Epidemiology of Respiratory Infections during the COVID-19 Pandemic
Abstract
1. Introduction
2. Circulation of Non-SARS-CoV-2 Respiratory Viruses during the COVID-19 Pandemic
2.1. Epidemiology of Enveloped Viruses during the COVID-19 Pandemic
2.1.1. Influenza Viruses
2.1.2. Respiratory Syncytial Virus (RSV)
2.2. Epidemiology of Non-Enveloped Viruses during the COVID-19 Pandemic
Rhinovirus/Enterovirus, Adenovirus, and Bocavirus
3. Reasons for Variations in Epidemiology of Non-SARS-CoV-2 Viruses during the COVID-19 Pandemic
4. SARS-CoV-2 Circulation and Incidence of Bacterial Infections
4.1. Streptococcus pneumoniae Infections
4.2. Group A Streptococcus Infections (GAS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic.Acta Biomed.2020,91, 157–160. [Google Scholar] [PubMed]
- Novelli, G.; Biancolella, M.; Mehrian-Shai, R.; Erickson, C.; Godri Pollitt, K.J.; Vasiliou, V.; Watt, J.; Reichardt, J.K. COVID-19 update: The first 6 months of the pandemic.Hum. Genom.2020,14, 48. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Non-Pharmaceutical Interventions against COVID-19. Available online:https://www.ecdc.europa.eu/en/covid-19/prevention-and-control/non-pharmaceutical-interventions (accessed on 28 February 2023).
- World Health Organization. Calibrating Long-Term Non-Pharmaceutical Interventions for COVID-19: Principles and Facilitation Tools. Available online:https://apps.who.int/iris/handle/10665/332099 (accessed on 28 February 2023).
- Esposito, S.; Principi, N. School Closure during the Coronavirus Disease 2019 (COVID-19) Pandemic: An Effective Intervention at the Global Level?JAMA Pediatr.2020,174, 9. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies.Eur Respir. J.2020,55, 2001260. [Google Scholar] [CrossRef]
- Yuan, H.; Reynolds, C.; Ng, S.; Yang, W. Factors affecting the transmission of SARS-CoV-2 in school settings.Influ. Other Respir. Viruses2022,16, 643–652. [Google Scholar] [CrossRef]
- Tandjaoui-Lambiotte, Y.; Lomont, A.; Moenne-Locoz, P.; Seytre, D.; Zahar, J.R. Spread of viruses, which measures are the most apt to control COVID-19?Infect. Dis. Now2023,53, 104637. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.; et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China.Nature2020,585, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Guo, C.; Lin, C.; Zeng, Y.; Li, H.B.; Zhang, Y.; Hossain, M.S.; Chan, J.W.M.; Yeung, D.W.; Kwok, K.O.; et al. Effectiveness of non-pharmaceutical interventions on COVID-19 transmission in 190 countries from 23 January to 13 April 2020.Int. J. Infect. Dis.2021,102, 247–253. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, Y.; Chen, B.; He, D. Multiple COVID-19 Waves and Vaccination Effectiveness in the United States.Int. J. Environ. Res. Public Health2022,19, 2282. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. SARS-CoV-2 Variants of Concern as of 23 February 2023. Available online:https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 8 March 2023).
- Alteri, C.; Scutari, R.; Costabile, V.; Colagrossi, L.; Yu La Rosa, K.; Agolini, E.; Lanari, V.; Chiurchiù, S.; Romani, L.; Markowich, A.H.; et al. Epidemiological characterization of SARS-CoV-2 variants in children over the four COVID-19 waves and correlation with clinical presentation.Sci. Rep.2022,12, 10194. [Google Scholar] [CrossRef]
- Buonsenso, D.; Cusenza, F.; Passadore, L.; Bonanno, F.; De Guido, C.; Esposito, S. Duration of immunity to SARS-CoV-2 in children after natural infection or vaccination in the omicron and pre-omicron era: A systematic review of clinical and immunological studies.Front. Immunol.2023,13, 1024924. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Sun, X.; Dai, Z.; Gao, Y.; Gong, X.; Zhou, B.; Wu, J.; Wen, W. Point-of-care testing detection methods for COVID-19.Lab Chip2021,21, 1634–1660. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Vaccines. Available online:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (accessed on 8 March 2023).
- Banerjee, S.; Banerjee, D.; Singh, A.; Kumar, S.; Pooja, D.; Ram, V.; Kulhari, H.; Sharan, V.A. A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19.Vaccines2023,11, 332. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, G.; Schiaffino, S.; Santoro, M.G.; FitzGerald, G.A.; Melino, G.; Patrono, C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years.Front. Pharmacol.2022,13, 987816. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Autore, G.; Argentiero, A.; Ramundo, G.; Perrone, S.; Principi, N. Update on COVID-19 Therapy in Pediatric Age.Pharmaceuticals2022,15, 15. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Lee, S.S. A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations.Front. Immunol.2022,13, 801522. [Google Scholar] [CrossRef]
- Lau, J.J.; Cheng, S.M.S.; Leung, K.; Lee, C.K.; Hachim, A.; Tsang, L.C.H.; Yam, K.W.H.; Chaothai, S.; Kwan, K.K.H.; Chai, Z.Y.H.; et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population.Nat. Med.2023,29, 348–357. [Google Scholar] [CrossRef]
- Moghadas, S.M.; Vilches, T.N.; Zhang, K.; Wells, C.R.; Shoukat, A.; Singer, B.H.; Meyers, L.A.; Neuzil, K.M.; Langley, J.M.; Fitzpatrick, M.C.; et al. The Impact of Vaccination on Coronavirus Disease 2019 (COVID-19) Outbreaks in the United States.Clin. Infect. Dis.2021,73, 2257–2264. [Google Scholar] [CrossRef]
- Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The effects of the COVID-19 pandemic on community respiratory virus activity.Nat. Rev. Microbiol.2023,21, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Rybak, A.; Levy, C.; Angoulvant, F.; Auvrignon, A.; Gembara, P.; Danis, K.; Vaux, S.; Levy-Bruhl, D.; van der Werf, S.; Béchet, S.; et al. Association of Nonpharmaceutical Interventions During the COVID-19 Pandemic With Invasive Pneumococcal Disease, Pneumococcal Carriage, and Respiratory Viral Infections Among Children in France.JAMA Netw. Open2022,5, e2218959. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.; Zhao, Y.; Ma, L.; Zhang, H.; Liu, Y.; Liu, X.; Hu, J. Epidemiological analysis of Group A streptococcus infection diseases among children in Beijing, China under COVID-19 pandemic.BMC Pediatr.2023,23, 76. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, M. Respiratory syncytial virus infection in the modern era.Curr. Opin. Infect. Dis.2023,36, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Vázquez, E.; Aguilera-Alonso, D.; Carbayo, T.; Figueroa-Ospina, L.M.; Sanz-Santaeufemia, F.; Baquero-Artigao, F.; Vázquez-Ordoñez, C.; Carrasco-Colom, J.; Blázquez-Gamero, D.; Jiménez-Montero, B.; et al. Epidemiology and clinical features ofStreptococcus pyogenes bloodstream infections in children in Madrid, Spain.Eur. J. Pediatr.2023. [Google Scholar] [CrossRef]
- Song, S.H.; Lee, H.; Lee, H.J.; Song, E.S.; Ahn, J.G.; Park, S.E.; Lee, T.; Cho, H.K.; Lee, J.; Kim, Y.J.; et al. Twenty-Five Year Trend Change in the Etiology of Pediatric Invasive Bacterial Infections in Korea, 1996–2020.J. Korean Med. Sci.2023,38, e127. [Google Scholar] [CrossRef]
- World Health Organization. Global Influenza Surveillance and Response System. Available online:https://www.who.int/initiatives/global-influenza-surveillance-and-response-system/h5-reference-laboratories (accessed on 8 March 2023).
- Olsen, S.J.; Azziz-Baumgartner, E.; Budd, A.P.; Brammer, L.; Sullivan, S.; Pineda, R.F.; Cohen, C.; Fry, A.M. Decreased Influenza Activity During the COVID-19 Pandemic—United States, Australia, Chile, and South Africa, 2020.MMWR Morb. Mortal. Wkly. Rep.2020,69, 1305–1309. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. 2020–2021 Flu Season Summary. Available online:https://www.cdc.gov/flu/season/faq-flu-season-2020-2021.htm (accessed on 28 February 2023).
- Merced-Morales, A.; Daly, P.; Abd Elal, A.I.; Ajayi, N.; Annan, E.; Budd, A.; Barnes, J.; Colon, A.; Cummings, C.M.; Iuliano, A.D.; et al. Influenza Activity and Composition of the 2022–23 Influenza Vaccine—United States, 2021–22 Season.MMWR Morb. Mortal. Wkly. Rep.2022,71, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Weekly, U.S. Influenza Surveillance Report. Available online:https://www.cdc.gov/flu/weekly/index.htm#ClinicalLaboratories (accessed on 8 March 2023).
- Gates, A.; Dias, T.; van Santen, K.L.; Sheppard, M. COVID-19 Stats: COVID-19 and Influenza† Discharge Diagnoses as a Percentage of Emergency Department (ED) Visits, by Year—United States, June 2018–March 2021.MMWR Morb. Mortal. Wkly. Rep.2021,70, 573. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. FluView Summary Ending on 4 December 2021. Available online:https://www.cdc.gov/flu/weekly/weeklyarchives2021-2022/week48.htm (accessed on 8 March 2023).
- Centers for Disease Control and Prevention. Disease Burden of Flu. Available online:https://www.cdc.gov/flu/about/burden/index.html#:~:text=While%20the%20effects%20of%20flu,annually%20between%202010%20and%202020 (accessed on 8 March 2023).
- Centers for Disease Control and Prevention. 2022–2023 U.S. Flu Season: Preliminary In-Season Burden Estimates. Available online:https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm (accessed on 8 March 2023).
- Koutsakos, M.; Wheatley, A.K.; Laurie, K.; Kent, S.J.; Rockman, S. Influenza lineage extinction during the COVID-19 pandemic?Nat. Rev. Microbiol.2021,19, 741–742. [Google Scholar] [CrossRef]
- Torres, A.R.; Guiomar, R.G.; Verdasca, N.; Melo, A.; Rodrigues, A.P. Laboratórios para o Diagnóstico da Gripe. Resurgence of Respiratory Syncytial Virus in Children: An Out-of-Season Epidemic in Portugal.Acta Med. Port.2023,36, 343–352. [Google Scholar]
- Ujiie, M.; Tsuzuki, S.; Nakamoto, T.; Iwamoto, N. Resurgence of Respiratory Syncytial Virus Infections during COVID-19 Pandemic, Tokyo, Japan.Emerg. Infect. Dis.2021,27, 2969–2970. [Google Scholar] [CrossRef]
- Britton, P.N.; Hu, N.; Saravanos, G.; Shrapnel, J.; Davis, J.; Snelling, T.; Dalby-Payne, J.; Kesson, A.M.; Wood, N.; Macartney, K.; et al. COVID-19 public health measures and respiratory syncytial virus.Lancet Child Adolesc. Health2020,4, e42–e43. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic—United States, 2020–2021.Morb. Mortal. Wkly. Rep.2021,70, 1013–1019. [Google Scholar] [CrossRef]
- Nenna, R.; Matera, L.; Licari, A.; Manti, S.; Di Bella, G.; Pierangeli, A.; Palamara, A.T.; Nosetti, L.; Leonardi, S.; Marseglia, G.L.; et al. An Italian Multicenter Study on the Epidemiology of Respiratory Syncytial Virus during SARS-CoV-2 Pandemic in Hospitalized Children.Front. Pediatr.2022,10, 930281. [Google Scholar] [CrossRef] [PubMed]
- American Society for Microbiology. Respiratory Syncytial Virus (RSV), Tis the Season. Available online:https://asm.org/Articles/2022/December/Respiratory-Syncytial-Virus-RSV-Tis-the-Season#:~:text=Now%2C%20healthcare%20workers%20are%20reporting,of%20influenza%20and%20COVID%2D19 (accessed on 8 March 2023).
- Munkstrup, C.; Lomholt, F.K.; Emborg, H.D.; Møller, K.L.; Krog, J.S.; Trebbien, R.; Vestergaard, L.S. Early and intense epidemic of respiratory syncytial virus (RSV) in Denmark, August to December 2022.Euro Surveill.2023,28, 2200937. [Google Scholar] [CrossRef]
- Eden, J.S.; Sikazwe, C.; Xie, R.; Deng, Y.M.; Sullivan, S.G.; Michie, A.; Levy, A.; Cutmore, E.; Blyth, C.C.; Britton, P.M.; et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions.Nat. Commun.2022,13, 2884. [Google Scholar] [CrossRef]
- Izu, A.; Nunes, M.C.; Solomon, F.; Baillie, V.; Serafin, N.; Verwey, C.; Moore, D.P.; Laubscher, M.; Ncube, M.; Olwagen, C.; et al. All-cause and pathogen-specific lower respiratory tract infection hospital admissions in children younger than 5 years during the COVID-19 pandemic (2020-22) compared with the pre-pandemic period (2015-19) in South Africa: An observational study.Lancet Infect. Dis.2023. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, E.J.; Lee, N.J.; Woo, S.H.; Kim, J.M.; Rhee, J.E.; Kim, E.J. Impact of coronavirus disease 2019 on respiratory surveillance and explanation of high detection rate of human rhinovirus during the pandemic in the Republic of Korea.Influ. Other Respir. Viruses2021,15, 721–731. [Google Scholar] [CrossRef]
- Park, S.; Michelow, I.C.; Choe, Y.J. Shifting patterns of respiratory virus activity following social distancing measures for coronavirus disease 2019 in South Korea.J. Infect. Dis.2021,224, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Kuitunen, I.; Artama, M.; Haapanen, M.; Renko, M. Rhinovirus spread in children during the COVID-19 pandemic despite social restrictions — a nationwide register study in Finland.J. Med. Virol.2021,93, 6063–6067. [Google Scholar] [CrossRef] [PubMed]
- El-Heneidy, A.; Ware, R.S.; Robson, J.M.; Cherian, S.G.; Lambert, S.B.; Grimwood, K. Respiratory virus detection during the COVID-19 pandemic in Queensland, Australia.Aust. N. Z. J. Public Health2022,46, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Eisen, A.K.A.; Gularte, J.S.; Demoliner, M.; de Abreu Goés Pereira, V.M.; Heldt, F.H.; Filippi, M.; de Almeida, P.R.; Hansen, A.W.; Fleck, J.D.; Spilki, F.R. Low circulation of Influenza A and coinfection with SARS-CoV-2 among other respiratory viruses during the COVID-19 pandemic in a region of southern Brazil.J. Med. Virol.2021,93, 4392–4398. [Google Scholar] [CrossRef]
- Agrupis, K.A.; Villanueva, A.M.G.; Sayo, A.R.; Lazaro, J.; Han, S.M.; Celis, A.C.; Suzuki, S.; Uichanco, A.C.; Sagurit, J.; Solante, R.; et al. If not COVID-19 what is it? Analysis of COVID-19 versus common respiratory viruses among symptomatic health care workers ina tertiary infectious disease referral hospital in Manila, Philippines.Trop. Med. Infect. Dis.2021,6, 39. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Kawakami, C.; Momoki, T.; Saikusa, M.; Shimizu, K.; Ozawa, H.; Kumazaki, M.; Usuku, S.; Tanaka, N.; Okubo, I.; et al. Increased risk of rhinovirus infection in children during the coronavirus disease-19 pandemic.Influ. Other Respir. Viruses2021,15, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Rankin, D.A.; Spieker, A.J.; Perez, A.; Stahl, A.L.; Rahman, H.K.; Stewart, L.S.; Schuster, J.E.; Lively, J.Y.; Haddadin, Z.; Probst, V.; et al. Circulation of Rhinoviruses and/or Enteroviruses in Pediatric Patients With Acute Respiratory Illness Before and During the COVID-19 Pandemic in the US.JAMA Netw. Open2023,6, e2254909. [Google Scholar] [CrossRef]
- Benschop, K.S.; Albert, J.; Anton, A.; Andrés, C.; Aranzamendi, M.; Armannsdóttir, B.; Bailly, J.L.; Baldanti, F.; Baldvinsdóttir, G.E.; Beard, S.; et al. Re-emergence of enterovirus D68 in Europe after easing the COVID-19 lockdown, September 2021.Euro Surveill.2021,26, 2100998. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.C.; Winn, A.; Moline, H.L.; Scobie, H.M.; Midgley, C.M.; Kirking, H.L.; Adjemian, J.; Hartnett, K.P.; Johns, D.; Jones, J.M.; et al. Increase in Acute Respiratory Illnesses Among Children and Adolescents Associated with Rhinoviruses and Enteroviruses, Including Enterovirus D68—United States, July-September 2022.Morb. Mortal. Wkly. Rep.2022,71, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Jartti, T.; Gern, J.E. Rhinovirus-associated wheeze during infancy and asthma development.Curr. Respir. Med. Rev.2011,7, 160–166. [Google Scholar] [CrossRef]
- Principi, N.; Daleno, C.; Esposito, S. Human rhinoviruses and severe respiratory infections: Is it possible to identify at-risk patients early?Expert. Rev. Anti Infect. Ther.2014,12, 423–430. [Google Scholar] [CrossRef]
- Esposito, S.; Daleno, C.; Scala, A.; Castellazzi, L.; Terranova, L.; Sferrazza Papa, S.; Longo, M.R.; Pelucchi, C.; Principi, N. Impact of rhinovirus nasopharyngeal viral load and viremia on severity of respiratory infections in children.Eur. J. Clin. Microbiol. Infect. Dis.2014,33, 41–48. [Google Scholar] [CrossRef]
- McGovern, I.; Bogdanov, A.; Cappell, K.; Whipple, S.; Haag, M. Influenza Vaccine Uptake in the United States before and during the COVID-19 Pandemic.Vaccines2022,10, 1610. [Google Scholar] [CrossRef]
- Li, K.; Yu, T.; Seabury, S.A.; Dor, A. Trends and disparities in the utilization of influenza vaccines among commercially insured US adults during the COVID-19 pandemic.Vaccine2022,40, 2696–2704. [Google Scholar] [CrossRef]
- Iezadi, S.; Gholipour, K.; Azami-Aghdash, S.; Ghiasi, A.; Rezapour, A.; Pourasghari, H.; Pashazadeh, F. Effectiveness of non-pharmaceutical public health interventions against COVID-19: A systematic review and meta-analysis.PLoS ONE2021,16, e0260371. [Google Scholar] [CrossRef]
- Urquidi, C.; Santelices, E.; Lagomarcino, A.J.; Teresa Valenzuela, M.; Larrañaga, N.; Gonzalez, E.; Pavez, A.; Wosiack, A.; Maturana, M.; Moller, P.; et al. The added effect of non-pharmaceutical interventions and lifestyle behaviors on vaccine effectiveness against severe COVID-19 in Chile: A matched case-double control study.Vaccine2023,41, 2947–2955. [Google Scholar] [CrossRef]
- Zhao, H.; Jatana, S.; Bartoszko, J.; Loeb, M. Nonpharmaceutical interventions to prevent viral respiratory infection in community settings: An umbrella review.ERJ Open. Res.2022,8, 00650–2021. [Google Scholar] [CrossRef]
- Jefferson, T.; Del Mar, C.B.; Dooley, L.; Ferroni, E.; Al-Ansary, L.A.; Bawazeer, G.A.; Conly, J.M. Physical interventions to interrupt or reduce the spread of respiratory viruses.Cochrane Database Syst. Rev.2020,11, CD006207. [Google Scholar]
- Leung, N.H.L. Transmissibility and transmission of respiratory viruses.Nat. Rev. Microbiol.2021,19, 528–545. [Google Scholar] [CrossRef]
- Kim, T.; Min, K.I.; Yang, J.S.; Kim, J.W.; Cho, J.; Kim, Y.H.; Lee, J.S.; Kim, Y.T.; Kim, K.C.; Kim, J.Y.; et al. Relative infectivity of the SARS-CoV-2 Omicron variant in human alveolar cells.Iscience2022,25, 105571. [Google Scholar] [CrossRef]
- Perra, N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review.Phys. Rep.2021,913, 1–52. [Google Scholar] [CrossRef]
- Firquet, S.; Beaujard, S.; Lobert, P.E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces.Microbes Environ.2015,30, 140–144. [Google Scholar] [CrossRef]
- Russell, K.L.; Broderick, M.P.; Franklin, S.E.; Blyn, L.B.; Freed, N.E.; Moradi, E.; Ecker, D.J.; Kammerer, P.E.; Osuna, M.A.; Kajon, A.E.; et al. Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting.J. Infect. Dis.2006,194, 877–885. [Google Scholar] [CrossRef]
- Chen, A.P.; Chu, I.Y.; Yeh, M.L.; Chen, Y.Y.; Lee, C.L.; Lin, H.H.; Chan, Y.J.; Chen, H.P. Differentiating impacts of non-pharmaceutical interventions on non-coronavirus disease-2019 respiratory viral infections: Hospital-based retrospective observational study in Taiwan.Influ. Other Respir. Viruses2021,15, 478–487. [Google Scholar] [CrossRef]
- Fahim, M.; Abu ElSood, H.; AbdElGawad, B.; Deghedy, O.; Naguib, A.; Roshdy, W.H.; Showky, S.; Kamel, R.; Elguindy, N.; Abdel Fattah, M.; et al. Adapting an integrated acute respiratory infections sentinel surveillance to the COVID-19 pandemic requirements, Egypt, 2020–2022.Public Health Pract. (Oxf.)2023,5, 100358. [Google Scholar] [CrossRef]
- Reicherz, F.; Xu, R.Y.; Abu-Raya, B.; Majdoubi, A.; Michalski, C.; Golding, L.; Stojic, A.; Vineta, M.; Granoski, M.; Cieslak, Z.; et al. Waning Immunity Against Respiratory Syncytial Virus During the Coronavirus Disease 2019 Pandemic.J. Infect. Dis.2022,226, 2064–2068. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Lin, K.P.; Wang, L.A.; Yeh, T.K.; Liu, P.Y. The Impact of the COVID-19 Pandemic on Respiratory Syncytial Virus Infection: A Narrative Review.Infect. Drug. Resist.2023,16, 661–675. [Google Scholar] [CrossRef]
- Stowe, J.; Tessier, E.; Zhao, H.; Guy, R.; Muller-Pebody, B.; Zambon, M.; Andrews, N.; Ramsay, M.; Bernal, J.L. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: A test-negative design.Int. J. Epidemiol.2021,50, 1124–1133. [Google Scholar] [CrossRef]
- Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.C.D.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.N.; et al. Virus-virus interactions impact the population dynamics of influenza and the common cold.Proc. Natl. Acad. Sci. USA2019,116, 27142–27150. [Google Scholar] [CrossRef]
- Dee, K.; Schultz, V.; Haney, J.; Bissett, L.A.; Magill, C.; Murcia, P.R. Influenza A and respiratory syncytial virus trigger a cellular response that blocks severe acute respiratory syndrome virus 2 infection in the respiratory tract.J. Infect. Dis.2022, jiac494. [Google Scholar] [CrossRef]
- Fine, S.R.; Bazzi, L.A.; Callear, A.P.; Petrie, J.G.; Malosh, R.E.; Foster-Tucker, J.E.; Smith, M.; Ibiebele, J.; McDermott, A.; Rolfes, M.A.; et al. Respiratory virus circulation during the first year of the COVID-19 pandemic in the Household Influenza Vaccine Evaluation (HIVE) cohort.Influ. Other Respir. Viruses2023,17, e13106. [Google Scholar] [CrossRef]
- Vajo, Z.; Torzsa, P. Extinction of the Influenza B Yamagata Line during the COVID Pandemic-Implications for Vaccine Composition.Viruses2022,14, 1745. [Google Scholar] [CrossRef]
- Lim, R.H.; Chow, A.; Ho, H.J. Decline in pneumococcal disease incidence in the time of COVID-19 in Singapore.J. Infect.2020,81, e19–e21. [Google Scholar] [CrossRef]
- Juan, H.C.; Chao, C.M.; Lai, C.C.; Tang, H.J. Decline in invasive pneumococcal disease during COVID-19 pandemic in Taiwan.J. Infect.2020,82, 282–327. [Google Scholar] [CrossRef]
- Teng, J.L.L.; Fok, K.M.N.; Lin, K.P.K.; Chan, E.; Ma, Y.; Lau, S.K.P.; Woo, P.C.Y. Substantial decline in invasive pneumococcal disease during Coronavirus disease 2019 pandemic in Hong Kong.Clin. Infect. Dis.2022,74, 335–338. [Google Scholar] [CrossRef]
- Brueggemann, A.B. Changes in the incidence of invasive disease due toStreptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data.Lancet Digit. Health2021,3, e360–e370. [Google Scholar]
- Van Groningen, K.M.; Dao, B.L.; Gounder, P. Declines in invasive pneumococcal disease (IPD) during the COVID-19 pandemic in Los Angeles county.J. Infect.2022,85, 174–211. [Google Scholar] [CrossRef]
- Amin-Chowdhury, Z.; Aiano, F.; Mensah, A.; Sheppard, C.L.; Litt, D.; Fry, N.K.; Andrews, N.; Ramsay, M.E.; Ladhani, S.N. Impact of the Coronavirus disease 2019 (COVID-19) Pandemic on invasive pneumococcal disease and risk of pneumococcal coinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Prospective National Cohort Study, England.Clin. Infect. Dis.2021,72, e65–e75. [Google Scholar] [CrossRef]
- Yasir, M.; Al-Sharif, H.A.; Al-Subhi, T.; Sindi, A.A.; Bokhary, D.H.; El-Daly, M.M.; Alosaimi, B.; Hamed, M.E.; Karim, A.M.; Hassan, A.M.; et al. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia.J. Infect. Public Health2023,16, 680–688. [Google Scholar] [CrossRef]
- Choe, Y.J.; Park, S.; Michelow, I.C. Co-seasonality and co-detection of respiratory viruses and bacteraemia in children: A retrospective analysis.Clin. Microbiol. Infect.2020,26, e5–e1690. [Google Scholar] [CrossRef]
- Wolter, N.; Tempia, S.; Cohen, C.; Madhi, S.A.; Venter, M.; Moyes, J.; Walaza, S.; Malope-Kgokong, B.; Groome, M.; du Plessis, M.; et al. High nasopharyngeal pneumococcal density, increased by viral coinfection, is associated with invasive pneumococcal pneumonia.J. Infect. Dis.2014,210, 1649–1657. [Google Scholar] [CrossRef]
- Berry, I.; Tuite, A.R.; Salomon, A.; Drews, S.; Harris, A.D.; Hatchette, T.; Johnson, C.; Kwong, J.; Lojo, J.; McGeer, A.; et al. Association of Influenza Activity and Environmental Conditions With the Risk of Invasive Pneumococcal Disease.JAMA Netw. Open.2020,3, e2010167. [Google Scholar] [CrossRef]
- Nakagawara, K.; Kamata, H.; Chubachi, S.; Namkoong, H.; Tanaka, H.; Lee, H.; Otake, S.; Fukushima, T.; Kusumoto, T.; Morita, A.; et al. Impact of respiratory bacterial infections on mortality in Japanese patients with COVID-19: A retrospective cohort study.BMC Pulm. Med.2023,23, 146. [Google Scholar] [CrossRef]
- Danino, D.; Ben-Shimol, S.; van der Beek, B.A.; Givon-Lavi, N.; Avni, Y.S.; Greenberg, D.; Weinberger, D.M.; Dagan, R. Decline in Pneumococcal Disease in Young Children During the Coronavirus Disease 2019 (COVID-19) Pandemic in Israel Associated With Suppression of Seasonal Respiratory Viruses, Despite Persistent Pneumococcal Carriage: A Prospective Cohort Study.Clin. Infect. Dis.2022,75, e1154–e1164. [Google Scholar] [CrossRef]
- Bertran, M.; Amin-Chowdhury, Z.; Sheppard, C.L.; Eletu, S.; Zamarreño, D.V.; Ramsay, M.E.; Litt, D.; Fry, N.K.; Ladhani, S.N. Increased Incidence of Invasive Pneumococcal Disease among Children after COVID-19 Pandemic, England.Emerg. Infect. Dis.2022,28, 1669–1672. [Google Scholar] [CrossRef]
- Bardsley, M.; Morbey, R.A.; Hughes, H.E.; Beck, C.R.; Watson, C.H.; Zhao, H.; Ellis, J.; Smith, G.E.; Elliot, A.J. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: A retrospective observational study.Lancet Infect. Dis.2023,23, 56–66. [Google Scholar] [CrossRef]
- National Health System. Childhood Vaccination Coverage Statistics-England, 2021–22. Available online:https://digital.nhs.uk/data-and-information/publications/statistical/nhs-immunisation-statistics/2021-22/6in-1-vaccine#pneumococcal-conjugate-vaccine-pcv- (accessed on 28 February 2023).
- Perniciaro, S.; van der Linden, M.; Weinberger, D.M. Reemergence of Invasive Pneumococcal Disease in Germany during the Spring and Summer of 2021.Clin. Infect. Dis.2022,75, 1149–1153. [Google Scholar] [CrossRef]
- Guy, R.; Henderson, K.L.; Coelho, J.; Hughes, H.; Mason, E.L.; Gerver, S.M.; Demirijian, A.; Watson, C.; Sharp, A.; Brown, C.S.; et al. Increase in invasive group A streptococcal infection notifications, England, 2022.Euro Surveill.2023,28, 2200942. [Google Scholar] [CrossRef]
- World Health Organization. Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection—Multi-Country. Available online:https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429 (accessed on 28 February 2022).
- Centers for Disease Control and Prevention. Increase in Invasive Group A Strep Infections, 2022–2023. Available online:https://www.cdc.gov/groupastrep/igas-infections-investigation.html (accessed on 28 February 2023).
- de Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; ISIS-AR Study Group; GAS Study Group; de Melker, H.E.; van Sorge, M.N.; Members of GAS Study Group; et al. Increase in invasive group A streptococcal (Streptococcus pyogenes) infections (iGAS) in young children in the Netherlands, 2022.Euro Surveill.2023,28, 2200941. [Google Scholar] [CrossRef]
- Venkatesan, P. Rise in group A streptococcal infections in England.Lancet Respir. Med.2023,11, e16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Autore, G.; Ramundo, G.; Esposito, S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic.Viruses2023,15, 1160. https://doi.org/10.3390/v15051160
Principi N, Autore G, Ramundo G, Esposito S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic.Viruses. 2023; 15(5):1160. https://doi.org/10.3390/v15051160
Chicago/Turabian StylePrincipi, Nicola, Giovanni Autore, Greta Ramundo, and Susanna Esposito. 2023. "Epidemiology of Respiratory Infections during the COVID-19 Pandemic"Viruses 15, no. 5: 1160. https://doi.org/10.3390/v15051160
APA StylePrincipi, N., Autore, G., Ramundo, G., & Esposito, S. (2023). Epidemiology of Respiratory Infections during the COVID-19 Pandemic.Viruses,15(5), 1160. https://doi.org/10.3390/v15051160



