Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways
Abstract
:1. Introduction
2. T-2 Toxin
3. Macrocyclic Trichothecenes
4. Fumonisin B1
5. Ochratoxin A
6. Conclusions
Acknowledgments
References
- Haschek, WM; Voss, KA; Beasley, VR. Selected Mycotoxins Affecting Animal and Human Health. InHandbook of Toxicologic Pathology; Haschek, WM, Rousseaux, CG, Walling, MA, Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 645–699. [Google Scholar]
- Surai, PF; Mezes, M; Melnichuk, SD; Fotina, TI. Mycotoxins and animal health: From oxidative stress to gene expression.Krmiva2008,50, 35–43. [Google Scholar]
- Chandra, J; Samali, A; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress.Free Radic. Biol. Med2000,29, 323–333. [Google Scholar]
- Desjardins, AE; Hohn, TM; McComic, SP. Trichothecene biosynthesis inFusarium species: chemistry, genetics, and significance.Microbiol. Mol. Biol. Rev1993,57, 595–604. [Google Scholar]
- Nelson, PE; Dignani, MC; Anaissie, EJ. Taxonomy, biology, and clinical aspects ofFusarium species.Clin Microbiol Rev1994,7, 479–504. [Google Scholar]
- Joffe, AZ. Foodborne Diseases: Alimentary Toxic Aleukia. InHandbook of Foodborne Diseases of Biological Origin; Rochcigle, M, Ed.; CRC Press: Boca Raton, FL, USA, 1983; pp. 353–495. [Google Scholar]
- Saito, M; Ohtsubo, K. Trichothecene Toxins ofFusarium Species. InMycotoxins; Purchase, IFH, Ed.; Elsevier Scientific Publication: New York, NY, USA, 1977; pp. 264–280. [Google Scholar]
- Ueno, Y; Ishii, K; Saki, K; Kanadera, K; Tsunoda, S; Tanoka, H; Enomoto, M. Toxicological approaches to the metabolites of fusaria. IV. Microbial survey on “bean-hulls poisoning of horses” with the isolation of toxic trichothecenes, neosonaniol and T-2 toxin ofFusarium solani M-1-1.Jpn J Exp Med1972,42, 187–203. [Google Scholar]
- Bennet, JW; Klich, M. Mycotoxins.Clin. Microbiol. Rev2003,16, 497–516. [Google Scholar]
- Eriksen, GS; Petterson, H. Toxicological evaluation of trichothecenes in animal feed.Anim. Feed Sci. Technol2004,114, 205–239. [Google Scholar]
- Shifrin, VI; Anderson, P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis.J Biol Chem1999,274, 13985–13992. [Google Scholar]
- Chang, IM; Mar, WC. Effect of T-2 toxin on lipid peroxidation in rats: Elevation of conjugated diene formation.Toxicol. Lett1988,40, 275–280. [Google Scholar]
- Eriksen, GS; Petterson, H; Lund, H. Comparative cytotoxicity of deoxynivalenol, nivalenol, triacetylated derivatives and de-epoxy metabolites.Food Chem. Toxicol2004,42, 619–624. [Google Scholar]
- IARC. Toxins derived fromFusarium sporotrichoides: T-2 toxin. InIARC Monographson the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; pp. 467–488. [Google Scholar]
- Sharma, RP. Immunotoxicity of mycotoxins.J. Dairy Sci1993,76, 892–897. [Google Scholar]
- Stanford, GK; Hood, RD; Haynes, AW. Effects of prenatal administration of T-2 toxin to mice.Res Commu Chem Pathol Pharmacol1975,10, 743–746. [Google Scholar]
- Williams, PP. Effects of T-2 mycotoxin on gastrointestinal tissues: A review ofin vivo andin vitro models.Arch Environ Contam Toxicol1989,18, 374–387. [Google Scholar]
- Shinozuka, J; Li, G; Kiatipattanasakul, W; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in lymphoid organs of mice.Exp. Toxicol. Pathol1997,49, 387–392. [Google Scholar]
- Li, G; Shinozuka, J; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in Peyer’s patches of mice.J. Toxicol. Pathol1997,10, 59–61. [Google Scholar]
- Shinozuka, J; Suzuki, M; Noguchi, N; Sugimoto, T; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in hematopoietic tissues of mice.Toxicol. Pathol1998,26, 674–681. [Google Scholar]
- Li, G; Shinozuka, J; Uetsuka, K; Nakayama, H; Doi, K. T-2 toxin-induced apoptosis in intestinal crypt epithelial cells of mice.Exp. Toxicol. Pathol1997,49, 447–450. [Google Scholar]
- Albarenque, SM; Shinozuka, J; Iwamoto, S; Nakayama, H; Doi, K. T-2 toxin-induced acute skin lesions in Wistar-derived hypotrichotic WBN/ILA-Ht rats.Histol. Histopathol1999,14, 337–342. [Google Scholar]
- Shinozuka, J; Miwa, S; Fujimura, H; Toriumi, W; Doi, K. Hepatotoxicity of T-2 Toxin, Trichothecene Mycotoxin. InNew Strategies for Mycotoxin Research in Asia (Proceedings of ISMYCO Bangkok ‘06); Kumagai, S, Ed.; Japanese Association of Mycotoxicology: Tokyo, Japan, 2007; pp. 62–66. [Google Scholar]
- Sehata, S; Kiyosawa, N; Atsumi, F; Ito, K; Yamoto, T; Teranishi, M; Uetsuka, K; Nakayama, H; Doi, K. Microarray analysis of T-2 toxin-induced liver, placenta and fetal liver lesions in pregnant rats.Exp. Toxicol. Pathol2005,57, 15–28. [Google Scholar]
- Doi, K; Shinozuka, J; Sehata, S. T-2 toxin and apoptosis.J. Toxicol. Pathol2006,19, 15–27. [Google Scholar]
- Doi, K; Ishigami, N; Sehata, S. T-2 toxin-induced toxicity in pregnant mice and rats.Int. J. Mol. Sci2008,9, 2146–2158. [Google Scholar]
- Chaudhary, M; Rao, PV. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice.Food Chem. Toxicol2010,48, 3436–3442. [Google Scholar]
- Boyd, KE; Fitzpatrick, DW; Wilson, JR; Wilson, LM. Effect of T-2 toxin on brain biogenic monoamines in rats and chickens.Can. J. Vet. Res1988,52, 181–185. [Google Scholar]
- Martin, LJ; Morse, JD; Anthony, A. Quantitative cytophotometric analysis of brain neuronal RNA and protein changes in acute T-2 mycotoxin poisoned rats.Toxicon1986,24, 933–941. [Google Scholar]
- Wang, J; Fitzpatrick, DW; Wilson, JR. Effects of the trichothecene mycotoxin T-2 toxin on neurotransmitters and metabolites in discrete areas of the rat brain.Food Chem. Toxicol1998,36, 947–953. [Google Scholar]
- Wang, J; Fitzpatrick, DW; Wilson, JR. Effect of T-2 toxin on blood-brain barrier permeability monoamine oxidase activity and protein synthesis in rats.Food Chem. Toxicol1998,36, 955–961. [Google Scholar]
- Ishigami, N; Shinozuka, J; Katayama, K; Uetsuka, K; Nakayama, H; Doi, K. Apoptosis in the developing mouse embryos from T-2 toxin-inoculated dams.Histol. Histopathol1999,14, 729–733. [Google Scholar]
- Ishigami, N; Shinozuka, J; Katayama, K; Uetsuka, K; Nakayama, H; Doi, K. Apoptosis in mouse fetuses from dams exposed to T-2 toxin at different days of gestation.Exp. Toxicol. Pathol2001,52, 493–501. [Google Scholar]
- Rousseaux, CG; Schiefer, HB. Maternal toxicity, embryolethality and abnormal fetal development in CD-1 mice following one oral dose of T-2 toxin.J. Appl. Toxicol1987,7, 281–288. [Google Scholar]
- Stanford, GK; Hood, RD; Hayes, AW. Effect of prenatal administration of T-2 toxin to mice.Res. Commun. Chem. Path. Pharmacol1975,10, 743–746. [Google Scholar]
- Sehata, S; Kiyosawa, N; Makino, T; Atsumi, F; Ito, K; Yamoto, T; Teranishi, M; Baba, Y; Uetauka, K; Nakayama, H; Doi, K. Morphological and microarray analysis of T-2 toxin-induced rat fetal brain lesion.Food Chem. Toxicol2004,42, 1727–1736. [Google Scholar]
- Galtier, P; Paulin, F; Eeckhoutte, C; Larrieu, G. Comparative effects of T-2 toxin and diacetoxyscirpenol on drug metabolizing enzymes in rat tissues.Food Chem. Toxicol1989,27, 215–220. [Google Scholar]
- Guerre, P; Eeckhoutte, C; Burgat, V; Galtier, P. The effects of T-2 toxin exposure on liver drug metabolizing enzymes in rabbit.Food Add. Contam2000,17, 1019–1026. [Google Scholar]
- Jarpe, MB; Widmann, C; Knall, C; Schlesinger, TK; Gibson, S; Yujiri, T; Fanger, GR; Gelfand, EW; Johnson, GL. Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the roard to death.Oncogene1998,17, 1475–1582. [Google Scholar]
- Bold, S; Weidle, UH; Kolch, W. The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways.Exp. Cell Res2003,283, 80–90. [Google Scholar]
- Ham, J; Eilers, A; Whitfield, J; Neame, SJ; Shah, B.c-JUN and the transcriptional control of neuronal apoptosis.Biochem. Pharmacol2000,60, 1015–1021. [Google Scholar]
- Annunziato, L; Amoroso, S; Pannaccione, A; Cataldi, M; Pignataro, G; D’Alessio, S; Sirabella, R; Second, A; Sibaud, L; DiRenzo, GF. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions.Toxicol. Lett2003,139, 125–133. [Google Scholar]
- Troy, CM; Shelanski, ML. Caspase-2 redux.Cell Death Differ2003,10, 101–107. [Google Scholar]
- Huang, P; Akagawa, K; Yokoyama, Y; Nohara, K; Kano, K; Morimoto, K. T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells.Toxicol. Lett2007,170, 1–10. [Google Scholar]
- Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing rat brain.Neurotox. Teratol2009,31, 104–109. [Google Scholar]
- Katayama, K; Ueno, M; Yamauchi, H; Nakayama, H; Doi, K. Microarray analysis of genes in fetal central nervous system after ethylnitrosourea administration.Birth Defects Res. Part B2005,74, 255–260. [Google Scholar]
- Nam, C; Yamauchi, H; Nakayama, H; Doi, K. Etoposide induces apoptosis and cell cycle arrest of neuroepithelial cells in a p53-related manner.Neurotox. Teratol2009,28, 664–672. [Google Scholar]
- Ueno, M; Katayama, K; Yamauchi, H; Nakayama, H; Doi, K. Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain.Exp Neurol2006,198, 154–166. [Google Scholar]
- Woo, GH; Bak, EJ; Nakayama, H; Doi, K. Molecular mechanisms of hydroxyurea (HU)-induced apoptosis in the mouse fetal brain.Neurotox. Teratol2006,28, 125–134. [Google Scholar]
- Ogunshola, OO; Antic, A; Donoghue, MJ; Fan, S-Y; Kim, H; Stewart, WB; Madri, JA; Ment, LR. Paracrine and autocrine function of neuronal vascular endothelial growth factor (VEGF) in the central nervous system.J. Biol. Chem2002,277, 11410–11415. [Google Scholar]
- Halliwell, B; Gutteridge, JMC.Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Lee, J-M; Jiang, L; Johnson, DA; Stein, TD; Kraft, AD; Calkins, MJ; Jakel, RJ; Jofnson, JA. Nrf2, a multiorgan protector?FASEB J2005,19, 1061–1066. [Google Scholar]
- Boesch-Saadatmandi, C; Wagner, AE; Graeser, AC; Hundhausen, C; Wollram, S; Rimbach, G. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells.J. Anim. Phys. Anim. Nutr2009,93, 547–555. [Google Scholar]
- Boutin-Forzano, S; Charpin-Kadouch, C; Chabbi, S; Bennedjai, N; Dumon, H; Charpin, D. Wall relative humidity: A simple and reliable index for predictingStachybotrys chartarum infestation in dwellings.Indoor Air2004,14, 196–199. [Google Scholar]
- Tsumori, T; Reijula, K; Johnsson, T; Hemminki, K; Hintikka, EL; Lindroos, O; Kalso, S; Koukila-Kahkola, P; Mussalo-Rauhamaa, H; Haahtela, T. Mycotoxins in crude building materials from water-damaged buildings.Appl. Environ. Microbiol2000,66, 1899–1904. [Google Scholar]
- Pestka, JJ; Yike, I; Dearborn, DG; Ward, MDW; Harkema, JR.Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: New insights into a public health enigma.Toxicol. Sci2008,104, 4–26. [Google Scholar]
- Shelton, BG; Kirkland, KH; Flanders, WD; Morris, GK. Profiles of airborne fungi in buildings and outdoor environments in the United States.Appl. Environ. Microbiol2002,68, 1743–1753. [Google Scholar]
- Hodgson, MJ; Morey, P; Leung, WY; Morrow, L; Miller, D; Jarvis, BB; Robbins, H; Halsey, JF; Storey, E. Building-associated pulmonary disease from exposure toStachybotrys chartarum andAspergillus versicolor.J. Occup. Environ. Med1998,40, 241–249. [Google Scholar]
- Johanning, E; Biagini, R; Hull, D; Morey, P; Jarvis, B; Landsbergis, P. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment.Int. Arch. Occup. Environ. Health1996,68, 207–218. [Google Scholar]
- Gordon, WA; Cantor, JB; Johanning, E; Charatz, HJ; Ashman, TA; Breeze, JL; Haddad, L; Abramowitz, S. Cognitive impairment associated with toxigenic fungal exposure: A replication and extension of previous findings.Appl. Neuropsychol2004,11, 65–74. [Google Scholar]
- Hossain, MA; Ahmed, MS; Ghannoum, MA. Attributes ofStachybotrys chartarum and its association with human disease.J. Allergy Clin. Immunol2004,113, 200–208. [Google Scholar]
- Kirburn, KH. Role of molds and myxotoxins in being sick in buildings: Neurobehavioral and pulmonary impairment.Adv. Appl. Microbiol2004,55, 339–359. [Google Scholar]
- Andersen, B; Nielsen, KF; Jarvis, BB. Characterization ofStachybotrys from water-damaged buildings based on morphology, growth, and metabolite production.Mycologia2002,94, 392–403. [Google Scholar]
- Gregory, L; Pestka, JJ; Dearborn, DG; Rand, TG. Localization of satratoxin-G inStachybotrys chartarum spores and spore-impacted mouse lung using immunocytochemistry.Toxicol. Pathol2004,32, 26–34. [Google Scholar]
- Yike, I; Distler, AM; Ziady, AG; Dearborn, DG. Mycotoxin adducts on human serum albumin: Biomerkers of exposure toStachybotrys chartarum.Environ. Health Perspect2006,114, 1221–1226. [Google Scholar]
- Chung, YJ; Zhou, HR; Pestka, JJ. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin).Toxicol. Appl. Pharmacol2003,193, 188–201. [Google Scholar]
- Moon, Y; Pestka, JJ. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil.J. Nutr. Biochem2003,14, 717–726. [Google Scholar]
- Zhou, HR; Lau, AS; Pestka, JJ. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response.Toxicol. Sci2003,74, 335–344. [Google Scholar]
- Iordanov, MS; Pribnow, D; Magun, JL; Dinh, TH; Pearson, JA; Chen, SL; Magun, BE. Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alphasarcin/ricin loop in the 28S rRNA.Mol. Cell Biol1997,17, 3373–3381. [Google Scholar]
- Chung, YJ; Jarvis, B; Pestka, JJ. Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage.J. Toxicol. Environ. Health A2003,66, 379–391. [Google Scholar]
- Chung, YJ; Yang, GH; Islam, Z; Pestka, JJ. Up-regulation of macrophage inflammatory protein-2 and complement 3A receptor by the trichothecenes deoxynivalenol and satratoxin G.Toxicology2003,186, 51–65. [Google Scholar]
- Hughes, BJ; Hsieh, GC; Jarvis, BB; Sharma, RP. Effects of macrocyclic trichothecene mycotoxins on the murine immune system.Arh. Environ. Contam. Toxicol1989,18, 388–395. [Google Scholar]
- Hughes, BJ; Jarvis, BB; Sharma, RP. Effects of macrocyclictrichothecene congeners on the viability and mitogenesis of mirine splenic lymphocytes.Toxicol Lett1990,50, 57–67. [Google Scholar]
- Pestka, JJ; Forsell, JH. Inhibition of human lymphocyte transformation by the macrocyclic trichothecene roridin A and verrucarin A.Toxicol Lett1988,41, 215–222. [Google Scholar]
- Yang, G-H; Jarvis, BB; Chung, Y-J; Pestka, JJ. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation.Toxicol. Appl. Pharmacol2000,164, 149–160. [Google Scholar]
- Cundliffe, E; Davies, JE. Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins.Antimicrob. Agents Chemother1977,11, 491–499. [Google Scholar]
- Nielsen, KF; Huttunen, K; Hyvarinen, A; Andersen, B; Jarvis, BB; Hirvonen, MR. Metabolite profiles ofStachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages.Mycopathologia2002,154, 201–205. [Google Scholar]
- Islam, Z; Shinozuka, J; Harkema, JR; Pestka, JJ. Purification and comparative neurotoxicity of the trichothecenes satratoxin G and roridin L2 fromStachybotrys chartarum.J. Toxicol. Environ. Health A2009,72, 1242–1251. [Google Scholar]
- Nusuetrong, P; Pengsuparp, T; Meksuriyen, D; Tanitsu, M; Kikuchi, H; Muzugaki, M; Shimazu, K; Oshima, Y; Nakahata, N; Yoshida, M. Satratoxin H generates reactive oxygen species and lipid peroxides in PC12 cell.Biol. Pharm. Bull2008,31, 1115–1120. [Google Scholar]
- Rand, TG; Mahoney, M; White, K; Oulton, M. Microanatomical changes in alveolar type II cells in juvenile mice intratracheally exposed toStachybotrys chartarum spores and toxin.Toxicol. Sci2002,65, 239–245. [Google Scholar]
- Wang, H; Yadav, JS. Global gene expression changes underlyingStachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways.Apoptosis2007,12, 535–548. [Google Scholar]
- Wang, H; Yadav, JS. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotocity in murine alveolar macrophage cell line MH-S by methanol-extractedStachybotrys chartarum toxins.Toxicol. Appl. Pharmacol2006,214, 297–308. [Google Scholar]
- Islam, Z; Harkema, JR; Pestka, JJ. Satratoxin G from the black moldStachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain.Environ. Health Perspect2006,114, 1099–1107. [Google Scholar]
- Islam, Z; Amuzie, CJ; Harkema, JR; Pestka, JJ. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: Kinetic and potentiation by bacterial lipipolysaccharide coexposure.Oxford J. Life Sci. Med. Toxicol. Sci2007,98, 526–541. [Google Scholar]
- Chang, RC; Suen, KC; Ma, CH; Elyaman, W; Ng, HK; Hugon, J. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration.J. Neurochem2002,83, 1215–1225. [Google Scholar]
- Ge, Y; Tsukatani, T; Nishimura, T; Furukawa, M; Miwa, T. Cell death of olfactory receptor neurons in a rat with nasosinusitis infected artificially withStaphylococcus.Chem. Senses2002,27, 521–527. [Google Scholar]
- Huang, CC; Chen, K; Huang, TY. Immunohistochemical studies of sensory neurons in rat olfactory epithelium.Eur. Arch. Otorhinolaryngol1995,252, 86–91. [Google Scholar]
- Wu, S; Kumar, KU; Kaufmam, RJ. Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR).Biochemistry1998,37, 13816–13826. [Google Scholar]
- Garcia, MA; Meurs, EF; Esteban, M. The dsRNA protein kinase PKR: Virus and cell control.Biochemie2007,89, 799–811. [Google Scholar]
- Cowan, CM; Roskams, AJ. Apoptosis in the mature and developing olfactory neuroepithelium.Microsc. Res. Technol2002,58, 204–215. [Google Scholar]
- Farbman, AI; Buchholz, JA; Suzuki, Y; Coines, A; Speert, D. A molecular basis of cell death in olfactory epithelium.J. Comp. Neurol1999,414, 306–314. [Google Scholar]
- Suzuki, Y; Farbman, AI. Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro: Possible roles of caspase 1 (ICE), caspase-2 (ICH-1), and caspase-3 (CPP32).Exp. Neurol2000,165, 35–45. [Google Scholar]
- Islam, Z; Hegg, CC; Bae, HY; Pestka, JJ. Satratoxin G-induced apoptosis in PC-12 neuronal cells is mediated by PKR and caspase independent.Toxicol. Sci2008,105, 142–152. [Google Scholar]
- Nusuetrong, P; Yoshida, M; Tanitsu, MA; Kikuchi, H; Mizugaki, M; Shimazu, K; Pengsuparp, T; Meksuriyen, D; Oshima, Y; Nakahata, N. Involvementof reactive oxygen species and stress activated MAPKs in satoratoxin H-induced apoptosis.Eur. J. Pharmacol2005,507, 239–246. [Google Scholar]
- Chandra, J; Samali, A; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress.Free Radic. Biol. Med2000,29, 323–333. [Google Scholar]
- Karunasena, E; Larrañaga, MD; Simoni, JS; Douglas, DR; Straus, DC. Building-associated neurological damage modeled in human cells: A mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment.Mycopathologia2010,170, 377–390. [Google Scholar]
- Thrasher, JD; Crawley, S. The biocontaminants and complexity of damp indoor spaces; more than what meets the eyes.Toxicol. Ind. Health2009,25, 583–615. [Google Scholar]
- Campbell, IL. Neuropathogenic acions of cytokines assessed in transgenic mice.Int. J. Dev. Neurosci1995,13, 275–284. [Google Scholar]
- Peters, A; Vweronesi, B; Calderon-Garciduenas, J; Gehr, P; Chen, LC; Greiser, M; Reed, W; Rothen-Rutishauser, B; Schurch, S; Schulz, H. Translocation and potential neurological effects of fine and ultrafine particles a critical update.Part. Fibre Toxicol2006,3, 1–13. [Google Scholar]
- Calderón-Garcidueñas, L; Azzarelli, B; Acuna, H; Garcia, R; Gambling, TM; Osnaya, N; Monroy, S; Tizapantzi, MDR; Carson, JL; Villarreal-Calderon, A;et al. Air pollution and brain damage.Toxicol. Pathol2002,30, 373–389. [Google Scholar]
- Calderón-Garcidueñas, L; Maronpot, RR; Torres-Jardon, R; Henríquez-Roldán, C; Schoonhoven, R; Acuña-Ayala, H; Villarreal-Carderón, A; Nakamura, J; Fernando, R; Reed, W;et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.Toxico. Pathol2003,31, 524–538. [Google Scholar]
- Dutton, MF. Fumonisins, mycotoxins of increasing importance: their nature and their effects.Pharmacol. Ther1996,70, 137–161. [Google Scholar]
- Howard, PC; Eppley, RM; Stack, ME; Warbritton, A; Voss, KA; Lorentzen, RJ; Kovach, RM; Bucci, TJ. Fumonisin B1 carcinogenicity in a 2-year feeding study using F344 rats and B6C3 F1 mice.Environ. Health Perspect2001,109, 277–282. [Google Scholar]
- Wang, E; Norred, WP; Bacon, CW; Riley, RT; Merrill, AH, Jr. Inhibition of sphingolipid biosynthesis by fumonisins.J. Biol. Chem1991,22, 14486–14490. [Google Scholar]
- Merrill, AH, Jr; Sullards, MC; Wang, E; Voss, KA; Riley, RT. Sphingolipid metabolism: Role in signal transduction and disruption by fumonisins.Environ. Health Perspect2001,109, 283–289. [Google Scholar]
- Riley, RT; Enongene, E; Voss, KA; Norred, WP; Meredith, FI; Sharma, RP; Spitsbergen, J; Williams, DE; Carlson, DB; Merrill, AH, Jr. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis.Environ. Health Perspect2001,109, 301–308. [Google Scholar]
- Ross, PF; Rice, LG; Reagor, JC; Osweiler, GD; Wilson, TM; Nelson, HA; Owens, DL; Plattner, RD; Harlin, KA; Richard, JL;et al. Fumonisin B1 concentrations in feeds from 45 confirmed equine leukoencephalomalacia cases.J. Vet. Diagn. Invest1991,3, 238–241. [Google Scholar]
- Wilson, TM; Ross, PF; Rice, LG; Osweiler, GD; Nelson, HA; Owen, DL; Plattner, RD; Reggiardo, C; Noon, TH; Pickrell, JW. Fumonisin B1 levels associated with an epizootics of equine leukoencephalomalacia.J Vet Diagn Invest1990,2, 213–216. [Google Scholar]
- Goel, S; Schumacher, J; Lenz, SD; Kemppanien, BW. Effects of fusarium moniliforme isolates on tissue and serum sphingolipid concentrations in horses.Vet. Hum. Toxicol1996,38, 265–270. [Google Scholar]
- Marasas, WF; Riley, RT; Hendricks, KA; Stevens, VL; Sadler, TW; Gelineau-van Wanes, J. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize.J. Nutr2004,134, 711–716. [Google Scholar]
- Sadler, TW; Merrill, AH; Stevens, VL; Sullards, MC; Wang, E; Wang, P. Prevention of fumonisin B1-induced neural tube defects by folic acid.Teratology2002,66, 169–176. [Google Scholar]
- Stevens, VL; Tang, J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor.J. Biol. Chem1997,272, 18020–18025. [Google Scholar]
- Harel, R; Futerman, AH. Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons.J. Biol. Chem1993,268, 14476–14481. [Google Scholar]
- Kwon, OS; Slikker, W, Jr; Davies, DL. Biochemical and morphological effects of fumonisin B1 on primary cultures of rat cerebrum.Neurotoxicol. Teratol2000,22, 565–572. [Google Scholar]
- Monnet-Tschudi, F; Zurich, MG; Sorg, O; Matthieu, JM; Honegger, P; Schilter, B. The naturally occurring food mycotoxin fumonisin B1 impairs myelin formation in aggregating brain cell culture.Neurotoxicology1999,20, 41–48. [Google Scholar]
- Kwon, OS; Schmued, LC; Slikker, W, Jr. Fumonisin B1 in developing rats alter brain sphinganine levels and myelination.Neurotoxicolog1997,18, 571–580. [Google Scholar]
- Tsunoda, M; Dugyala, RR; Sharma, RP. Fumonisin B1-induced increases in neurotransmitter metabolite levels in different brain regions of BALB/c mice.Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrnol1998,120, 457–465. [Google Scholar]
- Porter, JK; Voss, KA; Chamberlain, WJ; Bacon, CW; Norred, WP. Neurotransmitters in rats fed fumonisin B1.Proc. Soc. Exp. Biol. Med1993,202, 360–364. [Google Scholar]
- Banczerowski-Pelyhe, I; Vilagi, I; Detri, L; Doczi, J; Kovacs, F; Kukorelli, T.In vivo and in vitro electrophysiological monitoring of rat neocortical activity after dietary fumonisin exposure.Mycopathologia2002,153, 149–156. [Google Scholar]
- Osuchowski, MF; Edwards, GL; Sharma, RP. Fumonisin B1-induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling.Neurotoxicology2005,26, 211–221. [Google Scholar]
- Bouhet, S; Hourcade, E; Loiseau, N; Fikry, A; Martinez, S; Roselli, M; Galtier, P; Mengheri, E; Oswald, IP. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells.Toxicol. Sci2004,77, 165–171. [Google Scholar]
- Ramasamy, S; Wang, E; Hennig, B; Merrill, AH, Jr. Fumonisin B1 alters sphingolipid metabolism and disrupt the barrier function of endothelial cells in culture.Toxicol. Appl. Pharmacol1995,133, 343–348. [Google Scholar]
- Osuchowski, MF; He, Q; Sharma, RP. Fumoniin B1 toxicity in the brain during coexisting lipopolysaccharide-related endotoxemia in BALB/c mice.Toxicol. Sci2003,72, 252–253. [Google Scholar]
- Szelenyi, J. Cytokines and the central nervous system.Brain Res. Bull2001,54, 329–338. [Google Scholar]
- Buccoliero, R; Futerman, AH. The roles of ceramide and complex sphingolipids in neuronal cell function.Pharmacol. Res2003,47, 409–419. [Google Scholar]
- Pettus, BJ; Chalfant, CE; Hannun, YA. Ceramide in apoptosis: An overview and current perspectives.Biochem. Biophys. Acta2002,1585, 114–125. [Google Scholar]
- Stockmann-Juvalla, H; Mikkola, J; Naarala, J; Loikkanen, J; Elovaara, E; Savolainen, K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures.Free Radic. Res2004,38, 933–942. [Google Scholar]
- Mobio, TA; Anane, R; Baudrimont, I; Carratū, MR; Shier, TW; Dano, SD; Ueno, Y; Creppy, EE. Epigenetic properties of fumonisin B1: cell cycle arrest and DNA base modification in C6 glioma cells.Toxicol. Appl. Pharmacol2000,164, 91–96. [Google Scholar]
- Mobio, TA; Baudrimont, I; Sanni, A; Shier, TW; Saboureau, D; Dano, SD; Ueno, Y; Steyn, PS; Creppy, EE. Prevention by vitamin E of DNA fragmentation and apoptosis induced by fumonisin B1 in C6 glioma cells.Arch. Toxicol2000,74, 112–119. [Google Scholar]
- Mobio, TA; Tavan, E; Baudrimont, I; Anane, R; Carratū, MR; Sanni, A; Gbeassor, MF; Shier, TW; Narbonne, J-F; Creppy, EE. Comparative study of the toxic effects of fumonisin B1 in rat C6 glioma cells and p53-null mouse embryo fibroblasts.Toxicology2003,183, 65–75. [Google Scholar]
- Galvano, F; Campisi, A; Russo, A; Galvano, G; Palumbo, M; Renis, M; Barcellona, ML; Perez-Polo, JR; Vanella, A. DNA damage in astrocytes exposed to fumonisin B1.Neurochem. Res2002,27, 345–351. [Google Scholar]
- Galvano, F; Russo, A; Cardile, V; Galvano, G; Vanella, A; Renis, M. DNA damage in human fibroblasts exposed to fumonisin B1.Food Chem. Toxicol2002,40, 25–31. [Google Scholar]
- Ellerby, LM; Ellerby, HM; Park, SM; Holleran, AL; Murphy, AN; Fiskum, G; Kane, DJ; Testa, MP; Kayalar, C; Bredesen, DE. Shift of cellular oxidation-reduction potential in neural cells expressing Bcl-2.J Neurochem1996,67, 1259–1267. [Google Scholar]
- Kane, DJ; Sarafian, TA; Anton, R; Hahn, H; Butler, GE; Selverstone, VJ; Ord, T; Bredesen, DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species.Science1993,262, 1274–1277. [Google Scholar]
- Tjalkens, RB; Ewing, MM; Philbert, MA. Differential cellular regulation of the mitochondrial permeability transition in anin vitro model of 1,3-dinitrobenzene-induced encephalopathy.Brain Res2000,874, 165–177. [Google Scholar]
- Reed, JC; Meister, L; Tanaka, S; Cuddy, M; Yum, S; Geyer, C; Pleasure, D. Differential expression of bcl-2 protooncogene in neuroblastoma and other human tumor cell lines of neuronal origin.Cancer Res1991,51, 6529–6538. [Google Scholar]
- Stockmann-Juvala, H; Mikkola, J; Naarala, J; Loikkanen, J; Elovaara, E; Savolainen, K. Fuminisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells.Toxicology2004,202, 173–183. [Google Scholar]
- Schmelz, EM; Dombrink-Kurzman, MA; Roberts, PC; Kozutsumi, Y; Kawasaki, T; Merrill, AH, Jr. Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free sphingoid bases.Toxicol Appl Pharmacol1998,148, 252–260. [Google Scholar]
- Tolleson, WH; Dooley, KL; Sheldon, WG; Thurman, JD; Bucci, TJ; Howard, PC. The Mycotoxin Fumonisin Induces Apoptosis in Cultured Human Cells and in Livers and Kidneys of Rats. InAdvances in Experimental and Medical Biology Fumonisins in Food; Jackson, LS, DeVries, JW, Bullerman, LB, Eds.; Plenum Press: New York, NY, USA, 1996; pp. 237–250. [Google Scholar]
- Tolleson, WH; Melchior, WB; Morris, SM; McGarrity, LJ; Domon, OE; Muskhelishvili, L; James, SJ; Howard, PC. Apoptotic and anti-proliferaive effects of fuminisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells.Carcinogenesis1996,17, 239–249. [Google Scholar]
- Higuchi, Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress.Biochem. Pharmacol2003,66, 1527–1535. [Google Scholar]
- Slater, AFG; Nobel, CSI; van den Dobbelsteen, DJ; Orrenius, S. Signaling mechanisms and oxidative stress in apoptosis.Toxicol Lett1995,82/83, 149–153. [Google Scholar]
- Galtier, P. Pharmacokinetics of ochratoxin A in animals.IARC Sci Publ1991, 187–200. [Google Scholar]
- Pfohl-Leszkowicz, A; Manderville, RA. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans.Mol. Nutr. Food Res2007,51, 61–99. [Google Scholar]
- Garies, M; Wolff, J. Relevance of mycotoxin contaminated feed for farm animals and carryover of mycotoxins to food of animal origin.Mycoses2000,43, 79–83. [Google Scholar]
- Mally, A; Hard, GC; Dekant, W. Ochratoxin A as a potential etiologic factor in endemic nephropathy: lesions from toxicity studies in rats.Food Chem. Toxicol2007,45, 2254–2260. [Google Scholar]
- Krogh, P. Role of ochratoxin in disease causation.Food Chem. Toxicol1992,30, 213–224. [Google Scholar]
- Kane, A; Creppy, EE; Roschenthaler, R; Dirheimer, G. Changes in urinary and renal tubular enzymes caused by subchronic administration of ochratoxin A in rats.Toxicology1986,42, 233–243. [Google Scholar]
- Petkova-Bocharova, T; Chernozemsky, IN; Castegnaro, M. Ochratoxin A in human blood in relation to Balkan endemic nephropathy and urinary system tumors in Bulgaria.Food Addit. Contam1988,5, 299–301. [Google Scholar]
- Lea, T; Steinen, K; Stormer, FC. Mechanism of ochratoxin A-induced immunosuppression.Mycopathologia1989,107, 153–159. [Google Scholar]
- Stromer, FC; Lea, T. Effects of ochratoxin A upon early and late events in human T-cell proliferation.Toxicology1995,95, 45–50. [Google Scholar]
- Arora, RG; Frolen, H; Fellner-Feldegg, H. Inhibition of ochratoxin A teratogenesis by zearalenone and diethylstilbesterol.Food Chem. Toxicol1983,21, 779–783. [Google Scholar]
- Fukui, Y; Hayasaka, S; Itoh, M; Takeuchi, Y. Development of neurons and synapses in ochratoxin A-induced microcephalic mice: a quantitative assessment of somatosensory cortex.Neurotoxicol. Teratol1992,14, 191–196. [Google Scholar]
- Pfohl-Leszkowicz, A; Chakor, K; Creppy, EE; Dirheimer, G. DNA adduct formation in mice treated with ochratoxin A.IARC Sci Publ1991, 245–253. [Google Scholar]
- Sava, V; Reunova, O; Velasquez, A; Harbison, R; Sanchez-Ramos, J. Acute neurotoxic effects of the fungal netabolite ochratoxin-A.Neurotoxicology2006,27, 82–92. [Google Scholar]
- Kuiper-Goodman, T; Hilts, C; Billiard, SM; Kiparissis, Y; Richard, ID; Hayward, S. Health risk assessment of ochratoxin A for all age-sex strata in a market economy.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess2010,27, 212–240. [Google Scholar]
- Creppy, EE; Chakor, K; Fisher, MJ; Dirheimer, G. The mycotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes andin vivo.Arch. Toxicol1990,64, 279–284. [Google Scholar]
- Creppy, EE; Kane, D; Dirheimer, G; Lafarge-Frayssinet, C; Mousset, S; Frayssinet, C. Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney.Toxicol. Lett1985,28, 29–35. [Google Scholar]
- Dirheimer, G; Creppy, EE. Mechanism of action of ochratoxin A.IARC Sci Publ1991, 171–186. [Google Scholar]
- Gautier, JC; Holzhaeuser, D; Markovic, J; Gremaud, E; Schilter, B; Turesky, RJ. Oxidative damage and stress response from ochratoxin exposure in rats.Free Radic. Biol. Med2001,30, 1089–1098. [Google Scholar]
- Bryan, NS; Rassaf, T; Maloney, RE; Rodriguez, CM; Saijo, F; Rodriguez, JR; Feelisch, M. Cellular targets and mechanisms of nitros(yl)ation: An insight into their nature and kineticsin vivo.Proc. Natl. Acad. Sci. USA2004,101, 4308–4313. [Google Scholar]
- Thomas, JA; Mallis, RJ. Aging and oxidation of reactive protein sulfhydryls.Exp. Gerontol2001,36, 1519–1526. [Google Scholar]
- Marin-Kuan, M; Nestler, S; Verguet, C; Bezençon, C; Piguet, D; Mansourian, R; Holzwarth, J; Grigorov, M; Delatour, T; Mantel, P;et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin A carcinogenicity in rat.Toxicol. Sci2006,89, 120–134. [Google Scholar]
- Aleo, MD; Wyatt, RD; Schnellmann, RG. Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules.Toxicol. Appl. Pharmacol1991,107, 73–80. [Google Scholar]
- Wei, YH; Lu, CY; Lin, TN; Wei, RD. Effect of ochratoxin A on rat liver mitochondrial respiration and oxidative phosphorylation.Toxicology1985,36, 119–130. [Google Scholar]
- Belmadani, A; Tramu, G; Betbeder, AM; Creppy, EE. Subchronic effects of ochratoxin A on young adult rat brain and partial prevention by aspartate, a sweetener.Hum. Exp. Toxicol1998,17, 380–386. [Google Scholar]
- Hayes, AW; Cain, JA; Moore, BG. Effects of aflatoxin B1, ochratoxin A and rubratoxin B on infant rats.Food Cosmet. Toxicol1977,15, 23–27. [Google Scholar]
- Hayes, AW; Hood, RD; Lee, HL. Teratogenic effects of ochratoxin A in mice.Teratology1974,9, 93–97. [Google Scholar]
- Wangikar, PB; Dwivedi, P; Sharma, AK; Sinha, N. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B(1). II. Histopathological features of teratological anomalies induced in fetuses.Birth Defects Res. B2004,71, 352–358. [Google Scholar]
- Tamura, M; Hirata, Y; Matsutani, T. Neurochemical effects of prenatal treatment with ochtatoxin A on fetal and adult mouse brain.Neurochem. Sci1988,13, 1139–1147. [Google Scholar]
- Belmadani, A; Tramu, G; Betbeder, AM; Steyn, PS; Creppy, EE. Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain.Arch. Toxicol1998,72, 656–662. [Google Scholar]
- Sava, V; Reunova, O; Velasquez, A; Sanchez-Ramos, J. Can low level exposure to ochratoxin-A cause parkinsonism?J. Neurol. Sci2006,249, 68–75. [Google Scholar]
- Sanchez-Ramos, J; Overvik, E; Ames, BN. A marker of oxyradical-mediated DNA damage (oxo8dG) is increased in nigro-striatum of Parkinson’s disease brain.Neurodegeneration (incorporated into Exp. Neurol.)1994,3, 197–204. [Google Scholar]
- Bunge, I; Dirheimer, G; Roschenthaler, R.In vivo andin vitro inhibition of protein synthesis inBacillus stearothermophilus by ochratoxin A.Biochem Biophys Res Commun1978,83, 398–405. [Google Scholar]
- Creppy, EE; Kern, D; Steyn, PS; Vleggaar, R; Roschenthaler, R; Dirheimer, G. Comparative study of the effect of ochratoxin a analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells.Toxicol. Lett1983,19, 217–224. [Google Scholar]
- Palmer, TD; Takahashi, J; Gage, FH. The adult rat hippocampus contains primordial neural stem cells.Mol Cell Neurosci1997,8, 389–404. [Google Scholar]
- Song, HJ; Stevens, CF; Gage, FH. Neuronal stem cells from adult hippocampus develop essential properties of functional CNS neurons.Nat. Neurosci2002,5, 438–445. [Google Scholar]
- Chen, H; Tung, YC; Li, B; Iqbal, K; Grundke-Iqbal, I. Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis.Neurobiol. Aging2006,28, 1148–1162. [Google Scholar]
- Kawai, T; Takagi, N; Mochizuki, N; Besshoh, S; Sakanishi, K; Nakahara, M; Takeo, S. Inhibitor of vascular endothelial growth factor receptor tyrosine kinase attenuates cellular proliferation and differentiation to mature neurons in the hippocampal dentate gyrus after transient forebrain ischemia in the adult rats.Neuroscience2006,141, 1209–1216. [Google Scholar]
- Lagace, DC; Yee, JK; Bolanos, CA; Eisch, AJ. Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis.Biol. Psychiatry2006,60, 1121–1130. [Google Scholar]
- Rossi, C; Angelucci, A; Costantin, L; Braschi, C; Mazzantini, M; Babbini, F; Fabbri, ME; Tessarollo, L; Maffei, L; Berardi, N; Caleo, M. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.Eur J Neurosci2006,24, 1850–1856. [Google Scholar]
- Delibas, N; Altuntas, I; Yonden, Z; Ozcelik, N. Ochratoxin A reduces NMDA receptor subunits 2A and 2B concentrations in rat hippocampus: partial protective effect of melatonin.Hum. Exp. Toxicol2003,22, 335–339. [Google Scholar]
- Sava, V; Velasquez, A; Song, S; Sanchez-Ramos, J. Adult hippocampal neural stem/progenitor cells in vitro are vulnerable to the mycotoxin ochratoxin A.Toxicol. Sci2007,98, 187–197. [Google Scholar]
- Alexander, P. The role of DNA lesions in processes leading to aging in mice.Sym. Soc. Exp. Biol1967,21, 29–50. [Google Scholar]
- Korr, H; Schultz, B. Unscheduled DNA synthesis in various types of cells of the mouse brainin vivo.Exp. Brain Res1989,74, 573–578. [Google Scholar]
- Crago, BR; Gray, MR; Nelson, LA; Davis, M; Arnold, L; Thrasher, JD. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure.Arch. Environ. Health2003,58, 452–563. [Google Scholar]
- Gordon, WA; Cantor, JB. The diagnosis of cognitive impairment associated with exposure to mold.Adv. Appl. Microbiol2004,55, 361–374. [Google Scholar]
- Rea, WJ; Didriksen, N; Simon, TR; Pan, Y; Fenyves, EJ; Griffiths, B. Effects of toxic exposure to molds and mycotoxins in building-related illnesses.Arch. Environ. Health2003,58, 399–405. [Google Scholar]
- Yoon, S; Cong, W-T; Bang, Y; Lee, SN; Yoon, CS; Kwack, SJ; Kang, TS; Lee, KY; Choi, J-K; Choi, HJ. Proteome response to ochratoxin A-induced apoptotic cell death in mouse hippocampal HT22 cells.Neurotoxicology2009,30, 666–676. [Google Scholar]
- Sato, A; Miyazaki, E; Satake, A; Hiramoto, A; Hiraoka, O; Miyake, T; Kim, HS; Wataya, Y. Proteome and transcriptome analysis of cell death induced by 5-fluoro-2′-deoxyuridine.Nucleic Acids Symp. Ser (Oxf)2007,51, 433–434. [Google Scholar]
- Siddiq, A; Ayoub, IA; Chavez, JC; Aminova, L; Shah, S; LaManna, JC; Patton, SM; Connor, JR; Cherny, RA; Volitakis, I;et al. Hypoxia-indicible factor prolyl 4-hydroxylase inhibition. A target for neurprotection in the central nervous system.J. Biol. Chem2005,280, 41732–41743. [Google Scholar]
- Lei, T; He, Q; Cai, Z; Zhou, Y; Wang, Y; Si, L; Cai, Z; Chiu, JF. Proteomic analysis of chromium cytotoxicity in cultured rat lung epithelial cells.Proteomics2008,8, 2420–2429. [Google Scholar]
- Noguchi, M; Takata, T; Kimura, Y; Manno, A; Murakami, K; Koike, M; Ohizumi, H; Hori, S; Kakizuka, A. ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Waker A motif.J. Biol. Chem2005,280, 41332–41341. [Google Scholar]
- Zhang, X; Boesch-Saadatmandi, C; Lou, Y; Wolffram, S; Huebbe, P; Rimbach, G. Ochratoxin A induces apoptosis in neuronal cells.Genes Nutr2009,4, 41–48. [Google Scholar]
- Zurich, MG; Lengacher, S; Braissant, O; Monnet-Tschudi, F; Pellerin, L; Honegger, P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures.Neuroscience2005,134, 771–782. [Google Scholar]
- Hong, JT; Lee, MK; Park, KS; Jung, KM; Lee, RD; Jung, HK; Park, KL; Yang, KJ; Chung, YS. Inhibitory effect of peroxisome proliferator-activated receptor gamma agonist on ochratoxin A-induced cytotoxicity and activation of transcription factors in cultured rat embryonic midbrain cells.J. Toxicol. Environ Health A2002,65, 407–418. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Doi, K.; Uetsuka, K. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways.Int. J. Mol. Sci.2011,12, 5213-5237. https://doi.org/10.3390/ijms12085213
Doi K, Uetsuka K. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways.International Journal of Molecular Sciences. 2011; 12(8):5213-5237. https://doi.org/10.3390/ijms12085213
Chicago/Turabian StyleDoi, Kunio, and Koji Uetsuka. 2011. "Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways"International Journal of Molecular Sciences 12, no. 8: 5213-5237. https://doi.org/10.3390/ijms12085213
APA StyleDoi, K., & Uetsuka, K. (2011). Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways.International Journal of Molecular Sciences,12(8), 5213-5237. https://doi.org/10.3390/ijms12085213