-periodic solutions of a delay population equation with feedback control.Nonlinear Anal. Real World Appl.2006,7, 559–571. [Google Scholar]
- Zhang, R.; Wang, L. Almost periodic solutions for cellular neural networks with distributed delays.Acta Math. Sci.2011,31, 422–429. [Google Scholar]
- Menouer, M.A.; Moussaoui, A.; Dads, E.A. Existence and global asymptotic stability of positive almost periodic solution for a predator-prey system in an artificial lake.Chaos Solitons Fractals2017,103, 271–278. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, X. Almost periodic solutions for a discrete fishing model with feedback control and time delays.Commun. Nonlinear Sci. Numer. Simul.2014,19, 150–163. [Google Scholar] [CrossRef]
- Huang, P.; Li, X.; Liu, B. Almost periodic solutions for an asymmetric oscillation.J. Differ. Equ.2017,263, 8916–8946. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, W.; Yang, L. Stage-structured hematopoiesis model with delays in an almost periodic environment.Appl. Math. Lett.2021,120, 107336. [Google Scholar] [CrossRef]
- Samoilenko, A.M.; Perestyuk, N.A.Impulsive Differential Equations; World Scientific: Singapore, 1995. [Google Scholar]
- Stamova, I.Stability Analysis of Impulsive Functional Differential Equations; Walter de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Ma, R.; Wang, J.R.; Li, M.M. Almost periodic solutions for two non-instantaneous impulsive biological models.Qual. Theory Dyn. Syst.2022,21, 84. [Google Scholar] [CrossRef]
- Mancilla-Aguilar, J.L.; Haimovich, H.; Feketa, P. Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse frequency.Nonlinear Anal. Hybrid Syst.2020,38, 100933. [Google Scholar] [CrossRef]
- Feketa, P.; Klinshov, V.; Lücken, L. A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly.Commun. Nonlinear Sci. Numer. Simul.2021,103, 105955. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Fečkan, M.; Wang, J. Exponential Stability of Hopfield Neural Network Model with Non-Instantaneous Impulsive Effects.Axioms2023,12, 115. https://doi.org/10.3390/axioms12020115
Ma R, Fečkan M, Wang J. Exponential Stability of Hopfield Neural Network Model with Non-Instantaneous Impulsive Effects.Axioms. 2023; 12(2):115. https://doi.org/10.3390/axioms12020115
Chicago/Turabian StyleMa, Rui, Michal Fečkan, and Jinrong Wang. 2023. "Exponential Stability of Hopfield Neural Network Model with Non-Instantaneous Impulsive Effects"Axioms 12, no. 2: 115. https://doi.org/10.3390/axioms12020115
APA StyleMa, R., Fečkan, M., & Wang, J. (2023). Exponential Stability of Hopfield Neural Network Model with Non-Instantaneous Impulsive Effects.Axioms,12(2), 115. https://doi.org/10.3390/axioms12020115