A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut
Abstract
1. Introduction
2. Colonization Situation
3. Colonization Mechanisms
3.1. Adhesion
3.1.1. Nonspecific Adhesion
3.1.2. Specific Adhesion
3.2. Growth and Reproduction
4. The Colonization Characteristics of Different Bacteria
4.1. Pathogenic Bacteria
4.1.1.Helicobacter pylori
4.1.2.Salmonella
4.1.3.Escherichia coli
4.1.4.Clostridioides difficile
4.2. Probiotics
4.2.1.Lactobacillus
4.2.2.Bifidobacterium
4.2.3.Clostridium butyricum
4.3. Other Commensal Bacteria
4.3.1.Escherichia coli Nissle
4.3.2.Enterococcus faecalis
5. Influential Factors in Bacterial Colonization
5.1. Colonization Resistance
5.2. Genetic
5.3. Diet
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine.Science2005,307, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection.Microbiol. Mol. Biol. Rev.2019,83, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ.EMBO Rep.2006,7, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Tazi, A.; Burlen-Defranoux, O.; Vichier-Guerre, S.; Nigro, G.; Licandro, H.; Demignot, S.; Sansonetti, P.J. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism.Cell Host Microbe2020,27, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Ansaldo, E.; Slayden, L.C.; Ching, K.L.; Koch, M.A.; Wolf, N.K.; Plichta, D.R.; Brown, E.M.; Graham, D.B.; Xavier, R.J.; Moon, J.J.; et al.Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis.Science2019,364, 1179–1184. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut.Proc. Nutr. Soc.2021,80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Garron, M.L.; Henrissat, B. The continuing expansion of CAZymes and their families.Curr. Opin. Chem. Biol.2019,53, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota.Nutrients2021,13, 2795. [Google Scholar] [CrossRef]
- Hill, D.A.; Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis.Annu. Rev. Immunol.2010,28, 623–667. [Google Scholar] [CrossRef]
- Bartlitz, C.; Kolenda, R.; Chilimoniuk, J.; Grzymajło, K.; Rödiger, S.; Bauerfeind, R.; Ali, A.; Tchesnokova, V.; Roggenbuck, D.; Schierack, P. Adhesion of Enteropathogenic, Enterotoxigenic, and CommensalEscherichia coli to the Major Zymogen Granule Membrane Glycoprotein 2.Appl. Environ. Microbiol.2022,88, e0227921. [Google Scholar] [CrossRef]
- Frankel, G.; Phillips, A.D.; Trabulsi, L.R.; Knutton, S.; Dougan, G.; Matthews, S. Intimin and the host cell--is it bound to end in Tir(s)?Trends Microbiol.2001,9, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, M.; Prasannan, S.; Daniell, S.; Reece, S.; Connerton, I.; Bloomberg, G.; Dougan, G.; Frankel, G.; Matthews, S. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenicEscherichia coli.EMBO J.2000,19, 2452–2464. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.C. Microbial ecology of the gastrointestinal tract.Annu. Rev. Microbiol.1977,31, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Taillieu, E.; Chiers, K.; Amorim, I.; Gärtner, F.; Maes, D.; Van Steenkiste, C.; Haesebrouck, F. GastricHelicobacter species associated with dogs, cats and pigs: Significance for public and animal health.Vet. Res.2022,53, 42. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota.Nat. Rev. Microbiol.2016,14, 20–32. [Google Scholar] [CrossRef]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights.Gut2022,71, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners?Gut2020,69, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.C. Mucins and the Microbiome.Annu. Rev. Biochem.2020,89, 769–793. [Google Scholar] [CrossRef] [PubMed]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization.Adv. Drug Deliv. Rev.2018,124, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.; Larsson, J.M.; Hansson, G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions.Proc. Natl. Acad. Sci. USA2011,108 (Suppl. S1), 4659–4665. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria.Proc. Natl. Acad. Sci. USA2008,105, 15064–15069. [Google Scholar] [CrossRef]
- O’Mahony, D.; Murphy, K.B.; MacSharry, J.; Boileau, T.; Sunvold, G.; Reinhart, G.; Kiely, B.; Shanahan, F.; O’Mahony, L. Portrait of a canine probioticBifidobacterium--from gut to gut.Vet. Microbiol.2009,139, 106–112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Berne, C. Sticky decisions: The multilayered regulation of adhesin production by bacteria.PLoS Genet.2023,19, e1010648. [Google Scholar] [CrossRef]
- Beachey, E.H. Bacterial adherence: Adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface.J. Infect. Dis.1981,143, 325–345. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.; Waksman, G. Chaperone-usher pathways: Diversity and pilus assembly mechanism.Philos. Trans. R. Soc. London. Ser. B Biol. Sci.2012,367, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhai, Z.; Lei, Y.; Xiao, B.; Hao, Y. A Novel Major Pilin Subunit Protein FimM Is Involved in Adhesion ofBifidobacterium longum BBMN68 to Intestinal Epithelial Cells.Front. Microbiol.2020,11, 590435. [Google Scholar] [CrossRef] [PubMed]
- Banga Ndzouboukou, J.L.; Lei, Q.; Ullah, N.; Zhang, Y.; Hao, L.; Fan, X.Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines forH. pylori.Helicobacter2021,26, e12758. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.A.; Fälker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B. Bacterial adhesins in host-microbe interactions.Cell Host Microbe2009,5, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Quigley, B.R.; Zähner, D.; Hatkoff, M.; Thanassi, D.G.; Scott, J.R. Linkage of T3 and Cpa pilins in theStreptococcus pyogenes M3 pilus.Mol. Microbiol.2009,72, 1379–1394. [Google Scholar] [CrossRef] [PubMed]
- Hilleringmann, M.; Giusti, F.; Baudner, B.C.; Masignani, V.; Covacci, A.; Rappuoli, R.; Barocchi, M.A.; Ferlenghi, I. Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A.PLoS Pathog.2008,4, e1000026. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Thompson, A.; Stojanoff, V.; Langermann, S.; Pinkner, J.; Hultgren, S.J.; Knight, S.D. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenicEscherichia coli.Science1999,285, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, M.J.; Heuser, J.; Normark, S.; Hultgren, S.J. P pili in uropathogenicE. coli are composite fibres with distinct fibrillar adhesive tips.Nature1992,356, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.; Janetka, J.W.; et al. Selective depletion of uropathogenicE. coli from the gut by a FimH antagonist.Nature2017,546, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Rudel, T.; Scheurerpflug, I.; Meyer, T.F. Neisseria PilC protein identified as type-4 pilus tip-located adhesin.Nature1995,373, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Melville, S.; Craig, L. Type IV pili in Gram-positive bacteria.Microbiol. Mol. Biol. Rev.2013,77, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Soncini, S.R.; Hartman, A.H.; Gallagher, T.M.; Camper, G.J.; Jensen, R.V.; Melville, S.B. Changes in the expression of genes encoding type IV pili-associated proteins are seen whenClostridium perfringens is grown in liquid or on surfaces.BMC Genom.2020,21, 45. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.A.; Chapman, M.R. Polymerizing the fibre between bacteria and host cells: The biogenesis of functional amyloid fibres.Cell. Microbiol.2008,10, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, K.; Veleti, S.K.; Reiling, N.; Lindhorst, T.K. Lectins ofMycobacterium tuberculosis—Rarely studied proteins.Beilstein J. Org. Chem.2019,15, 1–15. [Google Scholar] [CrossRef]
- Kumar, P.; Kuhlmann, F.M.; Chakraborty, S.; Bourgeois, A.L.; Foulke-Abel, J.; Tumala, B.; Vickers, T.J.; Sack, D.A.; DeNearing, B.; Harro, C.D.; et al. EnterotoxigenicEscherichia coli-blood group A interactions intensify diarrheal severity.J. Clin. Investig.2018,128, 3298–3311. [Google Scholar] [CrossRef] [PubMed]
- Rossez, Y.; Wolfson, E.B.; Holmes, A.; Gally, D.L.; Holden, N.J. Bacterial flagella: Twist and stick, or dodge across the kingdoms.PLoS Pathog.2015,11, e1004483. [Google Scholar] [CrossRef] [PubMed]
- Haiko, J.; Westerlund-Wikström, B. The role of the bacterial flagellum in adhesion and virulence.Biology2013,2, 1242–1267. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Fernández-Vega, I.; Suárez, J.E.; Quirós, L.M. Adherence ofLactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands.Front. Immunol.2019,10, 3019. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria.Microbiol. Mol. Biol. Rev. MMBR2003,67, 686–723. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.; Minton, N.P.; Kuehne, S.A. The role of flagella inClostridium difficile pathogenicity.Trends Microbiol.2015,23, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity.J. Basic Microbiol.2013,53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Orskov, I.; Birch-Andersen, A.; Duguid, J.P.; Stenderup, J.; Orskov, F. An adhesive protein capsule ofEscherichia coli.Infect. Immun.1985,47, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Handley, P.S.; Carter, P.L.; Wyatt, J.E.; Hesketh, L.M. Surface structures (peritrichous fibrils and tufts of fibrils) found onStreptococcus sanguis strains may be related to their ability to coaggregate with other oral genera.Infect. Immun.1985,47, 217–227. [Google Scholar] [CrossRef]
- Juge, N. Microbial adhesins to gastrointestinal mucus.Trends Microbiol.2012,20, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Ambort, D.; Pelaseyed, T.; Schütte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmén-Larsson, J.M.; Thomsson, K.A.; Bergström, J.H.; et al. Composition and functional role of the mucus layers in the intestine.Cell. Mol. Life Sci.2011,68, 3635–3641. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. Mucin structure, aggregation, physiological functions and biomedical applications.Curr. Opin. Colloid Interface Sci.2006,11, 164–170. [Google Scholar] [CrossRef]
- Arike, L.; Hansson, G.C. The Densely O-Glycosylated MUC2 Mucin Protects the Intestine and Provides Food for the Commensal Bacteria.J. Mol. Biol.2016,428, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Tyagi, A.; Kumar, A.; Panwar, S.; Grover, S.; Saklani, A.C.; Hemalatha, R.; Batish, V.K. Adhesion of Lactobacilli and their anti-infectivity potential.Crit. Rev. Food Sci. Nutr.2017,57, 2042–2056. [Google Scholar] [CrossRef] [PubMed]
- Chagnot, C.; Listrat, A.; Astruc, T.; Desvaux, M. Bacterial adhesion to animal tissues: Protein determinants for recognition of extracellular matrix components.Cell. Microbiol.2012,14, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Nair, S.; Pallas, J.; Williams, M.A. Fibronectin: A multidomain host adhesin targeted by bacterial fibronectin-binding proteins.FEMS Microbiol. Rev.2011,35, 147–200. [Google Scholar] [CrossRef] [PubMed]
- Heise, T.; Dersch, P. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake.Proc. Natl. Acad. Sci. USA2006,103, 3375–3380. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, A.; Palva, A.; von Ossowski, I.; Krishnan, V. LrpCBA pilus proteins of gut-dwellingLigilactobacillus ruminis: Crystallization and X-ray diffraction analysis.Acta Crystallogr. Sect. F Struct. Biol. Commun.2021,77, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.W.; Rutter, J.M. Contribution of the K88 antigen ofEscherichia coli to enteropathogenicity; protection against disease by neutralizing the adhesive properties of K88 antigen.Am. J. Clin. Nutr.1974,27, 1441–1449. [Google Scholar] [CrossRef]
- Grange, P.A.; Mouricout, M.A. Transferrin associated with the porcine intestinal mucosa is a receptor specific for K88ab fimbriae ofEscherichia coli.Infect. Immun.1996,64, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Pinkner, J.S.; Roth, R.; Heuser, J.; Nicholes, A.V.; Abraham, S.N.; Hultgren, S.J. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae.Proc. Natl. Acad. Sci. USA1995,92, 2081–2085. [Google Scholar] [CrossRef] [PubMed]
- Kisiela, D.I.; Chattopadhyay, S.; Libby, S.J.; Karlinsey, J.E.; Fang, F.C.; Tchesnokova, V.; Kramer, J.J.; Beskhlebnaya, V.; Samadpour, M.; Grzymajlo, K.; et al. Evolution ofSalmonella enterica virulence via point mutations in the fimbrial adhesin.PLoS Pathog.2012,8, e1002733. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S.; Kaper, J.B. EnteropathogenicEscherichia coli.Infect. Immun.1992,60, 3953–3961. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ranwez, V.; Posadas, D.M.; Van der Henst, C.; Estein, S.M.; Arocena, G.M.; Abdian, P.L.; Martín, F.A.; Sieira, R.; De Bolle, X.; Zorreguieta, A. BtaE, an adhesin that belongs to the trimeric autotransporter family, is required for full virulence and defines a specific adhesive pole ofBrucella suis.Infect. Immun.2013,81, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Jost, B.H.; Billington, S.J.; Trinh, H.T.; Songer, J.G. Association of genes encoding beta2 toxin and a collagen binding protein inClostridium perfringens isolates of porcine origin.Vet. Microbiol.2006,115, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.A.; Smith, S.G. The PagN protein ofSalmonella enterica serovar Typhimurium is an adhesin and invasin.BMC Microbiol.2008,8, 142. [Google Scholar] [CrossRef] [PubMed]
- Milles, L.F.; Schulten, K.; Gaub, H.E.; Bernardi, R.C. Molecular mechanism of extreme mechanostability in a pathogen adhesin.Science2018,359, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Herman-Bausier, P.; Valotteau, C.; Pietrocola, G.; Rindi, S.; Alsteens, D.; Foster, T.J.; Speziale, P.; Dufrêne, Y.F. Mechanical Strength and Inhibition of theStaphylococcus aureus Collagen-Binding Protein Cna.mBio2016,7, e01529-16. [Google Scholar] [CrossRef] [PubMed]
- Mühlenkamp, M.C.; Hallström, T.; Autenrieth, I.B.; Bohn, E.; Linke, D.; Rinker, J.; Riesbeck, K.; Singh, B.; Leo, J.C.; Hammerschmidt, S.; et al. Vitronectin Binds to a Specific Stretch within the Head Region of Yersinia Adhesin A and Thereby ModulatesYersinia enterocolitica Host Interaction.J. Innate Immun.2017,9, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Su, M.H.; Chen, B.S. Investigation of the Cross-talk Mechanism in Caco-2 Cells duringClostridium difficile Infection through Genetic-and-Epigenetic Interspecies Networks: Big Data Mining and Genome-Wide Identification.Front. Immunol.2017,8, 901. [Google Scholar] [CrossRef] [PubMed]
- Pretzer, G.; Snel, J.; Molenaar, D.; Wiersma, A.; Bron, P.A.; Lambert, J.; de Vos, W.M.; van der Meer, R.; Smits, M.A.; Kleerebezem, M. Biodiversity-based identification and functional characterization of the mannose-specific adhesin ofLactobacillus plantarum.J. Bacteriol.2005,187, 6128–6136. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Chagnaud, P.; Tannock, G.W.; Loach, D.M.; Dal Bello, F.; Jenkinson, H.F.; Hammes, W.P.; Hertel, C. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance ofLactobacillus reuteri in the murine gut.Appl. Environ. Microbiol.2005,71, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Perotti, F.; Masserey, I.; Rouvet, M.; Golliard, M.; Servin, A.; Brassart, D. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment ofLactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells.Appl. Environ. Microbiol.1999,65, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism.Nat. Med.2019,25, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.Cell2016,167, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial life on surfaces.Emerg. Infect. Dis.2002,8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.Microbiol. Spectr.2015,3, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life.Nat. Rev. Microbiol.2016,14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Weber, J.; Loening-Baucke, V.; Hale, L.P.; Lochs, H. Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease.J. Clin. Microbiol.2005,43, 3380–3389. [Google Scholar] [CrossRef]
- Ishikawa, T.; Omori, T.; Kikuchi, K. Bacterial biomechanics-From individual behaviors to biofilm and the gut flora.APL Bioeng.2020,4, 041504. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.G. Non-human reservoirs ofHelicobacter pylori.Aliment. Pharmacol. Ther.1995,9 (Suppl. S2), 93–103. [Google Scholar]
- Huang, Y.; Wang, Q.L.; Cheng, D.D.; Xu, W.T.; Lu, N.H. Adhesion and Invasion of Gastric Mucosa Epithelial Cells byHelicobacter pylori.Front. Cell. Infect. Microbiol.2016,6, 159. [Google Scholar] [CrossRef] [PubMed]
- Weeks, D.L.; Eskandari, S.; Scott, D.R.; Sachs, G. A H+-gated urea channel: The link betweenHelicobacter pylori urease and gastric colonization.Science2000,287, 482–485. [Google Scholar] [CrossRef]
- Xu, C.; Soyfoo, D.M.; Wu, Y.; Xu, S. Virulence ofHelicobacter pylori outer membrane proteins: An updated review.Eur. J. Clin. Microbiol. Infect. Dis.2020,39, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.A.; Schmitt, L.; Mejías-Luque, R.; Gerhard, M. Effects ofHelicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach.Front. Immunol.2023,14, 1113478. [Google Scholar] [CrossRef]
- Königer, V.; Holsten, L.; Harrison, U.; Busch, B.; Loell, E.; Zhao, Q.; Bonsor, D.A.; Roth, A.; Kengmo-Tchoupa, A.; Smith, S.I.; et al.Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA.Nat. Microbiol.2016,2, 16188. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, A.; Kruse, T.; Moonens, K.; Mejías-Luque, R.; Debraekeleer, A.; Asche, C.I.; Tegtmeyer, N.; Kalali, B.; Bach, N.C.; Sieber, S.A.; et al.Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs.Nat. Microbiol.2016,2, 16189. [Google Scholar] [CrossRef] [PubMed]
- Brenner, F.W.Modified Kauffmann-White Scheme; Centers for Disease Control and Prevention: Atlanta, GA, USA, 1998.
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J.Salmonella pathogenicity and host adaptation in chicken-associated serovars.Microbiol. Mol. Biol. Rev. MMBR2013,77, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Han, X.; De Masi, L.; Zhu, C.; Ma, X.; Zhang, J.; Wu, R.; Schmieder, R.; Kaushik, R.S.; Fraser, G.P.; et al. Allelic variation contributes to bacterial host specificity.Nat. Commun.2015,6, 8754. [Google Scholar] [CrossRef] [PubMed]
- Darwin, K.H.; Miller, V.L. Molecular basis of the interaction ofSalmonella with the intestinal mucosa.Clin. Microbiol. Rev.1999,12, 405–428. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, T.K.; Lounatmaa, K.; Ranta, H.; Kuusi, N. Characterization of type 1 pili ofSalmonella typhimurium LT2.J. Bacteriol.1980,144, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Firon, N.; Ofek, I.; Sharon, N. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria.Infect. Immun.1984,43, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.; Yin, L.; Latif, M.B.; Chen, J.; Wang, K.; Geng, Y.; Huang, X.; Abaidullah, M.; Guo, H.; Ouyang, P. Adhesive mechanism of differentSalmonella fimbrial adhesins.Microb. Pathog.2019,137, 103748. [Google Scholar] [CrossRef]
- Wagner, C.; Hensel, M. Adhesive mechanisms ofSalmonella enterica.Adv. Exp. Med. Biol.2011,715, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Kisiela, D.; Sapeta, A.; Kuczkowski, M.; Stefaniak, T.; Wieliczko, A.; Ugorski, M. Characterization of FimH adhesins expressed bySalmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: Reconstitution of mannose-binding properties by single amino acid substitution.Infect. Immun.2005,73, 6187–6190. [Google Scholar] [CrossRef]
- Wilson, R.L.; Elthon, J.; Clegg, S.; Jones, B.D.Salmonella enterica serovars gallinarum and pullorum expressingSalmonella enterica serovar typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells.Infect. Immun.2000,68, 4782–4785. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Levine, M.M.; Edelman, R. EnteropathogenicEscherichia coli of classic serotypes associated with infant diarrhea: Epidemiology and pathogenesis.Epidemiol. Rev.1984,6, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.; Pique, M.E.; Tainer, J.A. Type IV pilus structure and bacterial pathogenicity.Nat. Rev. Microbiol.2004,2, 363–378. [Google Scholar] [CrossRef]
- Moxley, R.A.Escherichia coli 0157:H7: An update on intestinal colonization and virulence mechanisms.Anim. Health Res. Rev.2004,5, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.A.; Rodrigues, B.O.; Elias, W.P.; Abe, C.M. Adhesin related genes as potential markers for the enteroaggregativeEscherichia coli category.Front. Cell. Infect. Microbiol.2022,12, 997208. [Google Scholar] [CrossRef]
- Rasko, D.A.; Webster, D.R.; Sahl, J.W.; Bashir, A.; Boisen, N.; Scheutz, F.; Paxinos, E.E.; Sebra, R.; Chin, C.S.; Iliopoulos, D.; et al. Origins of theE. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany.N. Engl. J. Med.2011,365, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Page, A.V.; Liles, W.C. EnterohemorrhagicEscherichia coli Infections and the Hemolytic-Uremic Syndrome.Med. Clin. N. Am.2013,97, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Rao, F.; Chen, Z.; Cheng, Y.; Zhang, Q.; Zhang, J.; Guan, Z.; He, Y.; Yu, W.; Cui, G.; et al. The cwp66 Gene Affects Cell Adhesion, Stress Tolerance, and Antibiotic Resistance inClostridioides difficile.Microbiol. Spectr.2022,10, e0270421. [Google Scholar] [CrossRef] [PubMed]
- Tasteyre, A.; Barc, M.C.; Collignon, A.; Boureau, H.; Karjalainen, T. Role of FliC and FliD flagellar proteins ofClostridium difficile in adherence and gut colonization.Infect. Immun.2001,69, 7937–7940. [Google Scholar] [CrossRef] [PubMed]
- Mitsuoka, T.; Wood, B.J.Lactic Acid Bacteria in Health and Disease; Springer: Berlin/Heidelberg, Germany, 1992; Volume 1, pp. 69–114. [Google Scholar]
- Alawneh, J.I.; Ramay, H.; Olchowy, T.; Allavena, R.; Soust, M.; Jassim, R.A. Effect of a Lactobacilli-Based Direct-Fed Microbial Product on Gut Microbiota and Gastrointestinal Morphological Changes.Animals2024,14, 693. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, K.; Sugiyama, M.; Mukai, T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin.Microorganisms2016,4, 34. [Google Scholar] [CrossRef] [PubMed]
- Coconnier, M.H.; Klaenhammer, T.R.; Kernéis, S.; Bernet, M.F.; Servin, A.L. Protein-mediated adhesion ofLactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture.Appl. Environ. Microbiol.1992,58, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Miwa, T.; Taniguchi, H.; Nagano, T.; Shimamura, K.; Tanaka, T.; Kumagai, H. Binding specificity ofLactobacillus to glycolipids.Biochem. Biophys. Res. Commun.1996,228, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Arihara, K. Presence of intestinal lectin-binding glycoproteins on the cell surface ofLactobacillus acidophilus.Biosci. Biotechnol. Biochem.1994,58, 1851–1854. [Google Scholar] [CrossRef]
- Uchida, H.; Kinoshita, H.; Kawai, Y.; Kitazawa, H.; Miura, K.; Shiiba, K.; Horii, A.; Kimura, K.; Taketomo, N.; Oda, M.; et al. Lactobacilli binding human A-antigen expressed in intestinal mucosa.Res. Microbiol.2006,157, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.N.; Okawara, T.; Watanabe, M.; Kawai, Y.; Kitazawa, H.; Ohnuma, S.; Shibata, C.; Horii, A.; Kimura, K.; Taketomo, N.; et al. New screening methods for probiotics with adhesion properties to sialic acid and sulphate residues in human colonic mucin using the Biacore assay.J. Appl. Microbiol.2013,114, 854–860. [Google Scholar] [CrossRef]
- Etzold, S.; MacKenzie, D.A.; Jeffers, F.; Walshaw, J.; Roos, S.; Hemmings, A.M.; Juge, N. Structural and molecular insights into novel surface-exposed mucus adhesins fromLactobacillus reuteri human strains.Mol. Microbiol.2014,92, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Roos, S.; Jonsson, H. A high-molecular-mass cell-surface protein fromLactobacillus reuteri 1063 adheres to mucus components.Microbiology2002,148, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, H.; Shao, J.; Wu, T.; Xu, W.; Hu, X.; Chen, J. Adhesion and Colonization of the ProbioticLactobacillus plantarum HC-2 in the Intestine of Litopenaeus Vannamei Are Associated With Bacterial Surface Proteins.Front. Microbiol.2022,13, 878874. [Google Scholar] [CrossRef] [PubMed]
- Darmastuti, A.; Hasan, P.N.; Wikandari, R.; Utami, T.; Rahayu, E.S.; Suroto, D.A. Adhesion Properties ofLactobacillus plantarum Dad-13 andLactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine.Microorganisms2021,9, 2336. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Dai, T.; Zhang, W.; Zhu, J.; Luo, X.M.; Fu, D.; Liu, J.; Wang, H. Glyceraldehyde-3-Phosphate Dehydrogenase Increases the Adhesion ofLactobacillus reuteri to Host Mucin to Enhance Probiotic Effects.Int. J. Mol. Sci.2020,21, 9756. [Google Scholar] [CrossRef] [PubMed]
- Tuomola, E.M.; Salminen, S.J. Adhesion of some probiotic and dairyLactobacillus strains to Caco-2 cell cultures.Int. J. Food Microbiol.1998,41, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Nissen, P.; Willats, W.G. The effect of calcium ions on adhesion and competitive exclusion ofLactobacillus ssp. andE. coli O138.Int. J. Food Microbiol.2007,114, 113–119. [Google Scholar] [CrossRef]
- González-Rodríguez, I.; Sánchez, B.; Ruiz, L.; Turroni, F.; Ventura, M.; Ruas-Madiedo, P.; Gueimonde, M.; Margolles, A. Role of extracellular transaldolase fromBifidobacterium bifidum in mucin adhesion and aggregation.Appl. Environ. Microbiol.2012,78, 3992–3998. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; McCartney, A.L.; Gibson, G.R. Intestinal microflora of human infants and current trends for its nutritional modulation.Br. J. Nutr.2002,87, 405–420. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Seo, M.; Inoue, I.; Tanaka, M.; Matsuda, N.; Nakano, T.; Awata, T.; Katayama, S.; Alpers, D.H.; Komoda, T.Clostridium butyricum MIYAIRI 588 improves high-fat diet-induced non-alcoholic fatty liver disease in rats.Dig. Dis. Sci.2013,58, 3534–3544. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Tanaka, M. Intestinal distribution and intraluminal localization of orally administeredClostridium butyricum in rats.Microbiol. Immunol.1997,41, 665–671. [Google Scholar] [CrossRef]
- Luo, X.; Kong, Q.; Wang, Y.; Duan, X.; Wang, P.; Li, C.; Huan, Y. Colonization ofClostridium butyricum in Rats and Its Effect on Intestinal Microbial Composition.Microorganisms2021,9, 1573. [Google Scholar] [CrossRef] [PubMed]
- Lili, Q.; Xiaohui, L.; Haiguang, M.; Jinbo, W.Clostridium butyricum Induces the Production and Glycosylation of Mucins in HT-29 Cells.Front. Cell. Infect. Microbiol.2021,11, 668766. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, K.; Ma, X.; He, P.Clostridium species as probiotics: Potentials and challenges.J. Anim. Sci. Biotechnol.2020,11, 24. [Google Scholar] [CrossRef] [PubMed]
- Kruis, W.; Schütz, E.; Fric, P.; Fixa, B.; Judmaier, G.; Stolte, M. Double-blind comparison of an oralEscherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis.Aliment. Pharmacol. Ther.1997,11, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Q.; Cong, G.; Xiao, Y.; Shen, Y.; Zhang, S.; Zhao, W.; Shi, S. ProbioticEscherichia coli Nissle 1917 protect chicks from damage caused bySalmonella enterica serovar Enteritidis colonization.Anim. Nutr.2023,14, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M. Clinical use ofE. coli Nissle 1917 in inflammatory bowel disease.Inflamm. Bowel Dis.2008,14, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, S.; Sivakumar, R.; Karthikeyan, R.; Gunasekaran, P.; Rajendhran, J. Genome-wide identification of probioticEscherichia coli Nissle 1917 (EcN) fitness genes during adhesion to the intestinal epithelial cells Caco-2.Gene2021,803, 145890. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, M.; Zahran, E. Biofilm mediatesEnterococcus faecalis adhesion, invasion and survival into bovine mammary epithelial cells.Lett. Appl. Microbiol.2014,58, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Enterococcus faecalis Colonization in the Gut Promotes Liver Carcinogenesis.Cancer Discov.2021,11, 2955. [CrossRef]
- Iida, N.; Mizukoshi, E.; Yamashita, T.; Yutani, M.; Seishima, J.; Wang, Z.; Arai, K.; Okada, H.; Yamashita, T.; Sakai, Y.; et al. Chronic liver disease enables gutEnterococcus faecalis colonization to promote liver carcinogenesis.Nat. Cancer2021,2, 1039–1054. [Google Scholar] [CrossRef] [PubMed]
- Rigottier-Gois, L.; Madec, C.; Navickas, A.; Matos, R.C.; Akary-Lepage, E.; Mistou, M.Y.; Serror, P. The surface rhamnopolysaccharide epa ofEnterococcus faecalis is a key determinant of intestinal colonization.J. Infect. Dis.2015,211, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ladjouzi, R.; Duban, M.; Lucau-Danila, A.; Drider, D. The absence of PNPase activity inEnterococcus faecalis results in alterations of the bacterial cell-wall but induces high proteolytic and adhesion activities.Gene2022,833, 146610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, H.; He, J.; Muhammad, A.; Zhang, F.; Lu, X. Features and Colonization Strategies ofEnterococcus faecalis in the Gut of Bombyx mori.Front. Microbiol.2022,13, 921330. [Google Scholar] [CrossRef] [PubMed]
- Hanifeh, M.; Spillmann, T.; Huhtinen, M.; Sclivagnotis, Y.S.; Grönthal, T.; Hynönen, U. Ex-Vivo Adhesion ofEnterococcus faecalis and Enterococcus faecium to the Intestinal Mucosa of Healthy Beagles.Animals2021,11, 3283. [Google Scholar] [CrossRef]
- Lawley, T.D.; Walker, A.W. Intestinal colonization resistance.Immunology2013,138, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Donaldson, G.P.; Mikulski, Z.; Boyajian, S.; Ley, K.; Mazmanian, S.K. Bacterial colonization factors control specificity and stability of the gut microbiota.Nature2013,501, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bai, Y.; Zha, L.; Ullah, N.; Ullah, H.; Shah, S.R.H.; Sun, H.; Zhang, C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection.Front. Cell. Infect. Microbiol.2021,11, 716299. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens.Nat. Rev. Immunol.2013,13, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, M.; Ariyoshi, T.; Kuroki, Y.; Eguchi, S.; Higashi, S.; Mori, T.; Nonogaki, T.; Iwasaki, K.; Yamashita, M.; Asai, N.; et al.Clostridium butyricum enhances colonization resistance againstClostridioides difficile by metabolic and immune modulation.Sci. Rep.2021,11, 15007. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Lv, P.; Hao, G.; Sun, S. Effects ofClostridium butyricum on intestinal environment and gut microbiome underSalmonella infection.Poult. Sci.2022,101, 102077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, J.; Wang, L.; Lin, H.; Sun, S. Protection Mechanism ofClostridium butyricum againstSalmonella Enteritidis Infection in Broilers.Front. Microbiol.2017,8, 1523. [Google Scholar] [CrossRef]
- Collado, M.C.; Gueimonde, M.; Hernández, M.; Sanz, Y.; Salminen, S. Adhesion of selectedBifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion.J. Food Prot.2005,68, 2672–2678. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.Y.; Dong, K.; Guo, X.K. Adhesion and immunomodulatory effects ofBifidobacterium lactis HN019 on intestinal epithelial cells INT-407.World J. Gastroenterol.2010,16, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Valeriano, V.D.; Parungao-Balolong, M.M.; Kang, D.K. In vitro evaluation of the mucin-adhesion ability and probiotic potential ofLactobacillus mucosae LM1.J. Appl. Microbiol.2014,117, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Gopal, P.K.; Prasad, J.; Smart, J.; Gill, H.S. In vitro adherence properties ofLactobacillus rhamnosus DR20and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenicEscherichia coli.Int. J. Food Microbiol.2001,67, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, A.S.; Bagchi, T. The expression of adhesin EF-Tu in response to mucin and its role inLactobacillus adhesion and competitive inhibition of enteropathogens to mucin.J. Appl. Microbiol.2013,115, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Lee, S.; Sung, J.; Ko, G. Analysis of human and animal fecal microbiota for microbial source tracking.ISME J.2011,5, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology.Proc. Natl. Acad. Sci. USA2005,102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Doms, S.; Fokt, H.; Rühlemann, M.; Chung, C.; Kuenstner, A.; Ibrahim, S.; Franke, A.; Turner, L.; Baines, J. Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice.Elife2022,11, e75419. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.; Zhang, X.; Li, C.; Yuan, L.; Zhang, D.; Zhao, Y.; Li, X.; Cheng, J.; Lin, C.; et al. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs.Microbiome2023,11, 197. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.; Davenport, E.; Beaumont, M.; Jackson, M.; Knight, R.; Ober, C.; Spector, T.D.; Bell, J.T.; Clark, A.G.; Ley, R.E. Genetic Determinants of the gut microbiome in UK twins.Cell Host Microbe2016,19, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Grieneisen, L.; Dasari, M.; Gould, T.; Björk, J.; Grenier, J.; Yotova, V.; Jansen, D.; Gottel, N.; Gordon, J.; Learn, N.; et al. Gut microbiome heritability is nearly universal but environmentally contingent.Science2021,373, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, E.; McMaster, J.; Staudacher, H. Conducting research on diet-microbiome interactions: A review of current challenges, essential methodological principles, and recommendations for best practice in study design.J. Hum. Nutr. Diet.2021,34, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Fuke, N.; Nagata, N.; Suganuma, H.; Ota, T. Regulation of gut microbiota and metabolic endotoxemia with dietary factors.Nutrients2019,11, 2277. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xing, X.; Gupta, M.; Keber, F.; Lopez, J.; Lee, Y.; Roichman, A.; Wang, L.; Neinast, M.D.; Donia, M.S.; et al. Gut bacterial nutrient preferences quantified in vivo.Cell2022,185, 3441–3456.e19. [Google Scholar] [CrossRef] [PubMed]
- Suriano, F.; Nyström, E.E.L.; Sergi, D.; Gustafsson, J. Diet, microbiota, and the mucus layer: The guardians of our health.Front. Immunol.2022,13, 953196. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Zhao, X.; Wang, Y.; Noriega, J.; Gewirtz, A.; Zou, J. Western-style diet impedes colonization and clearance ofCitrobacter rodentium.PLoS Pathog.2021,17, e1009497. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zhao, H.; Han, M.; Su, L.; Cui, X.; Li, D.; Liu, L.; Wang, C.; Yang, F. Alcohol-induced gut microbiome dysbiosis enhances the colonization ofKlebsiella pneumoniae on the mouse intestinal tract.mSystems2024,9, e0005224. [Google Scholar] [CrossRef]
- Hu, R.; Yang, T.; Ai, Q.; Shi, Y.; Ji, Y.; Sun, Q.; Tong, B.; Chen, J.; Wang, Z. Autoinducer-2 promotes the colonization ofLactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis.J. Transl. Med.2024,22, 177. [Google Scholar] [CrossRef] [PubMed]
- Ortman, J.; Sinn, S.; Gibbons, W.; Brown, M.; DeRouchey, J.; St-Pierre, B.; Saqui-Salces, M.; Levesque, C.L. Comparative analysis of the ileal bacterial composition of post-weaned pigs fed different high-quality protein sources.Animal2020,14, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Duan, J.; Yin, J.; Liu, G.; Cao, Z.; Xiong, X.; Chen, S.; Li, T.; Yin, Y.; Hou, Y.; et al. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine.Amino Acids2014,46, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Bruggeman, G.; van den Berg, M.; Borewicz, K.; Scheurink, A.; Bruininx, E.; de Vos, P.; Smidt, H.; Schols, H.A.; Gruppen, H. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs.Mol. Nutr. Food Res.2017,61, 1600186. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Chen, X.; Johnston, L.; Ma, X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis.iMeta2022,1, e54. [Google Scholar] [CrossRef]


| Type | Host Receptor | Bacteria | References |
|---|---|---|---|
| Fimbrial adhesins | |||
| Type 1 pili | Glycoprotein 2 (GP2) α-D-mannose | Escherichia coli | [10,25] |
| K88 | Mucin-type Sialoglycoproteins | Escherichia coli | [57,58] |
| Type Ⅰ pili | Enterobacter cloacae | [59] | |
| Type Ⅰ pili | Salmonella enterica serovar Enteritidis | [60] | |
| Type IV pili | Escherichia coli EPEC | [61] | |
| Afimbrial adhesins | |||
| BtaE | Brucella suis | [62] | |
| Intimin | Tir | Escherichia coli | [11,12] |
| TibA | Escherichia coli | ||
| Escherichia coli ETEC | |||
| Collagen binding protein, CpCna | Clostridium perfringens | [63] | |
| PagN protein | Salmonella enterica serovar Typhimurium | [64] | |
| SD-repeat protein G | Fibrinogen | Staphylococcus epidermidis | [65] |
| Collagen binding protein, CpCna | Staphylococcus aureus | [66] | |
| Yersinia adhesin A (YadA), | Yersinia enterocolitica | [67] | |
| Cell-wall proteins CD2787 and CD0237 | Clostridioides difficile | [68] | |
| Mannose-specific adhesin | Mannose | Lactobacillus plantarum | [69] |
| High-molecular-mass cell surface protein | Lactobacillus reuteri | [70] | |
| Methionine sulfoxide reductase | |||
| Lipoteichoic acid | Lactobacillus johnsonii | [71] | |
| FimM | Fibronectin/fibrinogen/mucin | Bifidobacterium longum | [26] |
| BabA, SabA, Hps60, and HpaA | Leb, Lex, sulfatides, and sialic acid | Helicobacter pylori | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Lin, S.; Fan, Z.; Liu, J.; Ye, D.; Guo, P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut.Microorganisms2024,12, 1026. https://doi.org/10.3390/microorganisms12051026
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut.Microorganisms. 2024; 12(5):1026. https://doi.org/10.3390/microorganisms12051026
Chicago/Turabian StyleLin, Qingjie, Shiying Lin, Zitao Fan, Jing Liu, Dingcheng Ye, and Pingting Guo. 2024. "A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut"Microorganisms 12, no. 5: 1026. https://doi.org/10.3390/microorganisms12051026
APA StyleLin, Q., Lin, S., Fan, Z., Liu, J., Ye, D., & Guo, P. (2024). A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut.Microorganisms,12(5), 1026. https://doi.org/10.3390/microorganisms12051026




