The Origin of the Variola Virus
Abstract
:1. Introduction
2. Smallpox in Ancient Times: Historical Data
3. Dating VARV Evolution
4. VARV Ancestor
5. Where Did VARV Emerge?
6. The Molecular Evolution of VARV
7. Conclusions
Acknowledgements
Conflicts of Interest
References
- Breman, J.G.; Henderson, D.A. Diagnosis and management of smallpox.N. Engl. J. Med.2002,346, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Moore, Z.S.; Seward, J.F.; Lane, J.M. Smallpox.Lancet2006,367, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I.D.Smallpox and Its Eradication; WHO: Geneva, Switzerland, 1988. [Google Scholar]
- Fenner, F. Adventures with poxviruses of vertebrates.FEMS Microbiol. Rev.2000,24, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shchelkunov, S.N.; Marennikova, S.S.; Moyer, R.W.Orthopoxviruses Pathogenic for Humans; Springer-Verlag: Berlin, Germany, 2005. [Google Scholar]
- Moss, B. Poxviridae: The viruses and their replication. InFields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E., Eds.; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 2905–2946. [Google Scholar]
- Hopkins, D.R.The Greatest Killer: Smallpox in History; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Bray, M.; Buller, M. Looking back at smallpox.Clin. Infect. Dis.2004,38, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Moussatché, N.; Damaso, C.R.; McFadden, G. When good vaccines go wild: Feral orthopoxvirus in developing countries and beyond.J. Infect. Dev. Ctries.2008,2, 156–173. [Google Scholar] [CrossRef]
- Trindade, G.S.; Emerson, G.L.; Carroll, D.S.; Kroon, E.G.; Damon, I.K. Brazilian vaccinia viruses and their origins.Emerg. Infect. Dis.2007,13, 965–972. [Google Scholar] [CrossRef] [PubMed]
- McFadden, G. Poxvirus tropism.Nat. Rev.2005,3, 201–213. [Google Scholar]
- Tulman, E.R.; Delhon, G.; Afonso, C.L.; Lu, Z.; Zsak, L.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. Genome of horsepox virus.J. Virol.2006,80, 9244–9258. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.R.; Andersson, D.I. Poxvirus use a “gene accordion” to tune out host defenses.Cell2012,150, 671–672. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants.Nat. Rev. Genet.2008,9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.J.; Sammons, S.A.; Frace, A.M.; Osborne, J.D.; Olsen-Rasmussen, M.; Zhang, M.; Govil, D.; Damon, I.K.; Kline, R.; Laker, M.;et al. Genome sequence diversity and clues to the evolution of variola smallpox virus.Science2006,313, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Esteban, D.J.; Hutchinson, A.P. Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution.BMC Genomics2011,12, e261. [Google Scholar] [CrossRef]
- Gubser, C.; Hue, S.; Kellam, P.; Smith, G.L. Poxvirus genomes: A phylogenetic analysis.J. Gen. Virol.2004,85, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Wang, C.; Upton, C. Poxviruses: Past, present and future.Virus Res.2006,117, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Upton, C.; Slack, S.; Hunter, A.L.; Ehlers, A.; Roper, R.L. Poxvirus orthologous clusters: Toward defining the minimum essential poxvirus genome.J. Virol.2003,77, 7590–7600. [Google Scholar] [CrossRef] [PubMed]
- Raju, V.K. Susruta of ancient India.Indian J. Ophthalmol.2003,51, 119–122. [Google Scholar] [PubMed]
- Littman, R.J. The plague of Athens: Epidemiology and paleopathology.Mt. Sinai J. Med.2009,76, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Garnsey, P.; Saller, R.The Roman Empire: Economy, Society, and Culture; University of California Press: Oakland, CA, USA, 1987. [Google Scholar]
- Gubser, C.; Smith, G.L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox.J. Gen. Virol.2002,83, 855–872. [Google Scholar] [PubMed]
- Domingo, E. Mechanisms of viral emergence.Vet. Res.2010,41, e38. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases.Nature2007,447, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens.Emerg. Infect. Dis.2005,11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.J. Myxomatosis in Australia and Europe: A model for emerging infectious diseases.Antivir. Res.2012,93, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.J.; Ghedin, E.; DePasse, J.V.; Fitch, A.; Cattadori, I.M.; Hudson, P.J.; Tscharke, D.C.; Read, A.F.; Holmes, E.C. Evolutionary history and attenuation of myxoma virus on two continents.PLoS Pathog.2012,8, e1002950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint, K.M.; French, N.; Kerr, P. Genetic variation in Australian isolates of myxoma virus: An evolutionary and epidemiological study.Arch. Virol.2001,146, 1105–1123. [Google Scholar] [CrossRef] [PubMed]
- Babkin, I.V.; Babkina, I.N. A retrospective study of the orthopoxvirus molecular evolution.Infect. Genet. Evol.2012,12, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Uvarova, E.A.; Shchelkunov, S.N. Species-specific differences in the structure of orthopoxvirus complement-binding protein.Virus Res.2001,81, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Belshaw, R.; Sanjuán, R.; Pybus, O.G. Viral mutation and substitution: Units and levels.Curr. Opin. Virol.2011,1, 430–435. [Google Scholar] [CrossRef]
- McCollum, A.M.; Li, Y.; Wilkins, K.; Karem, K.L.; Davidson, W.B.; Paddock, C.D.; Reynolds, M.G.; Damon, I.K. Poxvirus viability and signatures in historical relics.Emerg. Infect. Dis.2014,20, 177–184. [Google Scholar] [CrossRef]
- Biagini, P.; Theves, C.; Balaresque, P.; Geraut, A.; Cannet, C.; Keyser, C.; Nikolaeva, D.; Gerard, P.; Duchesne, S.; Orlando, L.;et al. Variola virus in a 300-year-old Siberian mummy.N. Engl. J. Med.2012,367, 2057–2059. [Google Scholar] [CrossRef] [PubMed]
- Theves, C.; Biagini, P.; Crubezy, E. The rediscovery of smallpox.Clin. Microbiol. Infect.2014,20, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Babkina, I.N.; Babkin, I.V.; Le, U.; Ropp, S.; Kline, R.; Damon, I.; Esposito, J.; Sandakhchiev, L.S.; Shchelkunov, S.N. Phylogenetic comparison of the genomes of different strains of variola virus.Dokl. Biochem. Biophys.2004,398, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Babkin, I.V.; Shchelkunov, S.N. The time scale in poxvirus evolution.Mol. Biol. Mosk.2006,40, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Carroll, D.S.; Gardner, S.N.; Walsh, M.C.; Vitalis, E.A.; Damon, I.K. On the origin of smallpox: Correlating variola phylogenics with historical smallpox records.Proc. Natl. Acad. Sci. USA2007,104, 15787–15792. [Google Scholar] [CrossRef] [PubMed]
- McLysaght, A.; Baldi, P.F.; Gaut, B.S. Extensive gene gain associated with adaptive evolution of poxviruses.Proc. Natl. Acad. Sci. USA2003,100, 15655–15660. [Google Scholar] [CrossRef] [PubMed]
- Emerson, G.L.; Li, Y.; Frace, M.A.; Olsen-Rasmussen, M.A.; Khristova, M.L.; Govil, D.; Sammons, S.A.; Regnery, R.L.; Karem, K.L.; Damon, I.K.;et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America.PLoS One2009,4, e7666. [Google Scholar] [CrossRef] [PubMed]
- Babkin, I.V.; Shchelkunov, S.N. Molecular evolution of poxviruses.Genetika2008,44, 1029–1044. [Google Scholar] [PubMed]
- Hughes, A.L.; Irausquina, S.; Friedman, R. The evolutionary biology of poxviruses.Infect. Genet. Evol.2010,10, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Babkin, I.V.; Babkina, I.N. Molecular dating in the evolution of vertebrate poxviruses.Intervirology2011,54, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Firth, C.; Kitchen, A.; Shapiro, B.; Suchard, M.A.; Holmes, E.C.; Rambaut, A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses.Mol. Biol. Evol.2010,27, 2038–2051. [Google Scholar] [CrossRef] [PubMed]
- Smithson, C.; Purdy, A.; Verster, A.J.; Upton, C. Prediction of steps in the evolution of variola virus host range.PLoS One2014,9, e91520. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, R.C.; Wang, C.; Hatcher, E.L.; Lefkowitz, E.J. Orthopoxvirus genome evolution: The role of gene loss.Viruses2010,2, 1933–1967. [Google Scholar] [CrossRef] [PubMed]
- Lourie, B.; Nakano, J.H.; Kemp, G.E.; Setzer, H.W. Isolation of poxvirus from an African rodent.J. Infect. Dis.1975,132, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Essbauer, S.; Pfeffer, M.; Meyer, H. Zoonotic poxviruses.Vet. Microbiol.2010,140, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, P.W.; Radonić, A.; Kurth, A.; Nitsche, A. Genome-wide comparison of cowpox viruses reveals a new clade related to variola virus.PLoS One2013,8, e79953. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.S.; Emerson, G.L.; Li, Y.; Sammons, S.; Olson, V.; Frace, M.; Nakazawa, Y.; Czerny, C.P.; Tryland, M.; Kolodziejek, J.;et al. Chasing Jenner’s vaccine: Revisiting cowpox virus classification.PLoS One2011,6, e23086. [Google Scholar] [CrossRef] [PubMed]
- Shchelkunov, S.N. How long ago did smallpox virus emerge?Arch. Virol.2009,154, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Babkin, I.V.; Nepomnyashchikh, T.S.; Maksyutov, R.A.; Gutorov, V.V.; Babkina, I.N.; Shchelkunov, S.N. Comparative analysis of variable regions in the variola virus genome.Mol. Biol. Mosk.2008,42, 543–553. [Google Scholar] [CrossRef]
- Musser, G.G.; Carleton, M.D. Superfamily Muroidea. InMammal Species of the World a Taxonomic and Geographic Reference, 3rd ed.; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; pp. 894–1531. [Google Scholar]
- Piskurek, O.; Okada, N. Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals.Proc. Natl. Acad. Sci. USA2007,104, 12046–12051. [Google Scholar] [CrossRef] [PubMed]
- Bulliet, R.The Camel and the Wheel; Columbia University Press: New York, NY, USA, 1975. [Google Scholar]
- Fagan, B.M.; Beck, C.The Oxford Companion to Archaeology; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Pankhurst, R.The Ethiopian Borderlands: Essays in Regional History from Ancient Times to the End of the 18th Century; The Red Sea Press: Trenton, NJ, USA, 1997. [Google Scholar]
- Tillib, S.V. Camel nanoantibody is an efficient tool for research, diagnostics and therapy.Mol. Biol. Mosk.2011,45, 77–85. [Google Scholar] [PubMed]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies.Annu. Rev. Biochem.2013,82, 775–797. [Google Scholar] [CrossRef] [PubMed]
- Gauthier–Pilters, H.; Dagg, A.The Camel: Its Evolution, Ecology, Behavior, and Relationship to Man; University of Chicago Press: Chicago, IL, USA, 1981. [Google Scholar]
- Cui, P.; Ji, R.; Ding, F.; Qi, D.; Gao, H.; Meng, H.; Yu, J.; Hu, S.; Zhang, H. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): An evolutionary history of camelidae.BMC Genomics2007,8, e241. [Google Scholar] [CrossRef]
- Sorci, G.; Cornet, S.; Faivre, B. Immunity and the emergence of virulent pathogens.Infect. Genet. Evol.2013,16, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Buckland, P.C.; Dugmore, A.J.; Edwards, K.J. Bronze Age myths? Volcanic activity and human response in the Mediterranean and North Atlantic regions.Antiquity1997,71, 581–593. [Google Scholar]
- Bell, M.; Walker, M.J.; Walker, M.J.C.Late Quaternary Environmental Change: Physical and Human Perspectives, 2nd ed.; Prentice Hall: London, UK, 2005. [Google Scholar]
- Bratke, K.A.; McLysaght, A.; Rothenburg, S. A survey of host range genes in poxvirus genomes.Infect. Genet. Evol.2013,14, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Haller, S.L.; Peng, C.; McFadden, G.; Rothenburg, S. Poxviruses and the evolution of host range and virulence.Infect. Genet. Evol.2014,21, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.N.; Pyaram, K.; Mullick, J.; Sahu, A. Identification of hot spots in the variola virus complement inhibitor SPICE for human complement regulation.J. Virol.2008,82, 3283–3294. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, E.; Emery, A.; Konz, D.; Krushkal, J. Evolutionary history of orthopoxvirus proteins similar to human complement regulators.Gene2005,355, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jung, J.U.; Means, R.E. ‘Complementing’ viral infection: Mechanisms for evading innate immunity.Trends Microbiol.2003,11, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Rosengard, A.M.; Liu, Y.; Nie, Z.; Jimenez, R. Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement.Proc. Natl. Acad. Sci. USA2002,99, 8808–8813. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.R.; Rahman, M.M.; Lanchbury, J.S.; Shattuck, D.; Neff, C.; Dufford, M.; van Buuren, N.; Fagan, K.; Barry, M.; Smith, S.;et al. Proteomic screening of variola virus reveals a unique NF–kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.Proc. Natl. Acad. Sci. USA2009,106, 9045–9050. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, K.; Mohamed, M.R.; Zhang, L.; Villa, N.Y.; Werden, S.J.; Liu, J.; McFadden, G. Poxvirus proteomics and virus–host protein interactions.Microbiol. Mol. Biol. Rev.2009,73, 730–749. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babkin, I.V.; Babkina, I.N. The Origin of the Variola Virus.Viruses2015,7, 1100-1112. https://doi.org/10.3390/v7031100
Babkin IV, Babkina IN. The Origin of the Variola Virus.Viruses. 2015; 7(3):1100-1112. https://doi.org/10.3390/v7031100
Chicago/Turabian StyleBabkin, Igor V., and Irina N. Babkina. 2015. "The Origin of the Variola Virus"Viruses 7, no. 3: 1100-1112. https://doi.org/10.3390/v7031100
APA StyleBabkin, I. V., & Babkina, I. N. (2015). The Origin of the Variola Virus.Viruses,7(3), 1100-1112. https://doi.org/10.3390/v7031100