(ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses
Abstract
:1. Introduction
2. Preliminaries
3. ()-Periodic Solutions to Linear Problem
4.-Periodic Solutions to Semilinear Problem
- (I)
- is continuous and
- (II)
- There exists a constant such that
- (III)
- There exist constant, such that
- (IV)
- and there exists a constant such that, and hold for any.
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, E.; Gómez, A.; Pinto, M. (ω,c)-periodic functions and mild solutions to abstract fractional integro-differential equations.Electron. J. Qual. Theory Differ. Equ.2018,16, 1–8. [Google Scholar] [CrossRef]
- Alvarez, E.; Díaz, S.; Lizama, C. On the existence and uniqueness of (N,λ)-periodic solutions to a class of Volterra difference equations.Adv. Differ. Equ.2019,2019, 1–12. [Google Scholar] [CrossRef]
- Agaoglou, M.; Fečkan, M.; Panagiotidou, A.P. Existence and uniqueness of (ω,c)-periodic solutions of semilinear evolution equations.Int. J. Dyn. Sys. Diff. Equ.2020,10, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Khalladi, M.T.; Rahmani, A. (ω,c)-Pseudo almost periodic distributions.Nonauton. Dyn. Syst.2020,7, 237–248. [Google Scholar] [CrossRef]
- Alvarez, E.; Castillo, S.; Pinto, M. (ω,c)-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells.Bound. Value Probl.2019,2019, 1–20. [Google Scholar] [CrossRef]
- Khalladi, M.T.; Kostić, M.; Pinto, M.; Rahmani, A.; Velinov, D. On semi-c-periodic functions.J. Math.2021,2021, 1–5. [Google Scholar] [CrossRef]
- Wang, J.R.; Fečkan, M.; Zhou, Y. A survey on impulsive fractional differential equations.Frac. Calc. Appl. Anal.2016,19, 806–831. [Google Scholar] [CrossRef]
- Guechi, S.; Dhayal, R.; Debbouche, A.; Malik, M. Analysis and optimal control ofφ-Hilfer fractional semilinear equations involving nonlocal impulsive conditions.Symmetry2021,13, 2084. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S.; Debbouche, A. Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses.Math. Methods Appl. Sci.2020,43, 4107–4124. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S. Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differentialequation of order.Stochastics2020,93, 780–802. [Google Scholar] [CrossRef]
- Harrat, A.; Nieto, J.J.; Debbouche, A. Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential.J. Comput. Appl. Math.2018,344, 725–737. [Google Scholar] [CrossRef]
- Fečkan, M.; Wang, J.R. Periodic impulsive fractional differential equations.Adv. Nonlinear Anal.2019,8, 482–496. [Google Scholar] [CrossRef]
- Bainov, D.D.; Simeonov, P.S.Impulsive Differential Equations: Periodic solutions and Applications; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Kao, Y.; Li, H. Asymptotic multistability and localS-asymptoticω-periodicity for the nonautonomous fractional-order neural networks with impulses.Sci. China Inform. Sci.2021,64, 1–13. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J.Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Choi, S.K.; Koo, N. A note on linear impulsive fractional differential equations.J. Chungcheong Math. Soc.2015,28, 583–590. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Wang, J. (ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses.Axioms2022,11, 83. https://doi.org/10.3390/axioms11030083
Ren L, Wang J. (ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses.Axioms. 2022; 11(3):83. https://doi.org/10.3390/axioms11030083
Chicago/Turabian StyleRen, Lulu, and JinRong Wang. 2022. "(ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses"Axioms 11, no. 3: 83. https://doi.org/10.3390/axioms11030083
APA StyleRen, L., & Wang, J. (2022). (ω,c)-Periodic Solutions to Fractional Differential Equations with Impulses.Axioms,11(3), 83. https://doi.org/10.3390/axioms11030083