Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications
Abstract
1. Introduction
- Guidance for Bayesian workflow to solve a real-life problem is provided for domain experts to facilitate efficient collaboration with quantitative researchers;
- Recently developed prior distributions and Bayesian computation techniques for a basic model and its extensions are illustrated for statisticians to develop more complex models built on the basic model;
- Illustrated methodologies can be directly exploited in diverse applications, ranging from small data to big data problems, for quantitative researchers, modeling scientists, and professional programmers working in diverse industries.
2. Trends and Workflow of Bayesian Nonlinear Mixed Effects Models
2.1. Rise in the Use of Bayesian Approaches for the Nonlinear Mixed Effects Models
2.2. Bayesian Workflow
3. Applications of Bayesian Nonlinear Mixed Effects Model in Real-Life Problems
3.1. The Setting
3.2. Example 1: Pharmacokinetics Analysis
3.3. Example 2: Decline Curve Analysis
3.4. Example 3: Yield Curve Modeling
3.5. Example 4: Early Stage of Epidemic
3.6. Statistical Problem
- (1)
- There exist repeated measures of a continuous response over time for each subject;
- (2)
- There exists a variation of individual observations over time;
- (3)
- There exists a variation from subject-to-subject in trajectories;
- (4)
- There exist covariates measured at baseline for each subject.
4. The Model
4.1. Basic Model
- Stage 1: Individual-Level ModelIn (2), the conditional mean is a known function governing within-individual temporal behavior dictated by aK-dimensional parameter specific to the subjecti. We assume that the residuals,, are normally distributed with mean zero and with an unknown variance, .
- Stage 2: Population ModelIn (3), the l-th model parameter is used as the response of an ordinary linear regression with predictor, with intercept and coefficient vector. By letting, we assume that the is distributed according aK-dimensional Gaussian distribution with covariance matrix. The diagonality in implies that each model parameter are uncorrelated acrossl.
- Stage 3: Prior
4.2. Vectorized Form of the Basic Model
- Stage 1: Individual-Level ModelIn (6), is a-dimensional vector whose elements are temporally stacked: for the subjecti. The vector is distributed according to the-dimensional Gaussian distribution with mean and covariance matrix.
- Stage 2: Population Model (l-indexing)
- Stage 2: Population Model (i-indexing)Equation (8) is derived by incorporating each of theN columns of the model matrix (5). Here, represents aK-dimensional vector, and represents aK-by-P matrix with rows (). Here, the K-dimensional vector in the right-hand side of (8) is the mathematically identical to, where and ( is theK-by-K identity matrix and ⊗ represents the Kronecker matrix product.). The error vector is distributed according aK-dimensional Gaussian distribution with mean and covariance matrix.
- Stage 3: PriorEach of the parameter blocks in is assumed to be independent apriori.
5. Likelihood
5.1. Outline
5.2. Likelihood Based on Stage 1
5.3. Likelihood Based on Stage 1 and 2 from Vector-Form (a)
5.4. Likelihood Based on Stage 1 and 2 from Vector-Form (b)
6. Bayesian Inference and Implementation
6.1. Bayesian Inference
6.2. Gibbs Sampling Algorithm
6.3. Parallel Computation for Model Matrix
6.4. Elliptical Slice Sampler
| Algorithm 1: ESS to sample from (22) |
| Goal: Sampling from the full conditional posterior distribution where and. Input: Current state. Output: A new state.
|
6.5. Metropolis Adjusted Langevin Algorithm
| Algorithm 2: MALA to sample from (22) |
| Goal: Sampling from the full conditional posterior distribution where Input: Current state and step size. Output: A new state.
|
6.6. Hamiltonian Monte Carlo
- (a)
- Preservation of total energy: for all;
- (b)
- Preservation of volume: for all;
- (c)
- Time reversibility: The mapping from state att,, to the state at time,, is one-to-one, and hence has an inverse.
| Algorithm 3: HMC to sample from (22) |
| Goal: Sampling from the full conditional posterior distribution where with and. Input: Current state, step size, number of stepsL, and mass. Output: A new state.
|
7. Prior Options
7.1. Priors for Variance
7.2. Priors for Intercept and Coefficient Vector
- Spike-and-slab priors. Each component of the coefficients is assumed to be drawn fromwhere. The function is the Direc-delta function and is a density supported on, called the spike and slab densities, respectively. The spike density shrinks noise coefficients to the exact zero, while the slab density captures signal coefficients by allowing a positive mass on the tail region [200,227,228];
- Continuous shrinkage priors. Each component of the coefficients is assumed to be drawn fromwheref,g, andh are priors for,, and, respectively, supported on. Here, and are referred to as local-scale and global-scale parameters, respectively. The choices off andg play a key role in controlling the effective sparsity and concentration of the prior and posterior distributions [226,229,230,231,232,233].
7.3. Priors for Covariance Matrix
- Jeffreys prior. The common non-informative prior has been the Jeffreys improper prior
- Inverse-Wishart prior. The common informative prior is the inverse-Wishart prior [256]where and areK-by-K positive definite matrices, and is the multivariate gamma function [257]. is a scale matrix, and is the number of degrees of freedom. Conventionally,d is chosen to be as small as possible to reflect vague prior knowledge. A univariate specialization () is the inverse-gamma distribution.
- LKJ prior. LKJ prior is supported over the correlation matrix space, or equivalently over the set of Cholesky factors of real symmetric positive definite matrceswith the shape parameter. The function is the beta function. If, the density is uniform over the space; for, the density increasingly concentrates mass around the identity matrix (i.e., favoring less correlation); for, the density increasingly concentrates mass in the other direction, and has a trough at the identity matrix (i.e., favoring more correlation).
8. Model Selection
8.1. Setting
8.2. Deviance Information Criterion
8.3. Widely Applicable Information Criterion
8.4. Posterior Predictive Loss Criterion
9. Extensions and Recent Developments
9.1. Residual Error Models
9.2. Bayesian Nonparametric Methods
9.3. Software Development
9.4. Future Research Topics
10. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sterba, S.K. Fitting nonlinear latent growth curve models with individually varying time points.Struct. Equ. Model. Multidiscip. J.2014,21, 630–647. [Google Scholar] [CrossRef]
- McArdle, J.J. Latent variable growth within behavior genetic models.Behav. Genet.1986,16, 163–200. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R.; Ware, J.H. Design and analysis methods for longitudinal research.Annu. Rev. Public Health1983,4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.D.; West, S.G. Putting the individual back into individual growth curves.Psychol. Methods2000,5, 23. [Google Scholar] [CrossRef] [PubMed]
- Zeger, S.L.; Liang, K.Y. An overview of methods for the analysis of longitudinal data.Stat. Med.1992,11, 1825–1839. [Google Scholar] [CrossRef] [PubMed]
- Diggle, P.; Diggle, P.J.; Heagerty, P.; Liang, K.Y.; Zeger, S.Analysis of Longitudinal Data; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Demidenko, E.Mixed Models: Theory and Applications with R; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Snijders, T.A.; Bosker, R.J.Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling; Sage: Los Angeles, CA, USA, 2011. [Google Scholar]
- Goldstein, H.Multilevel Statistical Models; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 922. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S.Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Thousand Oaks, CA, USA, 2002; Volume 1. [Google Scholar]
- Efron, B. The future of indirect evidence.Stat. Sci. A Rev. J. Inst. Math. Stat.2010,25, 145. [Google Scholar] [CrossRef] [PubMed]
- Sheiner, L.B.; Rosenberg, B.; Melmon, K.L. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comput. Biomed. Res.1972,5, 441–459. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data.Biometrics1990,46, 673–687. [Google Scholar] [CrossRef]
- Davidian, M.; Giltinan, D.M. Nonlinear models for repeated measurement data: An overview and update.J. Agric. Biol. Environ. Stat.2003,8, 387–419. [Google Scholar] [CrossRef]
- Davidian, M.; Giltinan, D.M.Nonlinear Models for Repeated Measurement Data; Routledge: New York, NY, USA, 1995. [Google Scholar]
- Beal, S. The NONMEM System. 1980. Available online:https://iconplc.com/innovation/nonmem/ (accessed on 20 February 2022).
- Stan Development Team. RStan: The R Interface to Stan. R Package Version 2.21.3. 2021. Available online:https://mc-stan.org/rstan/ (accessed on 20 February 2022).
- Fidler, M.; Wilkins, J.J.; Hooijmaijers, R.; Post, T.M.; Schoemaker, R.; Trame, M.N.; Xiong, Y.; Wang, W. Nonlinear mixed-effects model development and simulation using nlmixr and related R open-source packages.CPT Pharmacometr. Syst. Pharmacol.2019,8, 621–633. [Google Scholar] [CrossRef]
- Wang, W.; Hallow, K.; James, D. A tutorial on RxODE: Simulating differential equation pharmacometric models in R.CPT Pharmacometr. Syst. Pharmacol.2016,5, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Stegmann, G.; Jacobucci, R.; Harring, J.R.; Grimm, K.J. Nonlinear mixed-effects modeling programs in R.Struct. Equ. Model. Multidiscip. J.2018,25, 160–165. [Google Scholar] [CrossRef]
- Vonesh, E.; Chinchilli, V.M.Linear and Nonlinear Models for the Analysis of Repeated Measurements; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Lee, S.Y.Structural Equation Modeling: A Bayesian Approach; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Dellaportas, P.; Smith, A.F. Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling.J. R. Stat. Soc. Ser. C1993,42, 443–459. [Google Scholar] [CrossRef]
- Bush, C.A.; MacEachern, S.N. A semiparametric Bayesian model for randomised block designs.Biometrika1996,83, 275–285. [Google Scholar] [CrossRef]
- Zeger, S.L.; Karim, M.R. Generalized linear models with random effects; a Gibbs sampling approach.J. Am. Stat. Assoc.1991,86, 79–86. [Google Scholar] [CrossRef]
- Brooks, S.P. Bayesian computation: A statistical revolution.Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.2003,361, 2681–2697. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Wakefield, J. A comparison of a Bayesian population method with two methods as implemented in commercially available software.J. Pharmacokinet. Biopharm.1996,24, 403–432. [Google Scholar] [CrossRef]
- Wakefield, J. The Bayesian analysis of population pharmacokinetic models.J. Am. Stat. Assoc.1996,91, 62–75. [Google Scholar] [CrossRef]
- Gelman, A.; Bois, F.; Jiang, J. Physiological pharmacokinetic analysis using population modeling and informative prior distributions.J. Am. Stat. Assoc.1996,91, 1400–1412. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lei, B.; Mallick, B. Estimation of COVID-19 spread curves integrating global data and borrowing information.PLoS ONE2020,15, e0236860. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Mallick, B.K. Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas.Sankhya B2021, 1–43. [Google Scholar] [CrossRef]
- Hammersley, J.Monte Carlo Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Green, P.J.; Łatuszyński, K.; Pereyra, M.; Robert, C.P. Bayesian computation: A summary of the current state, and samples backwards and forwards.Stat. Comput.2015,25, 835–862. [Google Scholar] [CrossRef]
- Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–22 March 2003; Volume 124, pp. 1–10. [Google Scholar]
- Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS project: Evolution, critique and future directions.Stat. Med.2009,28, 3049–3067. [Google Scholar] [CrossRef] [PubMed]
- Beal, S.L.; Sheiner, L.B. Estimating population kinetics.Crit. Rev. Biomed. Eng.1982,8, 195–222. [Google Scholar] [PubMed]
- Wolfinger, R. Laplace’s approximation for nonlinear mixed models.Biometrika1993,80, 791–795. [Google Scholar] [CrossRef]
- Delyon, B.; Lavielle, M.; Moulines, E. Convergence of a stochastic approximation version of the EM algorithm.Ann. Stat.1999,27, 94–128. [Google Scholar] [CrossRef]
- Lee, S.Y. Gibbs sampler and coordinate ascent variational inference: A set-theoretical review.Commun. Stat. Theory Methods2021, 1–21. [Google Scholar] [CrossRef]
- Robert, C.P.; Casella, G. The metropolis—Hastings algorithm. InMonte Carlo Statistical Methods; Springer: Berlin/Heidelberg, Germany, 1999; pp. 231–283. [Google Scholar]
- Neal, R.M. MCMC using Hamiltonian dynamics.Handb. Markov Chain Monte Carlo2011,2, 2. [Google Scholar]
- Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo.J. Mach. Learn. Res.2014,15, 1593–1623. [Google Scholar]
- Dwivedi, R.; Chen, Y.; Wainwright, M.J.; Yu, B. Log-concave sampling: Metropolis-Hastings algorithms are fast! In Proceedings of the Conference on Learning Theory, Stockholm, Sweden, 6–9 July 2018; pp. 793–797. [Google Scholar]
- Ma, Y.A.; Chen, Y.; Jin, C.; Flammarion, N.; Jordan, M.I. Sampling can be faster than optimization.Proc. Natl. Acad. Sci. USA2019,116, 20881–20885. [Google Scholar] [CrossRef]
- Neal, R.M. Slice sampling.Ann. Stat.2003,31, 705–767. [Google Scholar] [CrossRef]
- SAS Institute. SAS OnlineDoc, Version 8. 1999. Available online:http://v8doc.sas.com/sashtml/main.htm (accessed on 20 February 2022).
- Beal, S.L.; Sheiner, L.B.; Boeckmann, A.; Bauer, R.J.NONMEM Users Guides; NONMEM Project Group, University of California: San Francisco, CA, USA, 1992. [Google Scholar]
- Lavielle, M. Monolix User Guide Manual. 2005. Available online:https://monolix.lixoft.com/ (accessed on 20 February 2022).
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility.Stat. Comput.2000,10, 325–337. [Google Scholar] [CrossRef]
- Bürkner, P.C. brms: An R package for Bayesian multilevel models using Stan.J. Stat. Softw.2017,80, 1–28. [Google Scholar] [CrossRef]
- Chernoff, H. Large-sample theory: Parametric case.Ann. Math. Stat.1956,27, 1–22. [Google Scholar] [CrossRef]
- Wand, M. Fisher information for generalised linear mixed models.J. Multivar. Anal.2007,98, 1412–1416. [Google Scholar] [CrossRef][Green Version]
- Kang, D.; Bae, K.S.; Houk, B.E.; Savic, R.M.; Karlsson, M.O. Standard error of empirical bayes estimate in NONMEM® VI.Korean J. Physiol. Pharmacol.2012,16, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Breslow, N.E.; Clayton, D.G. Approximate inference in generalized linear mixed models.J. Am. Stat. Assoc.1993,88, 9–25. [Google Scholar]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B.Bayesian Data Analysis; Chapman and Hall/CRC: London, UK, 2004. [Google Scholar]
- Smid, S.C.; McNeish, D.; Miočević, M.; van de Schoot, R. Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review.Struct. Equ. Model. Multidiscip. J.2020,27, 131–161. [Google Scholar] [CrossRef]
- Rupp, A.A.; Dey, D.K.; Zumbo, B.D. To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling.Struct. Equ. Model.2004,11, 424–451. [Google Scholar] [CrossRef]
- Bonangelino, P.; Irony, T.; Liang, S.; Li, X.; Mukhi, V.; Ruan, S.; Xu, Y.; Yang, X.; Wang, C. Bayesian approaches in medical device clinical trials: A discussion with examples in the regulatory setting.J. Biopharm. Stat.2011,21, 938–953. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G. Bayesian methods in clinical trials with applications to medical devices.Commun. Stat. Appl. Methods2017,24, 561–581. [Google Scholar] [CrossRef]
- Hoff, P.D.A First Course in Bayesian Statistical Methods; Springer: Berlin/Heidelberg, Germany, 2009; Volume 580. [Google Scholar]
- O’Hagan, A. Bayesian statistics: Principles and benefits.Frontis2004,3, 31–45. [Google Scholar]
- van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens, K.; Tadesse, M.G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen, J.; et al. Bayesian statistics and modelling.Nat. Rev. Methods Prim.2021,1, 1–26. [Google Scholar] [CrossRef]
- Blaxter, L.; Hughes, C.; Tight, M.How to Research; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Neuman, W.L.Understanding Research; Pearson: New York, NY, USA, 2016. [Google Scholar]
- Pinheiro, J.; Bates, D.Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gelman, A.; Simpson, D.; Betancourt, M. The prior can often only be understood in the context of the likelihood.Entropy2017,19, 555. [Google Scholar] [CrossRef]
- Garthwaite, P.H.; Kadane, J.B.; O’Hagan, A. Statistical methods for eliciting probability distributions.J. Am. Stat. Assoc.2005,100, 680–701. [Google Scholar] [CrossRef]
- O’Hagan, A.; Buck, C.E.; Daneshkhah, A.; Eiser, J.R.; Garthwaite, P.H.; Jenkinson, D.J.; Oakley, J.E.; Rakow, T.Uncertain Judgements: Eliciting Experts’ Probabilities; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Howard, G.S.; Maxwell, S.E.; Fleming, K.J. The proof of the pudding: An illustration of the relative strengths of null hypothesis, meta-analysis, and Bayesian analysis.Psychol. Methods2000,5, 315. [Google Scholar] [CrossRef]
- Levy, R. Bayesian data-model fit assessment for structural equation modeling.Struct. Equ. Model. Multidiscip. J.2011,18, 663–685. [Google Scholar] [CrossRef]
- Wang, L.; Cao, J.; Ramsay, J.O.; Burger, D.; Laporte, C.; Rockstroh, J.K. Estimating mixed-effects differential equation models.Stat. Comput.2014,24, 111–121. [Google Scholar] [CrossRef]
- Botha, I.; Kohn, R.; Drovandi, C. Particle methods for stochastic differential equation mixed effects models.Bayesian Anal.2021,16, 575–609. [Google Scholar] [CrossRef]
- Fucik, S.; Kufner, A.Nonlinear Differential Equations; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Verhulst, F.Nonlinear Differential Equations and Dynamical Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cohen, S.D.; Hindmarsh, A.C.; Dubois, P.F. CVODE, a stiff/nonstiff ODE solver in C.Comput. Phys.1996,10, 138–143. [Google Scholar] [CrossRef]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae.J. Comput. Appl. Math.1980,6, 19–26. [Google Scholar] [CrossRef]
- Margossian, C.; Gillespie, B. Torsten: A Prototype Model Library for Bayesian PKPD Modeling in Stan User Manual: Version 0.81. Available online:https://metrumresearchgroup.github.io/Torsten/ (accessed on 20 February 2022).
- Chipman, H.; George, E.I.; McCulloch, R.E.; Clyde, M.; Foster, D.P.; Stine, R.A. The practical implementation of Bayesian model selection.Lect. Notes-Monogr. Ser.2001,38, 65–134. [Google Scholar]
- Gibaldi, M.; Perrier, D.Pharmacokinetics; M. Dekker: New York, NY, USA, 1982; Volume 15. [Google Scholar]
- Jambhekar, S.S.; Breen, P.J.Basic Pharmacokinetics; Pharmaceutical Press: London, UK, 2009; Volume 76. [Google Scholar]
- Sheiner, L.; Ludden, T. Population pharmacokinetics/dynamics.Annu. Rev. Pharmacol. Toxicol.1992,32, 185–209. [Google Scholar] [CrossRef] [PubMed]
- Ette, E.I.; Williams, P.J. Population pharmacokinetics I: Background, concepts, and models.Ann. Pharmacother.2004,38, 1702–1706. [Google Scholar] [CrossRef]
- Lewis, J.; Beal, C.H. Some New Methods for Estimating the Future Production of Oil Wells.Trans. AIME1918,59, 492–525. [Google Scholar] [CrossRef]
- Fetkovich, M.J. Decline curve analysis using type curves.J. Pet. Technol.1980,32, 1065–1077. [Google Scholar] [CrossRef]
- Harris, S.; Lee, W.J. A Study of Decline Curve Analysis in the Elm Coulee Field. InSPE Unconventional Resources Conference; Society of Petroleum Engineers: The Woodlands, TX, USA, 2014. [Google Scholar]
- Nelson, C.R.; Siegel, A.F. Parsimonious modeling of yield curves.J. Bus.1987,60, 473–489. [Google Scholar] [CrossRef]
- Diebold, F.X.; Li, C. Forecasting the term structure of government bond yields.J. Econom.2006,130, 337–364. [Google Scholar] [CrossRef]
- Svensson, L.E. Estimating and Interpreting forward Interest Rates: Sweden 1992–1994. National Bureau of Economic Research Working Paper, no 4871. 1994. Available online:https://www.nber.org/papers/w4871 (accessed on 20 February 2022).
- Dahlquist, M.; Svensson, L.E. Estimating the term structure of interest rates for monetary policy analysis.Scand. J. Econ.1996,98, 163–183. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, X.; Li, J.; Zhu, B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics.Chaos Solitons Fractals2020,139, 110058. [Google Scholar] [CrossRef]
- Wilke, C.O.; Bergstrom, C.T. Predicting an epidemic trajectory is difficult.Proc. Natl. Acad. Sci. USA2020,117, 28549–28551. [Google Scholar] [CrossRef]
- Bonate, P.L.Pharmacokinetic-Pharmacodynamic Modeling and Simulation; Springer: Berlin/Heidelberg, Germany, 2011; Volume 20. [Google Scholar]
- Rowland, M.; Tozer, T.N.Clinical Pharmacokinetics/Pharmacodynamics; Lippincott Williams and Wilkins Philadelphia: New York, NY, USA, 2005. [Google Scholar]
- Gabrielsson, J.; Weiner, D.Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Dua, P.; Hawkins, E.; Van Der Graaf, P. A tutorial on target-mediated drug disposition (TMDD) models.CPT Pharmacometr. Syst. Pharmacol.2015,4, 324–337. [Google Scholar] [CrossRef]
- Xu, X.S.; Yuan, M.; Zhu, H.; Yang, Y.; Wang, H.; Zhou, H.; Xu, J.; Zhang, L.; Pinheiro, J. Full covariate modelling approach in population pharmacokinetics: Understanding the underlying hypothesis tests and implications of multiplicity.Br. J. Clin. Pharmacol.2018,84, 1525–1534. [Google Scholar] [CrossRef]
- Roses, A.D. Pharmacogenetics and the practice of medicine.Nature2000,405, 857–865. [Google Scholar] [CrossRef]
- Food and Drug Administration. Population Pharmacokinetics Guidance for Industry. FDA Guidance Page; 1999. Available online:https://www.fda.gov/regulatory-information/search-fda-guidance-documents/population-pharmacokinetics (accessed on 20 February 2022).
- Efron, B.The Jackknife, the Bootstrap and Other Resampling Plans; SIAM: Philadelphia, PA, USA, 1982. [Google Scholar]
- Broeker, A.; Wicha, S.G. Assessing parameter uncertainty in small-n pharmacometric analyses: Value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique.J. Pharmacokinet. Pharmacodyn.2020,47, 219–228. [Google Scholar] [CrossRef]
- Bauer, R.J. NONMEM tutorial part I: Description of commands and options, with simple examples of population analysis.CPT Pharmacometr. Syst. Pharmacol.2019,8, 525–537. [Google Scholar] [CrossRef]
- Giger, F.; Reiss, L.; Jourdan, A. The reservoir engineering aspects of horizontal drilling. InSPE Annual Technical Conference and Exhibition; OnePetro: Houston, TX, USA, 1984. [Google Scholar]
- Al-Haddad, S.; Crafton, J. Productivity of horizontal wells. InLow Permeability Reservoirs Symposium; OnePetro: Denver, CO, USA, 1991. [Google Scholar]
- Mukherjee, H.; Economides, M.J. A parametric comparison of horizontal and vertical well performance.SPE Form. Eval.1991,6, 209–216. [Google Scholar] [CrossRef]
- Joshi, S. Cost/benefits of horizontal wells. InSPE Western Regional/AAPG Pacific Section Joint Meeting; OnePetro: Long Beach, CA, USA, 2003. [Google Scholar]
- Valdes, A.; McVay, D.A.; Noynaert, S.F. Uncertainty quantification improves well construction cost estimation in unconventional reservoirs. InSPE Unconventional Resources Conference Canada; OnePetro: Calgary, AB, Canada, 2013. [Google Scholar]
- Bellarby, J.Well Completion Design; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Currie, S.M.; Ilk, D.; Blasingame, T.A. Continuous estimation of ultimate recovery. InSPE Unconventional Gas Conference; OnePetro: Pittsburgh, PA, USA, 2010. [Google Scholar]
- Arps, J.J. Analysis of decline curves.Trans. AIME1945,160, 228–247. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability.J. Appl. Mech.1951,18, 293–297. [Google Scholar] [CrossRef]
- Ilk, D.; Rushing, J.A.; Perego, A.D.; Blasingame, T.A. Exponential vs. hyperbolic decline in tight gas sands: Understanding the origin and implications for reserve estimates using Arps’ decline curves. InSPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Denver, CO, USA, 2008. [Google Scholar]
- Valkó, P.P.; Lee, W.J. A better way to forecast production from unconventional gas wells. InSPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Florence, Italy, 2010. [Google Scholar]
- Clark, A.J. Decline Curve Analysis in Unconventional Resource Plays Using Logistic Growth Models. Ph.D. Thesis, The University of Texas Austion, Austin, TX, USA, 2011. [Google Scholar]
- Duong, A.N. Rate-decline analysis for fracture-dominated shale reservoirs.SPE Reserv. Eval. Eng.2011,14, 377–387. [Google Scholar] [CrossRef]
- Ali, T.A.; Sheng, J.J. Production Decline Models: A Comparison Study. InSPE Eastern Regional Meeting; Society of Petroleum Engineers: Morgantown, WV, USA, 2015. [Google Scholar]
- Miao, Y.; Li, X.; Lee, J.; Zhao, C.; Zhou, Y.; Li, H.; Chang, Y.; Lin, W.; Xiao, Z.; Wu, N.; et al. Comparison of Various Rate-Decline Analysis Models for Horizontal Wells with Multiple Fractures in Shale gas Reservoirs. InSPE Trinidad and Tobago Section Energy Resources Conference; Society of Petroleum Engineers: Port of Spain, Trinidad and Tobago, 2018. [Google Scholar]
- Duffee, G. Forecasting interest rates. InHandbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 385–426. [Google Scholar]
- Gürkaynak, R.S.; Sack, B.; Wright, J.H. The US Treasury yield curve: 1961 to the present.J. Monet. Econ.2007,54, 2291–2304. [Google Scholar] [CrossRef]
- Zaloom, C. How to read the future: The yield curve, affect, and financial prediction.Public Cult.2009,21, 245–268. [Google Scholar] [CrossRef]
- Hays, S.; Shen, H.; Huang, J.Z. Functional dynamic factor models with application to yield curve forecasting.Ann. Appl. Stat.2012,6, 870–894. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, L. Adaptive dynamic Nelson–Siegel term structure model with applications.J. Econom.2014,180, 98–115. [Google Scholar] [CrossRef]
- Bank for International Settlements.Zero-Coupon Yield Curves: Technical Documentation; BIS Papers, no 2; Bank for International Settlements: Basel, Switzerland, 2005; Available online:https://www.bis.org/publ/bppdf/bispap25.htm (accessed on 20 February 2022).
- Hautsch, N.; Yang, F. Bayesian inference in a stochastic volatility Nelson–Siegel model.Comput. Stat. Data Anal.2012,56, 3774–3792. [Google Scholar] [CrossRef]
- Diebold, F.X.; Li, C.; Yue, V.Z. Global yield curve dynamics and interactions: A dynamic Nelson–Siegel approach.J. Econom.2008,146, 351–363. [Google Scholar] [CrossRef]
- Cruz-Marcelo, A.; Ensor, K.B.; Rosner, G.L. Estimating the term structure with a semiparametric Bayesian hierarchical model: An application to corporate bonds.J. Am. Stat. Assoc.2011,106, 387–395. [Google Scholar] [CrossRef]
- Richards, F. A flexible growth function for empirical use.J. Exp. Bot.1959,10, 290–301. [Google Scholar] [CrossRef]
- Nelder, J.A. 182. note: An alternative form of a generalized logistic equation.Biometrics1962,18, 614–616. [Google Scholar] [CrossRef]
- Seber, G.A.; Wild, C.J.Nonlinear Regression; John Wiley Sons: Hoboken, NJ, USA, 2003; Volume 62, p. 63. [Google Scholar]
- Anton, H.; Herr, A.Calculus with Analytic Geometry; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Causton, D. A computer program for fitting the Richards function.Biometrics1969,25, 401–409. [Google Scholar] [CrossRef]
- Birch, C.P. A new generalized logistic sigmoid growth equation compared with the Richards growth equation.Ann. Bot.1999,83, 713–723. [Google Scholar] [CrossRef]
- Kahm, M.; Hasenbrink, G.; Lichtenberg-Fraté, H.; Ludwig, J.; Kschischo, M. grofit: Fitting biological growth curves with R.J. Stat. Softw.2010,33, 1–21. [Google Scholar] [CrossRef]
- Cao, L.; Shi, P.J.; Li, L.; Chen, G. A New Flexible Sigmoidal Growth Model.Symmetry2019,11, 204. [Google Scholar] [CrossRef]
- Wang, X.S.; Wu, J.; Yang, Y. Richards model revisited: Validation by and application to infection dynamics.J. Theor. Biol.2012,313, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.H.; Lee, J.Y.; Chang, H.L. SARS epidemiology modeling.Emerg. Infect. Dis.2004,10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.H. Richards model: A simple procedure for real-time prediction of outbreak severity. InModeling and Dynamics of Infectious Diseases; World Scientific: London, UK, 2009; pp. 216–236. [Google Scholar]
- Hsieh, Y.H.; Ma, S. Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005.Am. J. Trop. Med. Hyg.2009,80, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.H.; Chen, C. Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks.Trop. Med. Int. Health2009,14, 628–638. [Google Scholar] [CrossRef]
- Hsieh, Y.H. Pandemic influenza A (H1N1) during winter influenza season in the southern hemisphere.Influenza Other Respir. Viruses2010,4, 187–197. [Google Scholar] [CrossRef]
- Wu, K.; Darcet, D.; Wang, Q.; Sornette, D. Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world.arXiv2020, arXiv:2003.05681. [Google Scholar] [CrossRef]
- Lee, S.Y.; Munafo, A.; Girard, P.; Goteti, K. Optimization of dose selection using multiple surrogates of toxicity as a continuous variable in phase I cancer trial.Contemp. Clin. Trials2021,113, 106657. [Google Scholar] [CrossRef]
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G.; et al. HAWK and HARRIER: Phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration.Ophthalmology2020,127, 72–84. [Google Scholar] [CrossRef]
- Willyard, C. New human gene tally reignites debate.Nature2018,558, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M.Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A.Deep Learning; MIT Press: London, UK, 2016. [Google Scholar]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L.Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- James, W.; Stein, C. Estimation with quadratic loss. InBreakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 443–460. [Google Scholar]
- Dawid, A.P. Conditional independence in statistical theory.J. R. Stat. Soc. Ser. B1979,41, 1–15. [Google Scholar] [CrossRef]
- Liu, Q.; Pierce, D.A. A note on Gauss—Hermite quadrature.Biometrika1994,81, 624–629. [Google Scholar]
- Hedeker, D.; Gibbons, R.D. A random-effects ordinal regression model for multilevel analysis.Biometrics1994,50, 933–944. [Google Scholar] [CrossRef]
- Vonesh, E.F.; Wang, H.; Nie, L.; Majumdar, D. Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models.J. Am. Stat. Assoc.2002,97, 271–283. [Google Scholar] [CrossRef]
- Hinrichs, A.; Novak, E.; Ullrich, M.; Woźniakowski, H. The curse of dimensionality for numerical integration of smooth functions II.J. Complex.2014,30, 117–143. [Google Scholar] [CrossRef]
- Vonesh, E.F.; Carter, R.L. Mixed-effects nonlinear regression for unbalanced repeated measures.Biometrics1992,48, 1–17. [Google Scholar] [CrossRef]
- Goldstein, H. Nonlinear multilevel models, with an application to discrete response data.Biometrika1991,78, 45–51. [Google Scholar] [CrossRef]
- Vonesh, E.F. A note on the use of Laplaces approximation for nonlinear mixed-effects models.Biometrika1996,83, 447–452. [Google Scholar] [CrossRef]
- Marsden, J.E.; Hoffman, M.J.Elementary Classical Analysis; Macmillan: New York, NY, USA, 1993. [Google Scholar]
- Lindley, D.V.; Smith, A.F. Bayes estimates for the linear model.J. R. Stat. Soc. Ser. B1972,34, 1–18. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.J. R. Stat. Soc. Ser. B1977,39, 1–22. [Google Scholar]
- Meng, X.L.; Rubin, D.B. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm.J. Am. Stat. Assoc.1991,86, 899–909. [Google Scholar] [CrossRef]
- Walker, S. An EM algorithm for nonlinear random effects models.Biometrics1996,52, 934–944. [Google Scholar] [CrossRef]
- Allassonnière, S.; Chevallier, J. A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling.Comput. Stat. Data Anal.2021,159, 107159. [Google Scholar] [CrossRef]
- Kuhn, E.; Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects models.Comput. Stat. Data Anal.2005,49, 1020–1038. [Google Scholar] [CrossRef]
- Samson, A.; Lavielle, M.; Mentré, F. The SAEM algorithm for group comparison tests in longitudinal data analysis based on non-linear mixed-effects model.Stat. Med.2007,26, 4860–4875. [Google Scholar] [CrossRef]
- Kuhn, E.; Lavielle, M. Coupling a stochastic approximation version of EM with an MCMC procedure.ESAIM Probab. Stat.2004,8, 115–131. [Google Scholar] [CrossRef]
- Allassonnière, S.; Kuhn, E.; Trouvé, A. Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study.Bernoulli2010,16, 641–678. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.Bayesian Theory; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 405. [Google Scholar]
- Lindley, D.V.Bayesian Statistics, a Review; SIAM: Philadelphia, PA, USA, 1972; Volume 2. [Google Scholar]
- Casella, G.; George, E.I. Explaining the Gibbs sampler.Am. Stat.1992,46, 167–174. [Google Scholar]
- Murray, I.; Prescott Adams, R.; MacKay, D.J. Elliptical Slice Sampling. In Proceedings of the Thirteenth International Conference on Artificial Intelligence And Statistics, Sardinia, Italy, 13–15 May 2010. [Google Scholar]
- Ranganath, R.; Gerrish, S.; Blei, D. Black box variational inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014. [Google Scholar]
- Wang, C.; Blei, D.M. Variational inference in nonconjugate models.J. Mach. Learn. Res.2013,14, 1005–1031. [Google Scholar]
- Minka, T.P. Expectation propagation for approximate Bayesian inference.arXiv2013, arXiv:1301.2294. [Google Scholar]
- Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians.J. Am. Stat. Assoc.2017,112, 859–877. [Google Scholar] [CrossRef]
- Andrieu, C.; De Freitas, N.; Doucet, A.; Jordan, M.I. An introduction to MCMC for machine learning.Mach. Learn.2003,50, 5–43. [Google Scholar] [CrossRef]
- Zhang, C.; Bütepage, J.; Kjellström, H.; Mandt, S. Advances in variational inference.IEEE Trans. Pattern Anal. Mach. Intell.2018,41, 2008–2026. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C.A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online:http://www.R-project.org (accessed on 20 February 2022).
- Lee, A.; Yau, C.; Giles, M.B.; Doucet, A.; Holmes, C.C. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.J. Comput. Graph. Stat.2010,19, 769–789. [Google Scholar] [CrossRef] [PubMed]
- Suchard, M.A.; Wang, Q.; Chan, C.; Frelinger, J.; Cron, A.; West, M. Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures.J. Comput. Graph. Stat.2010,19, 419–438. [Google Scholar] [CrossRef] [PubMed]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications.Biometrika1970,57, 97–109. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines.J. Chem. Phys.1953,21, 1087–1092. [Google Scholar] [CrossRef]
- Robert, C.P. The Metropolis–Hastings Algorithm. InWiley StatsRef: Statistics Reference Online; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–15. [Google Scholar]
- Chib, S.; Greenberg, E. Understanding the metropolis-hastings algorithm.Am. Stat.1995,49, 327–335. [Google Scholar]
- Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid monte carlo.Phys. Lett. B1987,195, 216–222. [Google Scholar] [CrossRef]
- Mengersen, K.L.; Tweedie, R.L. Rates of convergence of the Hastings and Metropolis algorithms.Ann. Stat.1996,24, 101–121. [Google Scholar] [CrossRef]
- Chen, T.; Fox, E.; Guestrin, C. Stochastic gradient hamiltonian monte carlo. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1683–1691. [Google Scholar]
- Aicher, C.; Ma, Y.A.; Foti, N.J.; Fox, E.B. Stochastic gradient mcmc for state space models.SIAM J. Math. Data Sci.2019,1, 555–587. [Google Scholar] [CrossRef]
- Griewank, A.; Walther, A.Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Øksendal, B. Stochastic differential equations. InStochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2003; pp. 65–84. [Google Scholar]
- Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion.Phys. Rev.1930,36, 823. [Google Scholar] [CrossRef]
- Roberts, G.O.; Tweedie, R.L. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms.Biometrika1996,83, 95–110. [Google Scholar] [CrossRef]
- Asai, Y.; Kloeden, P.E. Numerical schemes for random ODEs via stochastic differential equations.Commun. Appl. Anal.2013,17, 521–528. [Google Scholar]
- Casella, G.; Robert, C.P.Monte Carlo Statistical Methods; Springer: New York, NY, USA, 1999. [Google Scholar]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language.J. Stat. Softw.2017,76, 1–32. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Leimkuhler, B.; Reich, S.Simulating Hamiltonian Dynamics; Number 14; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zou, D.; Gu, Q. On the convergence of Hamiltonian Monte Carlo with stochastic gradients. In Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 13012–13022. [Google Scholar]
- Meza, C.; Osorio, F.; De la Cruz, R. Estimation in nonlinear mixed-effects models using heavy-tailed distributions.Stat. Comput.2012,22, 121–139. [Google Scholar] [CrossRef]
- Jeffreys, H. An invariant form for the prior probability in estimation problems.Proc. R. Soc. Lond. A1946,186, 453–461. [Google Scholar]
- Makalic, E.; Schmidt, D.F. A simple sampler for the horseshoe estimator.IEEE Signal Process. Lett.2016,23, 179–182. [Google Scholar] [CrossRef]
- Castillo, I.; Schmidt-Hieber, J.; Van der Vaart, A. Bayesian linear regression with sparse priors.Ann. Stat.2015,43, 1986–2018. [Google Scholar] [CrossRef]
- Lee, S.Y.; Pati, D.; Mallick, B.K. Tail-adaptive Bayesian shrinkage.arXiv2020, arXiv:2007.02192. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso.J. R. Stat. Soc. Ser. B1996,58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net.J. R. Stat. Soc. Ser. B2005,67, 301–320. [Google Scholar] [CrossRef]
- Fan, J.; Samworth, R.; Wu, Y. Ultrahigh dimensional feature selection: Beyond the linear model.J. Mach. Learn. Res.2009,10, 2013–2038. [Google Scholar]
- Lu, Y.; Stuart, A.; Weber, H. Gaussian Approximations for Probability Measures onRd.SIAM/ASA J. Uncertain. Quantif.2017,5, 1136–1165. [Google Scholar] [CrossRef]
- Wang, Y.; Blei, D.M. Frequentist consistency of variational Bayes.J. Am. Stat. Assoc.2019,114, 1147–1161. [Google Scholar] [CrossRef]
- Johnstone, I.M. High dimensional Bernstein-von Mises: Simple examples.Inst. Math. Stat. Collect.2010,6, 87. [Google Scholar]
- Le Cam, L.; LeCam, L.M.; Yang, G.L.Asymptotics in Statistics: Some Basic Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Davidian, M.; Gallant, A.R. Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidine.J. Pharmacokinet. Biopharm.1992,20, 529–556. [Google Scholar] [CrossRef]
- Wei, Y.; Higgins, J.P. Bayesian multivariate meta-analysis with multiple outcomes.Stat. Med.2013,32, 2911–2934. [Google Scholar] [CrossRef]
- Zellner, A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. InBayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti; Elsevier Science Publishers, Inc.: New York, NY, USA, 1986; pp. 233–243. [Google Scholar]
- Pirmohamed, M. Pharmacogenetics and pharmacogenomics.Br. J. Clin. Pharmacol.2001,52, 345. [Google Scholar] [CrossRef] [PubMed]
- Weinshilboum, R.M.; Wang, L. Pharmacogenetics and pharmacogenomics: Development, science, and translation.Annu. Rev. Genom. Hum. Genet.2006,7, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Arab-Alameddine, M.; Di Iulio, J.; Buclin, T.; Rotger, M.; Lubomirov, R.; Cavassini, M.; Fayet, A.; Décosterd, L.; Eap, C.B.; Biollaz, J.; et al. Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals.Clin. Pharmacol. Ther.2009,85, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Wainwright, M.Statistical Learning with Sparsity: The Lasso and Generalizations; Chapman and Hall/CRC: New York, NY, USA, 2015. [Google Scholar]
- Mitchell, T.J.; Beauchamp, J.J. Bayesian variable selection in linear regression.J. Am. Stat. Assoc.1988,83, 1023–1032. [Google Scholar] [CrossRef]
- George, E.I.; McCulloch, R.E. Stochastic search variable selection.Markov Chain Monte Carlo Pract.1995,68, 203–214. [Google Scholar]
- Johnson, V.E.; Rossell, D. On the use of non-local prior densities in Bayesian hypothesis tests.J. R. Stat. Soc. Ser. B2010,72, 143–170. [Google Scholar] [CrossRef]
- Yang, Y.; Wainwright, M.J.; Jordan, M.I. On the computational complexity of high-dimensional Bayesian variable selection.Ann. Stat.2016,44, 2497–2532. [Google Scholar] [CrossRef]
- Castillo, I.; van der Vaart, A. Needles and straw in a haystack: Posterior concentration for possibly sparse sequences.Ann. Stat.2012,40, 2069–2101. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The bayesian lasso.J. Am. Stat. Assoc.2008,103, 681–686. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine.J. Mach. Learn. Res.2001,1, 211–244. [Google Scholar]
- Griffin, J.E.; Brown, P.J. Inference with normal-gamma prior distributions in regression problems.Bayesian Anal.2010,5, 171–188. [Google Scholar]
- Carvalho, C.M.; Polson, N.G.; Scott, J.G. The horseshoe estimator for sparse signals.Biometrika2010,97, 465–480. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Polson, N.G.; Scott, J.G. Handling sparsity via the horseshoe. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16–18 April 2009. [Google Scholar]
- Polson, N.G.; Scott, J.G. Shrink globally, act locally: Sparse Bayesian regularization and prediction.Bayesian Stat.2010,9, 105. [Google Scholar]
- George, E.I.; McCulloch, R.E. Approaches for Bayesian variable selection.Stat. Sin.1997,7, 339–373. [Google Scholar]
- Johnstone, I.M.; Silverman, B.W. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences.Ann. Stat.2004,32, 1594–1649. [Google Scholar] [CrossRef]
- Pati, D.; Bhattacharya, A.; Pillai, N.S.; Dunson, D. Posterior contraction in sparse Bayesian factor models for massive covariance matrices.Ann. Stat.2014,42, 1102–1130. [Google Scholar] [CrossRef]
- Song, Q.; Liang, F. Nearly optimal Bayesian shrinkage for high dimensional regression.arXiv2017, arXiv:1712.08964. [Google Scholar]
- Martin, R.; Mess, R.; Walker, S.G. Empirical Bayes posterior concentration in sparse high-dimensional linear models.Bernoulli2017,23, 1822–1847. [Google Scholar] [CrossRef]
- Bai, R.; Ghosh, M. High-dimensional multivariate posterior consistency under global–local shrinkage priors.J. Multivar. Anal.2018,167, 157–170. [Google Scholar] [CrossRef]
- Zhang, R.; Ghosh, M. Ultra High-dimensional Multivariate Posterior Contraction Rate Under Shrinkage Priors.arXiv2019, arXiv:1904.04417. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.H. Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory.Commun. Stat.-Theory Methods2019,48, 2014–2038. [Google Scholar] [CrossRef]
- Armagan, A.; Dunson, D.B.; Lee, J. Generalized double Pareto shrinkage.Stat. Sin.2013,23, 119. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, R.B.; Sillanpää, M.J. A review of Bayesian variable selection methods: What, how and which.Bayesian Anal.2009,4, 85–117. [Google Scholar] [CrossRef]
- Bhadra, A.; Datta, J.; Polson, N.G.; Willard, B. Lasso meets horseshoe: A survey.Stat. Sci.2019,34, 405–427. [Google Scholar] [CrossRef]
- Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper).Bayesian Anal.2006,1, 515–534. [Google Scholar] [CrossRef]
- Fan, J.; Liao, Y.; Liu, H. An overview of the estimation of large covariance and precision matrices.Econom. J.2016,19, C1–C32. [Google Scholar] [CrossRef]
- Bickel, P.J.; Levina, E. Covariance regularization by thresholding.Ann. Stat.2008,36, 2577–2604. [Google Scholar] [CrossRef]
- Lam, C.; Fan, J. Sparsistency and rates of convergence in large covariance matrix estimation.Ann. Stat.2009,37, 4254. [Google Scholar] [CrossRef]
- El Karoui, N. High-dimensionality effects in the Markowitz problem and other quadratic programs with linear constraints: Risk underestimation.Ann. Stat.2010,38, 3487–3566. [Google Scholar] [CrossRef]
- Stein, C. Estimation of a covariance matrix, Rietz Lecture. In Proceedings of the 39th Annual Meeting IMS, Atlanta, GA, USA, 1975. [Google Scholar]
- Pourahmadi, M.High-Dimensional Covariance Estimation: With High-Dimensional Data; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 882. [Google Scholar]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices.J. Multivar. Anal.2004,88, 365–411. [Google Scholar] [CrossRef]
- Rajaratnam, B.; Massam, H.; Carvalho, C.M. Flexible covariance estimation in graphical Gaussian models.Ann. Stat.2008,36, 2818–2849. [Google Scholar] [CrossRef]
- Won, J.H.; Lim, J.; Kim, S.J.; Rajaratnam, B. Condition-number-regularized covariance estimation.J. R. Stat. Soc. Ser. B2013,75, 427–450. [Google Scholar] [CrossRef]
- Liu, C. Bartlett’ s Decomposition of the Posterior Distribution of the Covariance for Normal Monotone Ignorable Missing Data.J. Multivar. Anal.1993,46, 198–206. [Google Scholar] [CrossRef][Green Version]
- Barnard, J.; McCulloch, R.; Meng, X.L. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage.Stat. Sin.2000,10, 1281–1311. [Google Scholar]
- Geisser, S. Bayesian estimation in multivariate analysis.Ann. Math. Stat.1965,36, 150–159. [Google Scholar] [CrossRef]
- Lin, S.P.; Perlman, M.D. A Monte Carlo comparison of four estimators for a covariance matrix. InMultivariate Analysis VI; Krishnaiah, P.R., Ed.; North-Holland: Amsterdam, The Netherlands, 1985; pp. 411–429. [Google Scholar]
- Brown, P.J.; Le, N.D.; Zidek, J.V. Inference for a Covariance Matrix. InAspects of Uncertainty; Freeman, P.R., Smith, A.F.M., Eds.; John Wiley: Chichester, UK, 1994; pp. 77–90. [Google Scholar]
- Jeffreys, H.The Theory of Probability; OUP Oxford: Oxford, UK, 1998. [Google Scholar]
- Geisser, S.; Cornfield, J. Posterior distributions for multivariate normal parameters.J. R. Stat. Soc. Ser. B1963,25, 368–376. [Google Scholar] [CrossRef]
- Villegas, C. On the a priori distribution of the covariance matrix.Ann. Math. Stat.1969,40, 1098–1099. [Google Scholar] [CrossRef]
- Schervish, M.J.Theory of Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- James, A.T. Distributions of matrix variates and latent roots derived from normal samples.Ann. Math. Stat.1964,35, 475–501. [Google Scholar] [CrossRef]
- Yang, R.; Berger, J.O. Estimation of a covariance matrix using the reference prior.Ann. Stat.1994,22, 1195–1211. [Google Scholar] [CrossRef]
- Daniels, M.J.; Kass, R.E. Shrinkage estimators for covariance matrices.Biometrics2001,57, 1173–1184. [Google Scholar] [CrossRef]
- Wong, F.; Carter, C.K.; Kohn, R. Efficient estimation of covariance selection models.Biometrika2003,90, 809–830. [Google Scholar] [CrossRef]
- Sun, D.; Berger, J.O. Objective Bayesian analysis for the multivariate normal model.Bayesian Stat.2007,8, 525–562. [Google Scholar]
- Daniels, M.J.; Pourahmadi, M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data.Biometrika2002,89, 553–566. [Google Scholar] [CrossRef]
- Smith, M.; Kohn, R. Parsimonious covariance matrix estimation for longitudinal data.J. Am. Stat. Assoc.2002,97, 1141–1153. [Google Scholar] [CrossRef]
- Lewandowski, D.; Kurowicka, D.; Joe, H. Generating random correlation matrices based on vines and extended onion method.J. Multivar. Anal.2009,100, 1989–2001. [Google Scholar] [CrossRef]
- Ghosh, S.; Henderson, S.G. Behavior of the NORTA method for correlated random vector generation as the dimension increases.ACM Trans. Model. Comput. Simul.2003,13, 276–294. [Google Scholar] [CrossRef]
- Joe, H. Generating random correlation matrices based on partial correlations.J. Multivar. Anal.2006,97, 2177–2189. [Google Scholar] [CrossRef]
- Gilks, W.R.; Richardson, S.; Spiegelhalter, D.Markov Chain Monte Carlo in Practice; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit.J. R. Stat. Soc. Ser. B2002,64, 583–639. [Google Scholar] [CrossRef]
- Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory.J. Mach. Learn. Res.2010,11, 3571–3594. [Google Scholar]
- Gelfand, A.E.; Ghosh, S.K. Model choice: A minimum posterior predictive loss approach.Biometrika1998,85, 1–11. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. InSelected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. [Google Scholar]
- Efron, B. How biased is the apparent error rate of a prediction rule?J. Am. Stat. Assoc.1986,81, 461–470. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Practical use of the information-theoretic approach. InModel Selection and Inference; Springer: Berlin/Heidelberg, Germany, 1998; pp. 75–117. [Google Scholar]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E.Hierarchical Modeling and Analysis for Spatial Data; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models.Stat. Comput.2014,24, 997–1016. [Google Scholar] [CrossRef]
- Celeux, G.; Forbes, F.; Robert, C.P.; Titterington, D.M. Deviance information criteria for missing data models.Bayesian Anal.2006,1, 651–673. [Google Scholar] [CrossRef]
- Robert, C.; Casella, G.Monte Carlo Statistical Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vehtari, A.; Gelman, A.WAIC and Cross-Validation in Stan; Aalto University: Helsinki, Finland, 2014. [Google Scholar]
- Box, G.E. Sampling and Bayes’ inference in scientific modelling and robustness.J. R. Stat. Soc. Ser. A1980,143, 383–430. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian and non-Bayesian estimation using balanced loss functions. InStatistical Decision Theory and Related Topics V; Springer: Berlin/Heidelberg, Germany, 1994; pp. 377–390. [Google Scholar]
- Vonesh, E.F. Non-linear models for the analysis of longitudinal data.Stat. Med.1992,11, 1929–1954. [Google Scholar] [CrossRef]
- Müller, P.; Rosner, G.L. A Bayesian population model with hierarchical mixture priors applied to blood count data.J. Am. Stat. Assoc.1997,92, 1279–1292. [Google Scholar]
- Müller, P.; Quintana, F.A. Nonparametric Bayesian data analysis.Stat. Sci.2004,19, 95–110. [Google Scholar] [CrossRef]
- Hjort, N.L.; Holmes, C.; Müller, P.; Walker, S.G.Bayesian Nonparametrics; Cambridge University Press: Cambridge, UK, 2010; Volume 28. [Google Scholar]
- Walker, S.; Wakefield, J. Population models with a nonparametric random coefficient distribution.Sankhyā Indian J. Stat. Ser.1998,60, 196–214. [Google Scholar]
- MacKay, D.J. Introduction to Gaussian processes.NATO ASI Ser. F Comput. Syst. Sci.1998,168, 133–166. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. InSummer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Ferguson, T.S. Prior distributions on spaces of probability measures.Ann. Stat.1974,2, 615–629. [Google Scholar] [CrossRef]
- Escobar, M.D. Estimating normal means with a Dirichlet process prior.J. Am. Stat. Assoc.1994,89, 268–277. [Google Scholar] [CrossRef]
- Escobar, M.D.; West, M. Bayesian density estimation and inference using mixtures.J. Am. Stat. Assoc.1995,90, 577–588. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite mixture models.Annu. Rev. Stat. Its Appl.2019,6, 355–378. [Google Scholar] [CrossRef]
- Rasmussen, C.E. The infinite Gaussian mixture model.Advances in Neural Information Processing Systems 12. 1999, Volume 12, pp. 554–560. Available online:https://papers.nips.cc/paper/1999/hash/97d98119037c5b8a9663cb21fb8ebf47-Abstract.html (accessed on 20 February 2022).
- Antoniak, C.E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems.Ann. Stat.1974,2, 1152–1174. [Google Scholar] [CrossRef]
- Teh, Y.W.; Jordan, M.I.; Beal, M.J.; Blei, D.M. Hierarchical dirichlet processes.J. Am. Stat. Assoc.2006,101, 1566–1581. [Google Scholar] [CrossRef]
- Jara, A. Theory and computations for the Dirichlet process and related models: An overview.Int. J. Approx. Reason.2017,81, 128–146. [Google Scholar] [CrossRef]
- Rosner, G.L.; Müller, P. Bayesian population pharmacokinetic and pharmacodynamic analyses using mixture models.J. Pharmacokinet. Biopharm.1997,25, 209–233. [Google Scholar] [CrossRef]
- Müller, P.; Quintana, F.; Rosner, G. A method for combining inference across related nonparametric Bayesian models.J. R. Stat. Soc. Ser. B2004,66, 735–749. [Google Scholar] [CrossRef]
- Brown, H.; Prescott, R.Applied Mixed Models in Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Congdon, P.D.Applied Bayesian Hierarchical Methods; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Jordan, M.I. Graphical models.Stat. Sci.2004,19, 140–155. [Google Scholar] [CrossRef]
- Lauritzen, S.L.; Dawid, A.P.; Larsen, B.N.; Leimer, H.G. Independence properties of directed Markov fields.Networks1990,20, 491–505. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.IEEE Trans. Pattern Anal. Mach. Intell.1984,PAMI-6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.S. The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem.J. Am. Stat. Assoc.1994,89, 958–966. [Google Scholar] [CrossRef]
- Park, T.; Lee, S. Improving the Gibbs sampler.Wiley Interdiscip. Rev. Comput. Stat.2021, e1546. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Thomas, A.; Best, N.; Lunn, D.WinBUGS Version 1.4 User Manual; MRC Biostatistics Unit: Cambridge, UK, 2003; Available online:http://www.mrc-bsu.cam.ac.uk/bugs (accessed on 20 February 2022).
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. OpenBUGS user manual.Version2007,3, 2007. [Google Scholar]
- Barthelmé, S.; Chopin, N. Expectation propagation for likelihood-free inference.J. Am. Stat. Assoc.2014,109, 315–333. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, J.; Hu, W.; Zhang, B. Big learning with Bayesian methods.Natl. Sci. Rev.2017,4, 627–651. [Google Scholar] [CrossRef]
- Jordan, M.I. Message from the president: The era of big data.ISBA Bull.2011,18, 1–3. [Google Scholar]
- Johnson, D.; Sinanovic, S. Symmetrizing the kullback-leibler distance.IEEE Trans. Inf. Theory. 2001. Available online:https://scholarship.rice.edu/bitstream/handle/1911/19969/Joh2001Mar1Symmetrizi.PDF?sequence=1 (accessed on 20 February 2022).
- Tan, L.S.; Nott, D.J. Variational inference for generalized linear mixed models using partially noncentered parametrizations.Stat. Sci.2013,28, 168–188. [Google Scholar] [CrossRef]
- Ormerod, J.T.; Wand, M.P. Gaussian variational approximate inference for generalized linear mixed models.J. Comput. Graph. Stat.2012,21, 2–17. [Google Scholar] [CrossRef]
- Tan, L.S.; Nott, D.J. A stochastic variational framework for fitting and diagnosing generalized linear mixed models.Bayesian Anal.2014,9, 963–1004. [Google Scholar] [CrossRef]
- Ngufor, C.; Van Houten, H.; Caffo, B.S.; Shah, N.D.; McCoy, R.G. Mixed Effect Machine Learning: A framework for predicting longitudinal change in hemoglobin A1c.J. Biomed. Inform.2019,89, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Capitaine, L.; Genuer, R.; Thiébaut, R. Random forests for high-dimensional longitudinal data.Stat. Methods Med. Res.2021,30, 166–184. [Google Scholar] [CrossRef] [PubMed]
- Mandel, F.; Ghosh, R.P.; Barnett, I. Neural Networks for Clustered and Longitudinal Data Using Mixed Effects Models.Biometrics 2021. [CrossRef] [PubMed]
- Fu, W.; Simonoff, J.S. Unbiased regression trees for longitudinal and clustered data.Comput. Stat. Data Anal.2015,88, 53–74. [Google Scholar] [CrossRef]
- Tsybakov, A.B.Introduction to Nonparametric Estimation; Springer: New York, NY, USA, 2009. [Google Scholar]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions.J. Math. Psychol.2018,85, 1–16. [Google Scholar] [CrossRef]
- Breiman, L. Random forests.Mach. Learn.2001,45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine.Ann. Stat.2001,29, 1189–1232. [Google Scholar] [CrossRef]









| Characteristic | Frequentist | Bayesian |
|---|---|---|
| Estimation objective | Maximize a likelihood [14,15,21] | Sample from a posterior [22,28,30] |
| Computation algorithm | First-order approximation [36], Laplace approximation [37], and stochastic approximation of EM algorithm [38] | Gibbs sampler [39],Metropolis-Hastings algorithm[40],Hamiltonian Monte Carlo[41], and No-U-Turn sampler[42] |
| Software | SAS [46],NONMEM [47],Monolix [48],nlmixr [18] | JAGS [49],BUGS [35],Stan [17],brms [50] |
| Advantages | Relatively fast computation speed, the objectivity of inference results, and widely available software packages to implement complex models | Inherent uncertainty quantification, better small sample performance, and utility of prior knowledge |
| Disadvantages | Needs large-sample theory for uncertainty quantification and cannot incorporate prior knowledge | Needs high computing power for big data and requires Bayesian expertise in prior elicitation |
| Research Field | Problem | Objective | References |
|---|---|---|---|
| Pharmaceutical industry | Pharmacokinetics analysis | Estimation of typical values of pharmacokinetics parameters | [79,80,81,82] |
| Oil and gas industry | Decline curve analysis | Prediction of estimated ultimate recovery | [31,83,84,85] |
| Financial industry | Yield curve modeling | Estimation of the interest rate parameters over time | [86,87,88,89] |
| Epidemiology | Epidemic spread prediction | Prediction of final epidemic size and finding risk factors | [30,90,91] |
| Residual Error Type | Individual-Level Model | Mean | Variance |
|---|---|---|---|
| Additive | |||
| Proportional | |||
| Exponential | |||
| Additive and proportional | |||
| Additive and exponential |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y. Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications.Mathematics2022,10, 898. https://doi.org/10.3390/math10060898
Lee SY. Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications.Mathematics. 2022; 10(6):898. https://doi.org/10.3390/math10060898
Chicago/Turabian StyleLee, Se Yoon. 2022. "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications"Mathematics 10, no. 6: 898. https://doi.org/10.3390/math10060898
APA StyleLee, S. Y. (2022). Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications.Mathematics,10(6), 898. https://doi.org/10.3390/math10060898





