Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks
Abstract
:1. Introduction
1.1. Background
1.2. Defining “Smart” Nanomaterials
1.3. Immunoliposomes: Semantics and Understanding
2. Tumor Immunotherapy
2.1. Tumor Immune Response and Escape
2.2. Shift of Immunotherapy Strategy
3. Immune-Inducing Liposomes: Formulation and Characterization
3.1. Nanoparticles in Immunotherapy
3.2. Liposomes
3.2.1. Liposome Formulation
3.2.2. Liposome Preparation
3.3. Methods for Liposomal Drug/Ligand Loading/Conjugation
3.3.1. Drug Loading
3.3.2. Peptide Conjugation
3.3.3. Cytokine Loading and Conjugation
3.3.4. RNA or Nucleotide Loading
3.4. Antibody Conjugates
3.4.1. Antibody Structure
3.4.2. Antibody Modifications Allowing for Binding
3.4.3. Coupling Techniques
4. In Vivo Progression of Liposomal Nanoparticles
4.1. Uptake, Clearance, and Biodistribution
4.1.1. Peptide-Conjugated
4.1.2. Nucleotide-Conjugated
4.1.3. Antibody-Conjugated
4.2. Passive Targeting via the EPR Effect
4.2.1. EPR-Mediated IILF Targeting: Necessary, but Insufficient
4.2.2. Therapeutic Targeting of the EPR Effect
5. Therapeutic Strategies of Antibody-Conjugated Liposomes
5.1. Direct Target Transmembrane Signaling on Tumor Cells
5.2. Interaction with the TME
5.3. Antibody-Drug Conjugated Liposome
6. The Novel Concept of Immune-Inducing Liposomal Formulations
6.1. Cancer Vaccines
6.1.1. DNA and RNA Vaccines
6.1.2. Peptide Vaccines
6.1.3. Cooperative Combat against Cancer
6.2. Reversal of Immune Suppression in the TME
6.3. In Situ Vaccination
7. Application in Clinic
7.1. Lipo-MERIT (Melanoma FixVac)
7.2. DPX-0907
7.3. L-BLP25 (Tecemotide)
7.4. Lipovaxin-MM
7.5. PDS0101
7.6. Autologous Tumor Cell Vaccine
7.7. dHER2 + AS15 Vaccine
7.8. ONT-10
8. Limitations and Future Prospects
8.1. General Areas of Improvement
8.2. Personalized Medicine Approaches
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review.Eur. J. Cancer2016,54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lammers, T. Combining Nanomedicine and Immunotherapy.Acc. Chem. Res.2019,52, 1543–1554. [Google Scholar] [CrossRef]
- Ohashi, P.S.; Sharpe, A. Editorial overview: Cancer Immunotherapy: Are we there yet?Curr. Opin. Immunol.2021,69, iii–v. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, M.; Ye, Z.; Nyalile, T.; Li, Y.; Glass, Z.; Zhao, X.; Yang, L.; Chen, J.; Xu, Q. In situ cancer vaccination using lipidoid nanoparticles.Sci. Adv.2021,7, eabf1244. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Smith, M.R.; Campbell, K.S. Immunotherapy of cancer.Eur. J. Pharmacol.2009,625, 41–54. [Google Scholar] [CrossRef]
- Joshi, K.; Chain, B.M.; Peggs, K.S.; Quezada, S.A. The “Achilles’ Heel” of Cancer and Its Implications for the Development of Novel Immunotherapeutic Strategies.Cold Spring Harb. Perspect. Med.2018,8, a027086. [Google Scholar] [CrossRef] [Green Version]
- Merino, M.; Contreras, A.; Casares, N.; Troconiz, I.F. A new immune-nanoplatform for promoting adaptive antitumor immune response.Nanomedicine2019,17, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation; applications.Nanoscale Res. Lett.2013,8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sawant, R.R.; Torchilin, V.P. Liposomes as ‘smart’ pharmaceutical nanocarriers.Soft Matter2010,6, 4026–4044. [Google Scholar] [CrossRef]
- Amin, M.; Huang, W.; Seynhaeve, A.L.B.; Ten Hagen, T.L.M. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors.Pharmaceutics2020,12, 1007. [Google Scholar] [CrossRef]
- Elamir, A.; Ajith, S.; Sawaftah, N.A.; Abuwatfa, W.; Mukhopadhyay, D.; Paul, V.; Al-Sayah, M.H.; Awad, N.; Husseini, G.A. Ultrasound-triggered herceptin liposomes for breast cancer therapy.Sci. Rep.2021,11, 7545. [Google Scholar] [CrossRef]
- Alavizadeh, S.H.; Soltani, F.; Ramezani, M. Recent Advances in Immunoliposome-Based Cancer Therapy.Curr. Pharmacol. Rep.2016,2, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ma, Y.; Zhao, H.; Yuan, Y.; Kim, B.Y.S. Nanotechnology platforms for cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020,12, e1590. [Google Scholar] [CrossRef]
- Burnet, F.M. The concept of immunological surveillance.Prog. Exp. Tumor Res.1970,13, 1–27. [Google Scholar] [PubMed]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers.Nature1998,396, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape.Nat. Immunol.2002,3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines.NPJ Vaccines2019,4, 7. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.Semin. Cancer Biol.2015,35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression.Cell2015,162, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy.Cell2017,168, 707–723. [Google Scholar] [CrossRef] [Green Version]
- Sanmamed, M.F.; Chen, L.P. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization (vol 175, pg 313, 2018).Cell2019,176, 677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroschinsky, F.; Stolzel, F.; von Bonin, S.; Beutel, G.; Kochanek, M.; Kiehl, M.; Schellongowski, P.; Oncol, I.C.H. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management.Crit. Care2017,21, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Zhang, Z.B.; Lai, W.F.; Cui, L.; Zhu, X. How to overcome the side effects of tumor immunotherapy.Biomed. Pharmacother.2020,130, 110639. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017,17, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date.Pharm. Res.2016,33, 2373–2387. [Google Scholar] [CrossRef]
- Liu, Q.; Duo, Y.; Fu, J.; Qiu, M.; Sun, Z.; Adah, D.; Kang, J.; Xie, Z.; Fan, T.; Bao, S.; et al. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy.Nano Today2021,36, 101023. [Google Scholar] [CrossRef]
- Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine2019,14, 93–126. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Zhu, W.; Guo, R.; Sun, H.; Chen, X.; Deng, N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy.Mol. Ther.-Methods Clin. Dev.2020,18, 751–764. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review.Pharmaceutics2017,9, 12. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines.Vaccines2021,9, 359. [Google Scholar] [CrossRef]
- Bangham, A.D.; Horne, R.W. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope.J. Mol. Biol.1964,8, 660–668. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Ryman, B.E. Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases.Biochem. J.1971,124, 58P. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Has, C.; Sunthar, P. A comprehensive review on recent preparation techniques of liposomes.J. Liposome Res.2020,30, 336–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Wang, S.M.; Li, N.; Hu, Y.; Zhang, Y.; Xu, J.F.; Li, X.; Ren, J.; Su, B.; Yuan, W.Z.; et al. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats.PLoS ONE2013,8, e58275. [Google Scholar] [CrossRef] [Green Version]
- Hamada, H.; Okada, S.; Shimoda, K.; Hamada, H.; Masuoka, N. Synthesis of Ester-linked Docetaxel-glycoside Conjugate and Its Application to Drug Delivery System using Immunoliposome Targeted with Trastuzumab.Nat. Prod. Commun.2016,11, 1635–1636. [Google Scholar] [CrossRef] [Green Version]
- Khaw, B.A.; DaSilva, J.; Hartner, W.C. Cytoskeletal-antigen specific immunoliposome-targeted in vivo preservation of myocardial viability.J. Control. Release2007,120, 35–40. [Google Scholar] [CrossRef]
- Tuffin, G.; Waelti, E.; Huwyler, J.; Hammer, C.; Marti, H.P. Immunoliposome targeting to mesangial cells: A promising strategy for specific drug delivery to the kidney.J. Am. Soc. Nephrol.2005,16, 3295–3305. [Google Scholar] [CrossRef] [Green Version]
- Xianghua, Y.; Zirong, X. The use of immunoliposome for nutrient target regulation (a review).Crit. Rev. Food Sci. Nutr.2006,46, 629–638. [Google Scholar] [CrossRef]
- Zhan, C.; Gu, B.; Xie, C.; Li, J.; Liu, Y.; Lu, W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.J. Control. Release2010,143, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Rommasi, F.; Esfandiari, N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy.Nanoscale Res. Lett.2021,16, 95. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer.J. Control. Release2020,326, 628–647. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.B.; Gamarra, L.F. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier.Int. J. Nanomed.2016,11, 5381–5414. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications.Cancer Nanotechnol.2019,10, 11. [Google Scholar] [CrossRef]
- Lu, T.; Haemmerich, D.; Liu, H.; Seynhaeve, A.L.B.; van Rhoon, G.C.; Houtsmuller, A.B.; Ten Hagen, T.L.M. Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response.Theranostics2021,11, 5700–5712. [Google Scholar] [CrossRef] [PubMed]
- Brake, J.M.; Daschner, M.K.; Abbott, N.L. Formation and Characterization of Phospholipid Monolayers Spontaneously Assembled at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals.Langmuir2005,21, 2218–2228. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems.Asian J. Pharm. Sci.2015,10, 81–98. [Google Scholar] [CrossRef]
- Mozafari, M.R. Liposomes: An overview of manufacturing techniques.Cell Mol. Biol. Lett.2005,10, 711–719. [Google Scholar]
- Genç, R.; Ortiz, M.; O’Sullivan, C.K. Curvature-Tuned Preparation of Nanoliposomes.Langmuir2009,25, 12604–12613. [Google Scholar] [CrossRef]
- Billerit, C.; Jeffries, G.D.M.; Orwar, O.; Jesorka, A. Formation of giant unilamellar vesicles from spin-coated lipid films by localized IR heating.Soft Matter2012,8, 10823–10826. [Google Scholar] [CrossRef] [Green Version]
- Ramón, E.; Alonso, C.; Coderch, L.; Maza, A.D.L.; López, O.; Parra, J.L.; Notario, J. Liposomes as Alternative Vehicles for Sun Filter Formulations.Drug Deliv.2005,12, 83–88. [Google Scholar] [CrossRef]
- Kara, S.; Afonin, S.; Babii, O.; Tkachenko, A.N.; Komarov, I.V.; Ulrich, A.S. Diphytanoyl lipids as model systems for studying membrane-active peptides.Biochim. Biophys. Acta (BBA)-Biomembr.2017,1859, 1828–1837. [Google Scholar] [CrossRef]
- Galvagnion, C.; Topgaard, D.; Makasewicz, K.; Buell, A.K.; Linse, S.; Sparr, E.; Dobson, C.M. Lipid Dynamics and Phase Transition within α-Synuclein Amyloid Fibrils.J. Phys. Chem. Lett.2019,10, 7872–7877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, B.; McNeil, S.; Zheng, Q.; Mohammed, A.; Perrie, Y. Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their Transfection Efficacy.Pharmaceutics2011,3, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.T.; Cao, V.D.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Hoang Thi, T.T. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications.Int. J. Mol. Sci.2019,20, 4706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellens, H.; Bentz, J.; Szoka, F.C. Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature.Biochemistry1986,25, 285–294. [Google Scholar] [CrossRef]
- Kimelberg, H.K.; Papahadjopoulos, D. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na++ K+)-stimulated adenosine triphosphatase.J. Biol. Chem.1974,249, 1071–1080. [Google Scholar] [CrossRef]
- Zalba, S.; Ten Hagen, T.L. Cell membrane modulation as adjuvant in cancer therapy.Cancer Treat. Rev.2017,52, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabouridis, P.S. Lipid rafts in T cell receptor signalling.Mol. Membr. Biol.2006,23, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicheva, B.M.; ten Hagen, T.L.; Schipper, D.; Seynhaeve, A.L.; van Rhoon, G.C.; Eggermont, A.M.; Koning, G.A. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes.J. Control. Release2014,195, 37–48. [Google Scholar] [CrossRef]
- Esseling-Ozdoba, A.; Vos, J.W.; van Lammeren, A.A.; Emons, A.M. Synthetic lipid (DOPG) vesicles accumulate in the cell plate region but do not fuse.Plant Physiol.2008,147, 1699–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juszkiewicz, K.; Sikorski, A.F.; Czogalla, A. Building Blocks to Design Liposomal Delivery Systems.Int. J. Mol. Sci.2020,21, 9559. [Google Scholar] [CrossRef]
- Lou, G.; Anderluzzi, G.; Schmidt, S.T.; Woods, S.; Gallorini, S.; Brazzoli, M.; Giusti, F.; Ferlenghi, I.; Johnson, R.N.; Roberts, C.W.; et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection.J. Control. Release2020,325, 370–379. [Google Scholar] [CrossRef]
- Regelin, A.E.; Fankhaenel, S.; Gürtesch, L.; Prinz, C.; von Kiedrowski, G.; Massing, U. Biophysical and lipofection studies of DOTAP analogs.Biochim. Biophys. Acta (BBA)-Biomembr.2000,1464, 151–164. [Google Scholar] [CrossRef]
- Bielke, W.; Erbacher, C.Nucleic Acid Transfection; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Saeed, M.; van Brakel, M.; Zalba, S.; Schooten, E.; Rens, J.A.P.; Koning, G.A.; Debets, R.; Ten Hagen, T.L.M. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody.Int. J. Nanomed.2016,11, 955–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, T.M. Long-circulating (sterically stabilized) liposomes for targeted drug delivery.Trends Pharmacol. Sci.1994,15, 215–220. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs.Nano Lett.2015,15, 7300–7306. [Google Scholar] [CrossRef]
- Hafez, I.M.; Cullis, P.R. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior.Biochim. Biophys. Acta (BBA)-Biomembr.2000,1463, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles.Ther. Deliv.2016,7, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Blakney, A.K.; McKay, P.F.; Yus, B.I.; Aldon, Y.; Shattock, R.J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA.Gene Ther.2019,26, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Münter, R.; Kristensen, K.; Pedersbæk, D.; Larsen, J.B.; Simonsen, J.B.; Andresen, T.L. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies.Nanoscale2018,10, 22720–22724. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, M.; Garello, F.; Stefania, R.; Gaidano, V.; Cignetti, A.; Spinelli, M.; Fava, C.; Nikougoftar Zarif, M.; Galimberti, S.; Pungolino, E.; et al. Targeting Chronic Myeloid Leukemia Stem/Progenitor Cells Using Venetoclax-Loaded Immunoliposome.Cancers2021,13, 1311. [Google Scholar] [CrossRef]
- van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha van Scheltinga, A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E7(43–63) synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses.J. Control. Release2018,269, 347–354. [Google Scholar] [CrossRef]
- Ten Hagen, T.L.M.; Van Der Veen, A.H.; Nooijen, P.T.; Van Tiel, S.T.; Seynhaeve, A.L.; Eggermont, A.M. Low-dose tumor necrosis factor-alpha augments antitumor activity of stealth liposomal doxorubicin (DOXIL) in soft tissue sarcoma-bearing rats.Int. J. Cancer2000,87, 829–837. [Google Scholar] [CrossRef]
- Yang, E.Y.; Shah, K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics.Front. Oncol.2020,10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Jacoberger-Foissac, C.; Saliba, H.; Wantz, M.; Seguin, C.; Flacher, V.; Frisch, B.; Heurtault, B.; Fournel, S. Liposomes as tunable platform to decipher the antitumor immune response triggered by TLR and NLR agonists.Eur. J. Pharm. Biopharm.2020,152, 348–357. [Google Scholar] [CrossRef]
- Federizon, J.; Feugmo, C.G.T.; Huang, W.C.; He, X.; Miura, K.; Razi, A.; Ortega, J.; Karttunen, M.; Lovell, J.F. Experimental and Computational Observations of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association.Pharmaceutics2021,13, 98. [Google Scholar] [CrossRef]
- Gargett, T.; Abbas, M.N.; Rolan, P.; Price, J.D.; Gosling, K.M.; Ferrante, A.; Ruszkiewicz, A.; Atmosukarto, I.I.C.; Altin, J.; Parish, C.R.; et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma.Cancer Immunol. Immunother2018,67, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Duan, S.; Ye, F.; Hou, X.; Li, X.; Zhao, J.; Yu, X.; Hu, Z.; Tang, Z.; Mo, F.; et al. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide.Theranostics2018,8, 1723–1739. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, F.; Wang, Q.; Xiang, H.; Jin, H.; Li, H.; Mao, S. A novel immunoliposome mediated by CD123 antibody targeting to acute myeloid leukemia cells.Int. J. Pharm.2017,529, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.K.; Tirumkudulu, M.S. Synthesis of Sub-100-nm Liposomes via Hydration in a Packed Bed of Colloidal Particles.Ind. Eng. Chem. Res.2014,53, 198–205. [Google Scholar] [CrossRef]
- Chen, W.; Duša, F.; Witos, J.; Ruokonen, S.-K.; Wiedmer, S.K. Determination of the Main Phase Transition Temperature of Phospholipids by Nanoplasmonic Sensing.Sci. Rep.2018,8, 14815. [Google Scholar] [CrossRef] [Green Version]
- Rodallec, A.; Franco, C.; Robert, S.; Sicard, G.; Giacometti, S.; Lacarelle, B.; Bouquet, F.; Savina, A.; Lacroix, R.; Dignat-George, F.; et al. Prototyping Trastuzumab Docetaxel Immunoliposomes with a New FCM-Based Method to Quantify Optimal Antibody Density on Nanoparticles.Sci. Rep.2020,10, 4147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanaswamy, R.; Torchilin, V.P. Targeted Delivery of Combination Therapeutics Using Monoclonal Antibody 2C5-Modified Immunoliposomes for Cancer Therapy.Pharm. Res.2021,38, 429–450. [Google Scholar] [CrossRef]
- Hei, Y.; Teng, B.; Zeng, Z.; Zhang, S.; Li, Q.; Pan, J.; Luo, Z.; Xiong, C.; Wei, S. Multifunctional Immunoliposomes Combining Catalase and PD-L1 Antibodies Overcome Tumor Hypoxia and Enhance Immunotherapeutic Effects Against Melanoma.Int. J. Nanomed.2020,15, 1677–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkada, M.; Berinstein, N.L.; Mansour, M. Therapeutic vaccines and cancer: Focus on DPX-0907.Biol. Targets Ther.2014,8, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential.J. Control. Release2010,142, 299–311. [Google Scholar] [CrossRef]
- Agrawal, B.; Krantz, M.J.; Reddish, M.A.; Longenecker, B.M. Rapid induction of primary human CD4+ and CD8+ T cell responses against cancer-associated MUC1 peptide epitopes.Int. Immunol.1998,10, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Naciute, M.; Niemi, V.; Kemp, R.A.; Hook, S. Lipid-encapsulated oral therapeutic peptide vaccines reduce tumour growth in an orthotopic mouse model of colorectal cancer.Eur. J. Pharm. Biopharm.2020,152, 183–192. [Google Scholar] [CrossRef]
- Hirsch, M.; Ziroli, V.; Helm, M.; Massing, U. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC).J. Control. Release2009,135, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. Liposome and niosome preparation using a membrane contactor for scale-up.Colloids Surf. B Biointerfaces2012,94, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jahn, A.; Vreeland, W.N.; DeVoe, D.L.; Locascio, L.E.; Gaitan, M. Microfluidic directed formation of liposomes of controlled size.Langmuir2007,23, 6289–6293. [Google Scholar] [CrossRef]
- Phapal, S.M.; Has, C.; Sunthar, P. Spontaneous formation of single component liposomes from a solution.Chem. Phys. Lipids2017,205, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xie, F.; Xu, Y. When liposomes met antibodies: Drug delivery and beyond.Adv. Drug Deliv. Rev.2020,154–155, 151–162. [Google Scholar] [CrossRef]
- Yamamoto, E.; Miyazaki, S.; Aoyama, C.; Kato, M. A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography.Int. J. Pharm.2018,536, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Haran, G.; Cohen, R.; Bar, L.K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases.Biochim. Biophys. Acta1993,1151, 201–215. [Google Scholar] [CrossRef]
- Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2017,9, 8–12. [Google Scholar] [CrossRef]
- Yuba, E. Liposome-based immunity-inducing systems for cancer immunotherapy.Mol. Immunol.2018,98, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.; Machado, R.; Gomes, A.C.; Costa, A.d. Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective.Appl. Sci.2020,10, 7098. [Google Scholar] [CrossRef]
- Merino, M.; Zalba, S.; Garrido, M.J. Immunoliposomes in clinical oncology: State of the art and future perspectives.J. Control. Release2018,275, 162–176. [Google Scholar] [CrossRef] [PubMed]
- van Slooten, M.L.; Storm, G.; Zoephel, A.; Küpcü, Z.; Boerman, O.; Crommelin, D.J.A.; Wagner, E.; Kircheis, R. Liposomes Containing Interferon-Gamma as Adjuvant in Tumor Cell Vaccines.Pharm. Res.2000,17, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Christian, D.A.; Hunter, C.A. Particle-mediated delivery of cytokines for immunotherapy.Immunotherapy2012,4, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, N.; Suh, H.; Irvine, D.J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity.Nat. Commun.2018,9, 6. [Google Scholar] [CrossRef]
- Konigsberg, P.J.; Godtel, R.; Kissel, T.; Richer, L.L. The development of IL-2 conjugated liposomes for therapeutic purposes.Biochim. Biophys. Acta (BBA)-Biomembr.1998,1370, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, H.; Zheng, B.; Liu, J.; Huang, Y.; Wang, H.; Zheng, D.; Mao, N.; Meng, J.; Zhou, S.; Zhong, L.; et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes.J. Exp. Clin. Cancer Res.2018,37, 42. [Google Scholar] [CrossRef] [Green Version]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement.ACS Nano2021,15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Agger, E.M.; Rosenkrands, I.; Hansen, J.; Brahimi, K.; Vandahl, B.S.; Aagaard, C.; Werninghaus, K.; Kirschning, C.; Lang, R.; Christensen, D.; et al. Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements.PLoS ONE2008,3, e3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction.Chem. Sci.2017,8, 63–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery.Colloids Surf. B Biointerfaces2017,159, 454–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, G.J. Building better monoclonal antibody-based therapeutics.Nat. Rev. Cancer2015,15, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Iden, D.L.; Allen, T.M. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach.Biochim. Biophys. Acta (BBA)-Biomembr.2001,1513, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Crivianu-Gaita, V.; Romaschin, A.; Thompson, M. High efficiency reduction capability for the formation of Fab׳ antibody fragments from F(ab)(2) units.Biochem. Biophys. Rep.2015,2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Zalba, S.; Seynhaeve, A.L.B.; Debets, R.; Ten Hagen, T.L.M. Liposomes targeted to MHC-restricted antigen improve drug delivery and antimelanoma response.Int. J. Nanomed.2019,14, 2069–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnier, P.P.; Vigouroux, R.J.; Tassew, N.G. In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments.Antibodies2013,2, 193–208. [Google Scholar] [CrossRef]
- Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.M.; Hamid, M. scFv Antibody: Principles and Clinical Application.Clin. Dev. Immunol.2012,2012, 980250. [Google Scholar] [CrossRef]
- Rabenhold, M.; Steiniger, F.; Fahr, A.; Kontermann, R.E.; Rüger, R. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.J. Control. Release2015,201, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, C.; Muyldermans, S. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy.Front. Immunol.2017,8, 1442. [Google Scholar] [CrossRef]
- Oliveira, S.; Schiffelers, R.M.; van der Veeken, J.; van der Meel, R.; Vongpromek, R.; van Bergen en Henegouwen, P.M.P.; Storm, G.; Roovers, R.C. Downregulation of EGFR by a novel multivalent nanobody-liposome platform.J. Control. Release2010,145, 165–175. [Google Scholar] [CrossRef] [PubMed]
- van der Meel, R.; Oliveira, S.; Altintas, I.; Haselberg, R.; van der Veeken, J.; Roovers, R.C.; van Bergen en Henegouwen, P.M.P.; Storm, G.; Hennink, W.E.; Schiffelers, R.M.; et al. Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment.J. Control. Release2012,159, 281–289. [Google Scholar] [CrossRef]
- Manjappa, A.S.; Chaudhari, K.R.; Venkataraju, M.P.; Dantuluri, P.; Nanda, B.; Sidda, C.; Sawant, K.K.; Murthy, R.S. Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemotherapeutics to tumor.J. Control. Release2011,150, 2–22. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Visweswaran, G.R.R.; Storm, G.; Hennink, W.E.; Kamps, J.A.A.M.; Kok, R.J. E-selectin targeted immunoliposomes for rapamycin delivery to activated endothelial cells.Int. J. Pharm.2018,548, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Hua, S. Synthesis and in vitro characterization of oxytocin receptor targeted PEGylated immunoliposomes for drug delivery to the uterus.J. Liposome Res.2019,29, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.A.; Gomes, B.; Coelho, M.A.N.; do Carmo Pereira, M.; Rocha, S. Immunoliposomes doubly targeted to transferrin receptor and to α-synuclein.Future Sci. OA2015,1, FSO71. [Google Scholar] [CrossRef] [Green Version]
- Moles, E.; Urbán, P.; Jiménez-Díaz, M.B.; Viera-Morilla, S.; Angulo-Barturen, I.; Busquets, M.A.; Fernàndez-Busquets, X. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy.J. Control. Release2015,210, 217–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapra, P.; Moase, E.H.; Ma, J.; Allen, T.M. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments.Clin. Cancer Res.2004,10, 1100–1111. [Google Scholar] [CrossRef] [Green Version]
- Merino, M.; Lozano, T.; Casares, N.; Lana, H.; Troconiz, I.F.; Ten Hagen, T.L.M.; Kochan, G.; Berraondo, P.; Zalba, S.; Garrido, M.J. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model.J. Nanobiotechnol.2021,19, 102. [Google Scholar] [CrossRef]
- Mohammadian Haftcheshmeh, S.; Zamani, P.; Mashreghi, M.; Nikpoor, A.R.; Tavakkol-Afshari, J.; Jaafari, M.R. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer.Biotechnol. Prog.2021,37, e3095. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Liu, I.J.; Chung, M.-J.; Wu, H.-C. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck.Oral. Oncol.2020,106, 104689. [Google Scholar] [CrossRef]
- Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials.Adv. Mater.2018,30, 1704307. [Google Scholar] [CrossRef] [PubMed]
- Yanchun, W.; Li, Q.; Chao, Z.; Qiuqiang, Z. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application.Nanomedicine2018,13, 1495–1512. [Google Scholar]
- Kao, Y.J.; Juliano, R.L. Interactions of liposomes with the reticuloendothelial system effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles.Biochim. Biophys. Acta (BBA)-Gen. Subj.1981,677, 453–461. [Google Scholar] [CrossRef]
- Ettrich, T.J.; Seufferlein, T. Systemic Therapy for Metastatic Pancreatic Cancer.Curr. Treat. Options Oncol.2021,22, 106. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Broniatowski, M.; Mach, M.; Płachta, Ł.; Wydro, P. The effect of the polyethylene glycol chain length of a lipopolymer (DSPE-PEGn) on the properties of DPPC monolayers and bilayers.J. Mol. Liq.2021,335, 116529. [Google Scholar] [CrossRef]
- Frezard, F. Liposomes: From biophysics to the design of peptide vaccines.Braz. J. Med. Biol. Res.1999,32, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, S.; Thomsen, A.R. Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion.J. Virol.2012,86, 2900–2910. [Google Scholar] [CrossRef] [Green Version]
- Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances.Ther. Adv. Vaccines2014,2, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.W.; Allen, T.M. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: A comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv.J. Control. Release2008,126, 50–58. [Google Scholar] [CrossRef]
- Kamoun, W.S.; Kirpotin, D.B.; Huang, Z.R.; Tipparaju, S.K.; Noble, C.O.; Hayes, M.E.; Luus, L.; Koshkaryev, A.; Kim, J.; Olivier, K.; et al. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models.Nat. Biomed. Eng.2019,3, 264–280. [Google Scholar] [CrossRef]
- Rodallec, A.; Sicard, G.; Giacometti, S.; Carré, M.; Pourroy, B.; Bouquet, F.; Savina, A.; Lacarelle, B.; Ciccolini, J.; Fanciullino, R. Erratum in from 3D spheroids to tumor bearing mice: Efficacy and distribution studies of trastuzumab-docetaxel immunoliposome in breast cancer.Int. J. Nanomed.2018,13, 6677–6688.Int. J. Nanomed.2019,14, 335. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.J. Pers. Med.2021,11, 771. [Google Scholar] [CrossRef]
- Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.Cancer Res.2006,66, 6732–6740. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kröger, M.; Liu, W.K. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol.Biomaterials2014,35, 8467–8478. [Google Scholar] [CrossRef] [Green Version]
- Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J. Control. Release2016,244, 108–121. [Google Scholar] [CrossRef]
- Ngoune, R.; Peters, A.; von Elverfeldt, D.; Winkler, K.; Pütz, G. Accumulating nanoparticles by EPR: A route of no return.J. Control. Release2016,238, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.2014,66, 2–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diop-Frimpong, B.; Chauhan, V.P.; Krane, S.; Boucher, Y.; Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors.Proc. Natl. Acad. Sci. USA2011,108, 2909. [Google Scholar] [CrossRef] [Green Version]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Markedly Enhanced Permeability and Retention Effects Induced by Photo-immunotherapy of Tumors.ACS Nano2013,7, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.; Elsherbeny, A.; Pittalà, V.; Fallica, A.N.; Alghamdi, M.A.; Greish, K. The Potential Role of Sildenafil in Cancer Management through EPR Augmentation.J. Pers. Med.2021,11, 585. [Google Scholar] [CrossRef] [PubMed]
- Preston, I.R.; Klinger, J.R.; Houtches, J.; Nelson, D.; Farber, H.W.; Hill, N.S. Acute and chronic effects of sildenafil in patients with pulmonary arterial hypertension.Respir. Med.2005,99, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Greish, K.; Fateel, M.; Abdelghany, S.; Rachel, N.; Alimoradi, H.; Bakhiet, M.; Alsaie, A. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer.J. Drug Target.2018,26, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Kimura, S.; Islam, R.; Harada, A.; Ono, K.; Fang, J.; Niidome, T.; Sawa, T.; Maeda, H. EPR-Effect Enhancers Strongly Potentiate Tumor-Targeted Delivery of Nanomedicines to Advanced Cancers: Further Extension to Enhancement of the Therapeutic Effect.J. Pers. Med.2021,11, 487. [Google Scholar] [CrossRef]
- Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting.Adv. Enzym. Regul.2001,41, 189–207. [Google Scholar] [CrossRef]
- Tutt, A.L.; French, R.R.; Illidge, T.M.; Honeychurch, J.; McBride, H.M.; Penfold, C.A.; Fearon, D.T.; Parkhouse, R.M.; Klaus, G.G.; Glennie, M.J. Monoclonal antibody therapy of B cell lymphoma: Signaling activity on tumor cells appears more important than recruitment of effectors.J. Immunol.1998,161, 3176–3185. [Google Scholar] [PubMed]
- Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics.Expert Opin. Ther. Targets2011,15, 31–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.R.; Tipparaju, S.K.; Kirpotin, D.B.; Pien, C.; Kornaga, T.; Noble, C.O.; Koshkaryev, A.; Tran, J.; Kamoun, W.S.; Drummond, D.C. Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs.J. Control. Release2019,310, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Deore, S.V.; Ghadi, R.; Chaudhari, D.; Kuche, K.; Katiyar, S.S. Tumor microenvironment responsive VEGF-antibody functionalized pH sensitive liposomes of docetaxel for augmented breast cancer therapy.Mater. Sci. Eng. C Mater. Biol. Appl.2021,121, 111832. [Google Scholar] [CrossRef]
- Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress.Nat. Rev. Cancer2008,8, 473–480. [Google Scholar] [CrossRef]
- Staudacher, A.H.; Brown, M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required?Br. J. Cancer2017,117, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Liu, Y.; Meng, F.; Lee, R.J. Clinical translation of immunoliposomes for cancer therapy: Recent perspectives.Expert Opin. Drug Deliv.2018,15, 893–903. [Google Scholar] [CrossRef]
- Nakayama, M. Antigen Presentation by MHC-Dressed Cells.Front. Immunol.2014,5, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faurez, F.; Dory, D.; Le Moigne, V.; Gravier, R.; Jestin, A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection.Vaccine2010,28, 3888–3895. [Google Scholar] [CrossRef] [Green Version]
- Jorritsma, S.H.T.; Gowans, E.J.; Grubor-Bauk, B.; Wijesundara, D.K. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines.Vaccine2016,34, 5488–5494. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy.Nat. Rev. Genet.2014,15, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, X.; Han, S.; Wei, T.; Wang, X.; Cao, H.; Liang, X.J.; Liang, Z.; Cheng, Q.; Deng, L.; et al. Balancing Biocompatibility, Internalization and Pharmacokinetics of Polycations/siRNA by Structuring the Weak Negative Charged Ternary Complexes with Hyaluronic Acid.J. Biomed. Nanotechnol.2017,13, 1533–1544. [Google Scholar] [CrossRef]
- Mai, Y.; Guo, J.; Zhao, Y.; Ma, S.; Hou, Y.; Yang, J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity.Cell Immunol.2020,354, 104143. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, L.; Yazdani, M.; Momtazi-Borojeni, A.A.; Razazan, A.; Shariat, S.; Mansourian, M.; Arab, A.; Barati, N.; Arabsalmani, M.; Abbasi, A.; et al. Preparation of nanoliposomes containing HER2/neu (P5+435) peptide and evaluation of their immune responses and anti-tumoral effects as a prophylactic vaccine against breast cancer.PLoS ONE2020,15, e0243550. [Google Scholar] [CrossRef] [PubMed]
- Zamani, P.; Navashenaq, J.G.; Nikpoor, A.R.; Hatamipour, M.; Oskuee, R.K.; Badiee, A.; Jaafari, M.R. MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer.J. Control. Release2019,303, 223–236. [Google Scholar] [CrossRef]
- Jacoberger-Foissac, C.; Saliba, H.; Seguin, C.; Brion, A.; Kakhi, Z.; Frisch, B.; Fournel, S.; Heurtault, B. Optimization of peptide-based cancer vaccine compositions, by sequential screening, using versatile liposomal platform.In. J. Pharm.2019,562, 342–350. [Google Scholar] [CrossRef]
- He, X.; Zhou, S.; Quinn, B.; Jahagirdar, D.; Ortega, J.; Abrams, S.I.; Lovell, J.F. HPV-Associated Tumor Eradication by Vaccination with Synthetic Short Peptides and Particle-Forming Liposomes.Small2021,17, e2007165. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Yang, Y.; Jia, W.; Su, T.; Che, Y.; Feng, Y.; Yuan, X.; Wang, X. Mannose-Modified Liposome Co-Delivery of Human Papillomavirus Type 16 E7 Peptide and CpG Oligodeoxynucleotide Adjuvant Enhances Antitumor Activity Against Established Large TC-1 Grafted Tumors in Mice.Int. J. Nanomed.2020,15, 9571–9586. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Guo, H.; Zhou, J.; Wang, S.; Jiang, K.; Chai, Z.; Yao, S.; Wang, X.; Lu, L.; et al. A pentapeptide enabled AL3810 liposome-based glioma-targeted therapy with immune opsonic effect attenuated.Acta Pharm. Sin. B2021,11, 283–299. [Google Scholar] [CrossRef]
- Bae, J.; Parayath, N.; Ma, W.; Amiji, M.; Munshi, N.; Anderson, K.C. BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8(+) cytotoxic T lymphocytes against multiple myeloma: Clinical applications.Leukemia2020,34, 210–223. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Xue, T.; Cheng, Q.; Ye, X.; Wang, C.; Yu, Y.; Ji, X.; Wu, M.; Zhang, X.; et al. Liposomes Encapsulating Neoantigens and Black Phosphorus Quantum Dots for Enhancing Photothermal Immunotherapy.J. Biomed. Nanotechnol.2020,16, 1394–1405. [Google Scholar] [CrossRef]
- Yazdani, M.; Gholizadeh, Z.; Nikpoor, A.R.; Hatamipour, M.; Alani, B.; Nikzad, H.; Mohamadian Roshan, N.; Verdi, J.; Jaafari, M.R.; Noureddini, M.; et al. Vaccination with dendritic cells pulsed ex vivo with gp100 peptide-decorated liposomes enhances the efficacy of anti PD-1 therapy in a mouse model of melanoma.Vaccine2020,38, 5665–5677. [Google Scholar] [CrossRef]
- Yazdani, M.; Hatamipour, M.; Alani, B.; Nikzad, H.; Mohamadian Roshan, N.; Verdi, J.; Jaafari, M.R.; Noureddini, M.; Badiee, A. Liposomal gp100 vaccine combined with CpG ODN sensitizes established B16F10 melanoma tumors to anti PD-1 therapy.Iran. J. Basic. Med. Sci.2020,23, 1065–1077. [Google Scholar] [PubMed]
- Yazdani, M.; Jalali, S.A.; Badiee, A.; Shariat, S.; Mansourian, M.; Arabi, L.; Abbasi, A.; Saberi, Z.; Jaafari, M.R. Stimulation of Tumor-Specific Immunity by p5 HER-2/neu Generated Peptide Encapsulated in Nano-liposomes with High Phase Transition Temperature Phospholipids.Curr. Drug Deliv.2017,14, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Rueda, F.; Eich, C.; Cordobilla, B.; Domingo, P.; Acosta, G.; Albericio, F.; Cruz, L.J.; Domingo, J.C. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines.Immunobiology2017,222, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, F.; Yin, Y.; Zhang, Q.; Jin, H.; Wu, Y.; Pang, L.; Li, J.; Gao, J. Immunotherapy of Tumor RNA-Loaded Lipid Nanoparticles Against Hepatocellular Carcinoma.Int. J. Nanomed.2021,16, 1553–1564. [Google Scholar] [CrossRef]
- Grippin, A.J.; Wummer, B.; Wildes, T.; Dyson, K.; Trivedi, V.; Yang, C.; Sebastian, M.; Mendez-Gomez, H.R.; Padala, S.; Grubb, M.; et al. Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging.ACS Nano2019,13, 13884–13898. [Google Scholar] [CrossRef]
- Pektor, S.; Hilscher, L.; Walzer, K.C.; Miederer, I.; Bausbacher, N.; Loquai, C.; Schreckenberger, M.; Sahin, U.; Diken, M.; Miederer, M. In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET.EJNMMI Res.2018,8, 80. [Google Scholar] [CrossRef]
- Yang, X.; Fan, J.; Wu, Y.; Ma, Z.; Huang, J.; Zhang, Y.; Zhou, Z.; Mo, F.; Liu, X.; Yuan, H.; et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy.Nanomedicine2021,37, 102443. [Google Scholar] [CrossRef]
- Shergold, A.L.; Millar, R.; Nibbs, R.J.B. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade.Pharmacol. Res.2019,145, 104258. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Y.; Shi, J. Programmed death-ligand 1 monoclonal antibody-linked immunoliposomes for synergistic efficacy of miR-130a and oxaliplatin in gastric cancers.Nanomedicine2019,14, 1729–1744. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Pagès, F.; Marincola, F.M.; Angell, H.K.; Thurin, M.; Lugli, A.; Zlobec, I.; Berger, A.; Bifulco, C.; Botti, G.; et al. Cancer classification using the Immunoscore: A worldwide task force.J. Transl. Med.2012,10, 205. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice.Nat. Rev. Immunol.2020,20, 651–668. [Google Scholar] [CrossRef]
- Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.-L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. Calreticulin exposure dictates the immunogenicity of cancer cell death.Nat. Med.2007,13, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Oberli, M.A.; Reichmuth, A.M.; Dorkin, J.R.; Mitchell, M.J.; Fenton, O.S.; Jaklenec, A.; Anderson, D.G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy.Nano Lett.2017,17, 1326–1335. [Google Scholar] [CrossRef]
- Su, T.; Zhang, Y.; Valerie, K.; Wang, X.-Y.; Lin, S.; Zhu, G. STING activation in cancer immunotherapy.Theranostics2019,9, 7759. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020,154–155, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma.Nature2020,585, 107–112. [Google Scholar] [CrossRef]
- Berinstein, N.L.; Karkada, M.; Morse, M.A.; Nemunaitis, J.J.; Chatta, G.; Kaufman, H.; Odunsi, K.; Nigam, R.; Sammatur, L.; MacDonald, L.D.; et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients.J. Transl. Med.2012,10, 156. [Google Scholar] [CrossRef] [Green Version]
- Karkada, M.; Quinton, T.; Blackman, R.; Mansour, M. Tumor Inhibition by DepoVax-Based Cancer Vaccine Is Accompanied by Reduced Regulatory/Suppressor Cell Proliferation and Tumor Infiltration.ISRN Oncol.2013,2013, 753427. [Google Scholar] [CrossRef]
- Morse, M.A. Technology evaluation: BLP-25, Biomira Inc.Curr. Opin. Mol. Ther.2001,3, 102–105. [Google Scholar]
- Butts, C.; Murray, N.; Maksymiuk, A.; Goss, G.; Marshall, E.; Soulieres, D.; Cormier, Y.; Ellis, P.; Price, A.; Sawhney, R.; et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer.J. Clin. Oncol.2005,23, 6674–6681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butts, C.; Murray, R.N.; Smith, C.J.; Ellis, P.M.; Jasas, K.; Maksymiuk, A.; Goss, G.; Ely, G.; Beier, F.; Soulieres, D. A multicenter open-label study to assess the safety of a new formulation of BLP25 liposome vaccine in patients with unresectable stage III non-small-cell lung cancer.Clin. Lung Cancer2010,11, 391–395. [Google Scholar] [CrossRef]
- Rossmann, E.; Osterborg, A.; Lofvenberg, E.; Choudhury, A.; Forssmann, U.; von Heydebreck, A.; Schroder, A.; Mellstedt, H. Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: An exploratory study.Hum. Vaccin. Immunother.2014,10, 3394–3408. [Google Scholar] [CrossRef] [Green Version]
- Butts, C.; Socinski, M.A.; Mitchell, P.L.; Thatcher, N.; Havel, L.; Krzakowski, M.; Nawrocki, S.; Ciuleanu, T.E.; Bosquee, L.; Trigo, J.M.; et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): A randomised, double-blind, phase 3 trial.Lancet Oncol.2014,15, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Hida, T.; Nokihara, H.; Imamura, F.; Sakai, H.; Atagi, S.; Nishio, M.; Kashii, T.; Satouchi, M.; Helwig, C.; et al. Phase I/II study of tecemotide as immunotherapy in Japanese patients with unresectable stage III non-small cell lung cancer.Lung Cancer2017,105, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Park, K.; Soo, R.A.; Sun, Y.; Tyroller, K.; Wages, D.; Ely, G.; Yang, J.C.; Mok, T. INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer.BMC Cancer2011,11, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- North, S.A.; Graham, K.; Bodnar, D.; Venner, P. A pilot study of the liposomal MUC1 vaccine BLP25 in prostate specific antigen failures after radical prostatectomy.J. Urol.2006,176, 91–95. [Google Scholar] [CrossRef]
- Schimanski, C.C.; Kasper, S.; Hegewisch-Becker, S.; Schroder, J.; Overkamp, F.; Kullmann, F.; Bechstein, W.O.; Vohringer, M.; Ollinger, R.; Lordick, F.; et al. Adjuvant MUC vaccination with tecemotide after resection of colorectal liver metastases: A randomized, double-blind, placebo-controlled, multicenter AIO phase II trial (LICC).Oncoimmunology2020,9, 1806680. [Google Scholar] [CrossRef] [PubMed]
- Singer, C.F.; Pfeiler, G.; Hubalek, M.; Bartsch, R.; Stoger, H.; Pichler, A.; Petru, E.; Bjelic-Radisic, V.; Greil, R.; Rudas, M.; et al. Efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: Results from a prospective, randomised, neoadjuvant phase II study (ABCSG 34).Eur. J. Cancer2020,132, 43–52. [Google Scholar] [CrossRef]
- Boni, L.T.; Batenjany, M.M.; Neville, M.E.; Guo, Y.; Xu, L.; Wu, F.; Mason, J.T.; Robb, R.J.; Popescu, M.C. Interleukin-2-induced small unilamellar vesicle coalescence.Biochim. Biophys. Acta2001,1514, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Neelapu, S.S.; Gause, B.L.; Harvey, L.; Lee, S.T.; Frye, A.R.; Horton, J.; Robb, R.J.; Popescu, M.C.; Kwak, L.W. A novel proteoliposomal vaccine induces antitumor immunity against follicular lymphoma.Blood2007,109, 5160–5163. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, E.; Blackwell, K.; Hobeika, A.C.; Clay, T.M.; Broadwater, G.; Ren, X.R.; Chen, W.; Castro, H.; Lehmann, F.; Spector, N.; et al. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected].J. Transl. Med.2012,10, 28. [Google Scholar] [CrossRef] [Green Version]
- Nemunaitis, J.B.C.; Klucher, K.; Vo, A.; Whiting, S. Phase 1 dose escalation of ONT-10, a therapeutic MUC1 vaccine, in patients with advanced cancer.J. Immunother. Cancer2013,1, 240. [Google Scholar] [CrossRef] [Green Version]
- Lang, P.O.; Govind, S.; Bokum, A.T.; Kenny, N.; Matas, E.; Pitts, D.; Aspinall, R. Immune senescence and vaccination in the elderly.Curr. Top. Med. Chem.2013,13, 2541–2550. [Google Scholar] [CrossRef]
- Lizee, G.; Radvanyi, L.G.; Overwijk, W.W.; Hwu, P. Immunosuppression in melanoma immunotherapy: Potential opportunities for intervention.Clin. Cancer Res.2006,12, 2359s–2365s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasievich, E.A.; Chen, W.; Huang, L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine.Cancer Immunol. Immunother.2011,60, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Smalley Rumfield, C.; Pellom, S.T.; Morillon Ii, Y.M.; Schlom, J.; Jochems, C. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine.J. Immunother. Cancer2020,8, e000612. [Google Scholar] [CrossRef]
- Sayour, E.J.; De Leon, G.; Pham, C.; Grippin, A.; Kemeny, H.; Chua, J.; Huang, J.; Sampson, J.H.; Sanchez-Perez, L.; Flores, C.; et al. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles.Oncoimmunology2017,6, e1256527. [Google Scholar] [CrossRef] [Green Version]
- Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy.Int. J. Nanomed.2020,15, 8201–8215. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.; Ali, Z.; Li, S.; He, N. Applications of Magnetic Nanoparticles in Targeted Drug Delivery System.J. Nanosci. Nanotechnol.2015,15, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Alawak, M.; Abu Dayyih, A.; Mahmoud, G.; Tariq, I.; Duse, L.; Goergen, N.; Engelhardt, K.; Reddy Pinnapireddy, S.; Jedelská, J.; Awak, M.; et al. ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes.Eur. J. Pharm. Biopharm.2021,158, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Yuba, E.; Sugahara, Y.; Yoshizaki, Y.; Shimizu, T.; Kasai, M.; Udaka, K.; Kono, K. Carboxylated polyamidoamine dendron-bearing lipid-based assemblies for precise control of intracellular fate of cargo and induction of antigen-specific immune responses.Biomater. Sci.2021,9, 3076–3089. [Google Scholar] [CrossRef]
- DrugsUpdate. Chemo Bomb: New Cancer Treatment with Reduced Side Effects. 2010. Available online:https://www.drugsupdate.com/news/view/2/126/chemo-bomb-new-cancer-treatment-with-reduced-side-effects (accessed on 19 December 2021).
- Nakamura, T.; Harashima, H. Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy.Adv. Drug Deliv. Rev.2020,167, 78–88. [Google Scholar] [CrossRef]
- Chong, C.; Coukos, G.; Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics.Nat. Biotechnol.2021, 1–14. [Google Scholar] [CrossRef]
- Yossef, R.; Tran, E.; Deniger, D.C.; Gros, A.; Pasetto, A.; Parkhurst, M.R.; Gartner, J.J.; Prickett, T.D.; Cafri, G.; Robbins, P.F.; et al. Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy.JCI Insight2018,3, 3. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, K.; Shirai, M.; Taniguchi, K.; Hosoi, A.; Sun, C.; Kobayashi, Y.; Maejima, K.; Fujita, M.; Nakagawa, H.; Nomura, S.; et al. Deep immunophenotyping at the single-cell level identifies a combination of anti-IL-17 and checkpoint blockade as an effective treatment in a preclinical model of data-guided personalized immunotherapy.J. Immunother. Cancer2020,8, e001358. [Google Scholar] [CrossRef]
- Seynhaeve, A.L.B.; Amin, M.; Haemmerich, D.; van Rhoon, G.C.; ten Hagen, T.L.M. Hyperthermia and smart drug delivery systems for solid tumor therapy.Adv. Drug Deliv. Rev.2020,163–164, 125–144. [Google Scholar] [CrossRef]
- Caride, V.J. Liposomes as carriers of imaging agents.Crit. Rev. Ther. Drug Carr. Syst.1985,1, 121–153. [Google Scholar]
- Nagamitsu, A.; Greish, K.; Maeda, H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: Cases of advanced solid tumors.Jpn. J. Clin. Oncol.2009,39, 756–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Xu, Y.; Yang, W.; Niu, P.; Li, X.; Chen, Y.; Li, Z.; Liu, Y.; An, Y.; Liu, Y. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy.Nano Today2020,35, 100970. [Google Scholar] [CrossRef]
Advantage | Explanation | References |
---|---|---|
Biocompatibility | Non-toxic, biodegradable, non-immunogenic | [30] |
Amphiphilicity | High solubility of various compounds (both hydrophobic and hydrophilic, and compatible with many physiological cavities) | |
Smart | Stimuli-responsive and multifunctional | [8] |
Easy, accessible formulation procedures | With simple and inexpensive equipment, liposomes can be synthesized and customized in any laboratory | [10] |
Rational design, customization is an option (flexibility) | For example, attaching fluorophores, polyethylene glycosylation (PEGylation) | |
Drug packaging/protection | Reduced toxicity and clearance of encapsulated agent, controlled release Reduced unwanted exposure to normal tissues | [8] |
Applicable in multiple therapies | Including oncology, infectious diseases, and vaccinations | [34,35,36,37,38] |
Ab conjugation and other functionalization possibilities | Active targeting Therapeutic immune induction | [8] |
Deeper penetration to physiological compartments | e.g., blood–brain tumor barrier, deeper tissues | [39] |
Disadvantage | ||
Lack of specificity in delivery applications | The enhanced permeation and retention effect is often relied upon, with varying success | [9] |
Stability/half-life | Low stability can lead to leakage of encapsulated drugs or premature degradation | [8] |
Unreliable drug packaging based on low loading efficiency and drug leakage | In some cases loading efficiency and leakage can prevent therapeutic progression | [40] |
Certain cell layers not transversable | Stratum corneum cannot be crossed, blood–brain barrier can only be crossed with modifications (still being tested) | [41,42] |
Rigidity | Can cause insufficient drug release | [30,41] |
Upscaling challenges | Scale up requires stringent quality control and is labor intensive | [8] |
Type of Lipid or Agent | Application | Lipids in Use | Tm | Charge at Neutral pH | References |
---|---|---|---|
Saturated phospholipids | Tight packing of lipids for formation of a stable bilayer due to straight acyl chains Rigidity and stability Reduce clearance by the mononuclear phagocytic system Certain lipids can be modified for increased stability under certain conditions or for certain purposes | 1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC) | 55 °C | Neutral | [43,44,45,46,47,48,49,50,51,52] |
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) | 41 °C | Neutral | |||
1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) | 41 °C | Neutral | |||
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) | 74 °C | Neutral | |||
1,2-Dilauroyl-sn-glycero-3-phosphocholine (DLPC) | −2 °C | Neutral | |||
1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) | 24 °C | Neutral | |||
1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) | 23 °C | Negative | |||
1,2-Diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) | -- * | Neutral | |||
1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) | 50 °C | Neutral | |||
1,2-Dilauroyl-sn-glycero-3-phosphorylethanolamine (DLPE) | 29 °C | Neutral | |||
1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) | 60 °C | Neutral | |||
1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) | 60 °C | Neutral | |||
1,2-Dilauroyl-sn-glycero-3-phosphoglycerol (DLPG) | −3 °C |Negative | |||
1,2-Distearoyl-sn-glycero-3-phosphoglycerol (DSPG) | 55 °C |Negative | |||
1,2-Dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) | 51 °C |Negative | |||
1,2-Distearoyl-sn-glycero-3-phospho-L-serine (DSPS) | 68 °C |Negative | |||
1,2-Dilauroyl-sn-glycero-3-phosphate (DLPA) | 31 °C |Negative | |||
1,2-Dimyristoyl-sn-glycero-3-phosphate (DMPA) | 52 °C |Negative | |||
1,2-Dipalmitoyl-sn-glycero-3-phosphate (DPPA) | 65 °C |Negative | |||
1,2-Distearoyl-sn-glycero-3-phosphate (DSPA) | 75 °C |Negative | |||
1,2-Dioleoyl-sn-glycero-3-phosphate (DOPA) | −4 °C |Negative | |||
1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) | 35 °C | Negative | |||
1,2-Dilauroyl-sn-glycero-3-phospho-L-serine (DLPS) | 30 °C | Negative | |||
1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-PPC) | 42 °C |Neutral | |||
Natural phospholipids | Cost-effective Soybean PC (lecithin): stable and retains content suitably Other sources include sunflower and rape seeds, chicken egg yolk, and porcine or bovine brain Can be a blend of lipid molecules, so exact Tm cannot be determined | Hydrogenated soy l-α-phosphatidylcholine (HSPC) | Neutral | [44,46,53,54,55,56] |
L-α-phosphatidylcholine (Egg PC) | Neutral | |||
3-sn-phosphatidyl-L-serine (Brain PS) | Negative | |||
L-α-Phosphatidylglycerol (Egg PG) | Negative | |||
Unsaturated phospholipids | Tune bilayer fluidity at physiological temperatures Allow formation of lipid domains (rafts) Rafts facilitate embedding of functional moieties Choice between neutral and negatively charged lipids for pharmacokinetic tuning of liposomes Negatively charged (POPS) lipids increase interaction with endothelial and tumor cells, and thus clearance | 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) | −2 °C | Negative | [28,30,46,49,53,57,58,59,60,61,62,63,64] |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) |−2 °C | Neutral | |||
1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPE) | 25 °C | Neutral | |||
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) | −17 °C | Neutral | |||
1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) | 14 °C | Negative | |||
1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) | −11 °C | Negative | |||
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) | −16 °C | Neutral | |||
1,2-Dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) | −18 °C | Negative | |||
Sphingomyelin (SM) | 37 °C | Neutral | |||
1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine (SAPE) | nt ** | Neutral | |||
1,2-Dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) | −16 °C | Positive | |||
1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) | <5 °C | Positive | |||
1,2-Stearoyl-3-trimethylammonium-propane (DSTAP) | 63 °C | Positive | |||
1,2-Di-O-octadecenyl-3-trimethylammonium propane (DOTMA) | nt ** | Positive | |||
1,2-Dipalmitoyl-3-trimethylammonium-propane (DPTAP) |41 °C | Positive | |||
1,2-Dimyristoyl-3-trimethylammonium-propane (DMTAP) | 24 °C | Positive | |||
1,2-Dioleyloxy-3-dimethylaminopropane (DODMA) | nt ** | Positive | |||
PEGylated phospholipids | Adds a stealth element to liposomes (5–10%) Prevent aggregation and prolong circulation Length of PEG can be specified according to need PEG-maleimide functionalization is used for ligand coupling at the distal end of the PEG chain (maximum visibility) Can assist state-change and content-release at transition temperature (Tm) in the case of stimuli-responsive liposomes | 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino (polyethylene glycol)-2000) (DSPE-PEG(2000)) | [7,44,65,66,67] |
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino (polyethylene glycol)-5000) (DSPE-PEG(5000)) | |||
DMPE-((polyethylene glycol)-2000) (C14-PEG) | |||
1,2-Dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG(2000)) | |||
Cholesterols | Maintain phase and integrity of bilayer No effect on release of contents (without intervention) Buffers temperature’s effects on bilayer integrity Ratio can be adjusted for desired membrane integrity Cholesterol can be used as a site for embedding of molecules or proteins | Cholesterol (Ch) | [46,57,58,68] |
Cholesteryl hemisuccinate (CHEMS) | |||
3β-[N-(N’,N’-Dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) | |||
Non-lipid additives | Can add valuable, unique or desirable characteristics to particles Can be known as lipidoids e.g., Span 85 adds stability to emulsions | Squalene | [62,67,69,70] |
C12-200 | |||
Dimethyldioctadecylammonium (DDA) | |||
Sorbitane trioleate (Span 85) | |||
Diacetyl phosphate (DCP) | |||
Internal milieu of nanoparticles | Buffers with pH, tonicity, and appropriate solvent characteristics desired for a particular purpose, be it drug packaging, biological stability, or solute compatibility | Wide range of common buffers used successfully | [33] |
Labels and dyes | Fluorescently labelled lipids, denoted by “--/” (0.01 –0.03%) for membrane bilayer incorporation or strong association hitherto Labels can be combined to suit the needs and limitations of equipment | 7-Nitro-2-1,3-benzoxadiazol-4-yl--/ (NBD--lipid) | [45,71,72] |
/--Lissamine rhodamine B sulfonyl) (Liss-rhod--lipid) | |||
Vybrant™ DiD | |||
3,3′-Dioctadecyloxacarbocyanine Perchlorate (DiO) | |||
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N (TopFluor® AF488) (Various wavelengths available) | |||
Texas Red-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (TR-DPPE) | |||
Ligands, targeting, and immunogenic molecules | Small ligands are preferred, not whole antibodies (antigen-binding fragments, single-chain variable fragments, nanobodies, and peptides) for avoidance of immunogenicity and steric hindrance These can be with a targeting purpose, or an immune modulation purpose, such as ICB, T-cell interaction or cytokine delivery Chemotherapeutics packaged internally for hydrophilic drugs, and within lipid bilayers for lipophilic drugs Certain lipids are also functional as vaccine adjuvants (QS-21, DDAB, and MPLA) Others enhance affinity of lipid bilayers for certain markers on proteins (CoPoP interacts with his-tags) Others possess chelation ability (3NTA-DTDA) | Quillaja saponaria extract (QS-21) | [7,40,44,65,73,74,75,76,77,78,79] |
Dimethyldioctadecylammonium (DDAB) | |||
Monophosphoryl lipid A (MPLA) | |||
Cobalt porphyrin phospholipid (CoPoP) | |||
3(Nitrilotriacetic acid)-ditetradecylamine (3NTA-DTDA) |
VACCINE TYPE | Antigenic Loading | Deriving | Co-Administration Payload | LP Formulation | Tumor Model | Efficacy * | References | |
---|---|---|---|---|---|---|---|---|
Peptide | E749–57 | HPV 16 E7 | CoPoP, PHAD, QS-21 | DOPC/Cholesterol | TC-1 cell line | ①②③⑤ | [169] | |
CpG ODN | SPC/Cholesterol/DOTAP, DSPE-PEG(2000), DSPE-PEG(2000)-Mannose | ①②③⑤ | [170] | |||||
HPV16 E7 oncogene | HPV16 E7 | A helper peptide from influenza virus, A synthetic agonist (Pam2CAG or MPLA/C12iEDAP) | PC/PG/Cholesterol/DPPG-Maleimide | TC-1 cell line | ①②③④ | [76,168] | ||
mn | Integrin αvβ3 | AL3810 | HSPC/Cholesterol/mPEG(2000)-DSPE, HSPC/Cholesterol/mPEG(2000)-DSPE/PEG3400-DSPE | Glioma | ①⑤ | [171] | ||
P5 + P435 | HER2/neu | DSPE-PEG(2000)-Maleimide, DSPC/DSPG/Cholesterol/DOPE | Breast cancer | ①②③ | [166] | |||
BCMA72–80 | B cell | Cholesterol/DOPC/DOTAP | Multiple myeloma | ②③④ | [172] | |||
ADPGK | Neoantigen from mutation | Black phosphorus quantum dots | Colorectal cancer | ①②③④ | [173] | |||
gp100 | TAA | CpG-ODN | DSPE-PEG(2000)-Maleimide, DOTAP/Cholesterol | Melanoma | ①②③④ | [174,175] | ||
TRP2180-188 | TAA | CpG-ODN | POPC/Cholesterol/DSPE-PEG2000/DDAB/mannose lipid, DSPE-PEG(2000)-Maleimide | Melanoma | ①②③ | [79] | ||
P5 | HER2/neu | DSPC/DSPG/Cholesterol | TUBO in vivo tumor mice model | ①②③ | [176] | |||
Synthetic LHRH | TAA | Tetanus toxoid T-helper epitope830–844, several TLR ligands | EPC/PG/palmitoyl, DSPE-PEG(3400)-Maleimide | Androgen-responsive prostate cancer | ③ | [177] | ||
RNA | Total RNA | Liver cancer cells | DOTAP | Hepato-cellular carcinoma | ①②④ | [178] | ||
OVA | Iron oxide | DOTAP/Cholesterol | Melanoma | ①③④⑤ | [179] | |||
gp70 RNA | Moloney murine leukemia virus | DOTMA/DOPE | BALB/c mice | ②④⑤ | [180] | |||
DNA | Individual somatic mutations using WES | DOTAP/DOPE | Melanoma | ①②④ | [181] |
Vaccine | Tumor Type | Trial Phase | Formulation | Identifier | References |
---|---|---|---|---|---|
FixVac | Melanoma | Phase 1 | (1) Four naked RNA molecules, encoding NY-ESO-1, MAGE-A3, tyrosinase, and TPTE, aiming at TAAs of melanoma (2) Liposome | NCT02410733 | [190] |
DPX-0907 | Ovarian, breast prostate cancer | Phase 1 | (1) Seven tumor-specific HLA-A2-restricted peptides (P4, P5, P7, P13, P14, P15 and P3)(2) Universal T Helper peptide(modified tetanus toxin peptide)(3) Polynucleotide adjuvant(4) Montanide ISA51 VG(5) Liposomes | NCT01095848 | [86,191,192] |
L-BLP25 (tecemotide) | NSCLC, Breast cancer, Multiple myeloma, Prostate cancer | Phases 1–3 | (1) Synthetic 25 amino acid lipopeptide derived from thetandem repeat region of MUC1 (2) Non-specific adjuvant monophosphoryl lipid A (3) Three different lipids | NCT00960115 NCT01015443 NCT00157196 NCT00157209 NCT01094548 NCT01496131 NCT00925548 NCT00409188 NCT00828009 EudraCT number2011-000218-20 | [193,194,195,196,197,198,199,200,201,202] |
Lipovaxin-MM | Colorectal adenocarcinoma | Phase 1 | (1) A specific antibody fragment to DC surface receptor (2) Tumor antigens including gp100, tyrosinase, and melanA/MART-1 (3) Cytokines IFN-γ (4) 3NTA-DTDA/POPC | NCT01052142 | [78] |
PDS0101 | Cervical cancer | Phase 1/2A | (1) R-DOTAP (2) Six HLA-unrestricted epitopes against HPV16 E6 and E7 | NCT02065973 NCT04580771 | |
Autologous tumor vaccine | Follicular lymphoma | Phase 1 | (1) Membrane proteins from autologous lymph node biopsy (2) IL-2 (3) DMPC membrane-patched proteoliposomes | NCT00020462 | [203,204] |
DHER2 + AS15 vaccine | Breast cancer | Phase 1/2 | (1) A recombinant HER2 protein (2) Adjuvant AS15 which consists of MPL, QS-21 and a synthetic oligodeoxynucleotide containing unmethylated CG dinucleotides (CpG ODNs 7909) (3) Liposome | NCT00952692 | [205] |
ONT-10 | Previously treated advanced solid tumors | Phase 1 | (1) Synthetic glycolipopeptide MUC1 antigen (M40Tn6) (2) Synthetic TLR-4 agonist (PET lipid A) (3) Liposome | NCT01556789 | [206] |
W_ova1 | Ovarian cancer | Phase 1 | (1) Three TAA RNAs (2) Liposome | NCT04163094 | |
RNA-LP vaccine | Glioblastoma | Phase 1 | (1) Autologous total tumor mRNA, (2) pp65 full length LAMP mRNA, (3) DOTAP | NCT04573140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fobian, S.-F.; Cheng, Z.; ten Hagen, T.L.M. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks.Pharmaceutics2022,14, 26. https://doi.org/10.3390/pharmaceutics14010026
Fobian S-F, Cheng Z, ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks.Pharmaceutics. 2022; 14(1):26. https://doi.org/10.3390/pharmaceutics14010026
Chicago/Turabian StyleFobian, Seth-Frerich, Ziyun Cheng, and Timo L. M. ten Hagen. 2022. "Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks"Pharmaceutics 14, no. 1: 26. https://doi.org/10.3390/pharmaceutics14010026
APA StyleFobian, S.-F., Cheng, Z., & ten Hagen, T. L. M. (2022). Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks.Pharmaceutics,14(1), 26. https://doi.org/10.3390/pharmaceutics14010026