Myopia Genetics and Heredity


Abstract
:1. Introduction
2. Genetic Architecture of Myopia
2.1. Prevalence of Myopia
2.2. Myopia-Related Axial Length Elongation and Its Effects on the Fundus
3. Identification of Myopia Loci
3.1. Online Mendelian Inheritance in Man (OMIM) Database
3.1.1. Genetic Loci for Myopia among Asian Cohorts
3.1.2. Genetic Loci for Myopia among Caucasian Cohorts
3.1.3. Genetic Loci and Genes for Myopia Replicated across Multiple Ethnic Groups
3.2. Genetic Association Studies for Myopia, Refractive Error, Axial Length, and Macular Thickness
3.2.1. SNPs in Myopia-Related Genes from Association Studies
First Author | Publication Date * | Phenotype | Discovery Stage | Replication Stage | Genes/Loci ** | ||
---|---|---|---|---|---|---|---|
Cases | Controls | Cases | Controls | ||||
Nakanishi H. [86] | 25 September 2009 | High myopia | 297 Japanese ancestry | 934 Japanese ancestry | 533 Japanese ancestry | 977 Japanese ancestry | BLID-LOC399959 |
Li Y.J. [57] | 20 November 2010 | High myopia | 65 children and 222 adults of Singaporean Chinese | 238 children and 435 adults of Singaporean Chinese | 959 Japanese ancestry | 2128 Japanese ancestry | CTNND2 |
Li Z. [88] | 19 April 2011 | High myopia | 102 Chinese ancestry | 335 Chinese ancestry | 2891 Chinese ancestry | 10,071 Chinese ancestry | 4q25 |
Shi Y. [47] | 2 June 2011 | High myopia | 419 Chinese ancestry | 669 Chinese ancestry | 2803 Chinese ancestry | 5642 Chinese ancestry | MIPEP |
Meng W. [90] | 9 October 2012 | High myopia | 187 European ancestry | 1064 European ancestry | NA | NA | CDH8,DHX15,SAMD5,LINC02434,PSMD10P2,KNG1,RNU6-1129P,GNPATP,RNU6-66P,RNU4-10P,LINC00603,SPATA22,ASPA and 53 genes/loci |
Shi Y. [91] | 28 February 2013 | High myopia | 665 Han Chinese ancestry | 960 Han Chinese ancestry | 2128 Han Chinese ancestry | 3683 Han Chinese ancestry | SNTB1,PCDH1,VIPR2 |
Khor C.C. [92] | 9 August 2013 | High myopia | 1603 East Asian ancestry | 3427 East Asian ancestry | 1241 East Asian ancestry | 3559 East Asian ancestry | SNTB1,ZFHX1B |
Simpson C.L. [93] | 18 September 2014 | Myopia | 3923 European ancestry | 11,696 European ancestry | 4331 European ancestry | 4169 European ancestry | LAMA2,GJD2,RBFOX1 |
Pickrell J.K. [94] | 16 May 2016 | Myopia | 106,086 European ancestry | 85,757 European ancestry | NA | NA | LAMA2,LRRC4C,GJD2,RDH5,PRSS56,ZMAT4,DLG2,PCCA-DT,NDUFA12P1,SHISA6,BMP3 and 41 genes/loci |
Meguro A. [95] | 16 May 2020 | High myopia | 1632 Japanese ancestry | 1586 Japanese ancestry | 881 East Asian ancestry | 9946 East and Southeast Asian ancestry | HIVEP3,NFASC,ZC3H11B,CNTN4-CNTN6,FRMD4B,LINC02418,GJD2,RASGRF1,AKAP13 |
3.2.2. Association Studies on Refractive Error
3.2.3. Genetic Association Analyses Focusing on Axial Length Elongation in Myopia
First Author | Publication Date * | Discovery Stage | Replication Stage | Genes/Loci ** |
---|---|---|---|---|
Phenotype: Refractive error | ||||
Hysi P.G. [98] | 14 September 2010 | 4270 European ancestry individuals | 13,414 European ancestry individuals | RASGRF1 |
Solouki A.M. [100] | 14 September 2010 | 5328 individuals predominantly European ancestry (>99%) | 10,280 individuals predominantly European ancestry (>99%) | GJD2-ACTC1 |
Verhoeven V.J. [102] | 12 February 2013 | Stage 1: 37,382 European ancestry individuals; Stage 2: 8376 Asian ancestry individuals (meta-GWAS) | CD55,PRSS56,CHRNG,CACNA1D,LAMA2,CHD7,TOX,ZMAT4,RORB,CYP26A1 and 16 genes/loci | |
Stambolian D. [103] | 12 March 2013 | 7280 European ancestry individuals | 19,673 European ancestry individuals | RBFOX1 |
Fan Q. [105] | 30 March 2016 | 40,036 European and 10,315 Asian ancestry individuals (meta-GWAS) | LAMA2,GJD2,KCNQ5,FBN1,TOX,DIS3L,FAM150B-ACP1,LINC00340,A2BP1,RDH5 and 15 genes/loci | |
Tedja M.S. [113] | 28 May 2018 | Stage 1: 44,192 European and 11,935 Asian ancestry individuals; Stage 2: 104,293 European ancestry individuals; Stage 3: j meta-GWAS | 95,505 European ancestry individuals | LAMA2,GJD2,KCNQ5,LRRC4C,RDH5,RBFOX1,SNORA51,PRSS56,SHISA6,ZMAT4 and 130 genes/loci |
Hysi P.G. [19] | 30 March 2020 | 508,855 European ancestry individuals | 34,079 European ancestry individuals | LAMA2,GJD2,KCNQ5,RBFOX1,LRRC4C,BLOC1S1-RDH5,TOX,PRSS56,ZMAT4,SHISA6 and 439 genes/loci |
Phenotype: Axial length | ||||
Fan Q. [108] | 7 June 2012 | 1860 Chinese adults, 929 Chinese children, and 2155 Malay adults | NA | ZC3H11B |
Cheng C.Y. [109] | 8 August 2013 | 12,531 European ancestry individuals | 8216 Asian ancestry individuals | RSPO1,ZC3H11B,GJD2,C3orf26,LAMA2,ZNRF3,CD55,ALPPL2,MIP |
Miyake M. [111] | 31 March 2015 | 3248 Japanese ancestry individuals | 5383 Asian and 2690 Caucasian ancestry individuals | WNT7B |
3.2.4. The Role of Macular Thickness in Myopia
4. Gene-Environment Interactions
4.1. Parental Myopia: Inherited Genes and Lifestyle
4.2. Interactions of Genetic Variants with Environmental, Educational, and Lifestyle Factors
5. Prevention of Myopia Onset and Progression
5.1. Prevention of Myopia Onset
5.2. Prevention of Myopia Progression
6. Polygenic Risk Scores: Prediction for Early Intervention
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia.Lancet2012,379, 1739–1748. [Google Scholar] [CrossRef]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications.Ophthalmic Physiol. Opt.2005,25, 381–391. [Google Scholar] [CrossRef]
- Dolgin, E. The myopia boom.Nature2015,519, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.; Cotch, M.F.; Sperduto, R.D. Prevalence of visual impairment in the United States.JAMA2006,295, 2158–2163. [Google Scholar] [CrossRef] [Green Version]
- Morgan, I.G. What Public Policies Should Be Developed to Deal with the Epidemic of Myopia?Optom. Vis. Sci.2016,93, 1058–1060. [Google Scholar] [CrossRef]
- Lin, L.L.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000.Ann. Acad. Med. Singap.2004,33, 27–33. [Google Scholar] [PubMed]
- Jung, S.K.; Lee, J.H.; Kakizaki, H.; Jee, D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in seoul, South Korea.Investig. Ophthalmol. Vis. Sci.2012,53, 5579–5583. [Google Scholar] [CrossRef] [Green Version]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.Ophthalmology2016,123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, V.J.; Wong, K.T.; Buitendijk, G.H.; Hofman, A.; Vingerling, J.R.; Klaver, C.C. Visual consequences of refractive errors in the general population.Ophthalmology2015,122, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Hangai, M.; Suda, K.; Yoshimura, N. Features associated with foveal retinal detachment in myopic macular retinoschisis.Am. J. Ophthalmol.2010,150, 863–870. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial.JAMA2015,314, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Angi, M.R.; Clementi, M.; Sardei, C.; Piattelli, E.; Bisantis, C. Heritability of myopic refractive errors in identical and fraternal twins.Graefes Arch. Clin. Exp. Ophthalmol.1993,231, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Chen, C.J. Twin study on myopia.Acta Genet. Med. Gemellol.1987,36, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Teikari, J.M.; O’Donnell, J.; Kaprio, J.; Koskenvuo, M. Impact of heredity in myopia.Hum. Hered.1991,41, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Snieder, H.; Gilbert, C.E.; Spector, T.D. Genes and environment in refractive error: The twin eye study.Investig. Ophthalmol. Vis. Sci.2001,42, 1232–1236. [Google Scholar]
- Lopes, M.C.; Andrew, T.; Carbonaro, F.; Spector, T.D.; Hammond, C.J. Estimating heritability and shared environmental effects for refractive error in twin and family studies.Investig. Ophthalmol. Vis. Sci.2009,50, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Zhao, D.; Kim, W.; Lim, D.H.; Song, Y.M.; Guallar, E.; Cho, J.; Sung, J.; Chung, E.S.; Chung, T.Y. Heritability of myopia and ocular biometrics in Koreans: The healthy twin study.Investig. Ophthalmol. Vis. Sci.2013,54, 3644–3649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, I.; Rose, K. How genetic is school myopia?Prog. Retin. Eye Res.2005,24, 1–38. [Google Scholar] [CrossRef]
- Hysi, P.G.; Choquet, H.; Khawaja, A.P.; Wojciechowski, R.; Tedja, M.S.; Yin, J.; Simcoe, M.J.; Patasova, K.; Mahroo, O.A.; Thai, K.K.; et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia.Nat. Genet.2020,52, 401–407. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; St Pourcain, B.; McMahon, G.; Timpson, N.J.; Evans, D.M.; Williams, C. Assumption-free estimation of the genetic contribution to refractive error across childhood.Mol. Vis.2015,21, 621–632. [Google Scholar]
- Tang, S.; Wang, Y.M.; Kam, A.K.; Chan, T.C.; Pang, C.P.; Yam, J.C.; Chen, L.J. Myopia Genes in Asians. InAdvances in Vision Research, Volume II: Genetic Eye Research in Asia and the Pacific; Prakash, G., Iwata, T., Eds.; Springer: Singapore, 2019; pp. 417–433. [Google Scholar]
- Williams, K.M.; Verhoeven, V.J.; Cumberland, P.; Bertelsen, G.; Wolfram, C.; Buitendijk, G.H.; Hofman, A.; van Duijn, C.M.; Vingerling, J.R.; Kuijpers, R.W.; et al. Prevalence of refractive error in Europe: The European Eye Epidemiology (E(3)) Consortium.Eur. J. Epidemiol.2015,30, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Sperduto, R.D.; Ferris, F.L., 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004.Arch. Ophthalmol.2009,127, 1632–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.Y.; Tam, P.O.; Fan, D.S.; Fan, B.J.; Wang, D.Y.; Lee, C.W.; Pang, C.P.; Lam, D.S. A genome-wide scan maps a novel high myopia locus to 5p15.Investig. Ophthalmol. Vis. Sci.2008,49, 3768–3778. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.C.; Glasscock, R.E. Refractive and ocular findings in the newborn.Am. J. Ophthalmol.1951,34, 1407–1413. [Google Scholar] [CrossRef]
- Wallman, J.; Turkel, J.; Trachtman, J. Extreme myopia produced by modest change in early visual experience.Science1978,201, 1249–1251. [Google Scholar] [CrossRef]
- Zadnik, K.; Satariano, W.A.; Mutti, D.O.; Sholtz, R.I.; Adams, A.J. The effect of parental history of myopia on children’s eye size.JAMA1994,271, 1323–1327. [Google Scholar] [CrossRef]
- Klein, A.P.; Suktitipat, B.; Duggal, P.; Lee, K.E.; Klein, R.; Bailey-Wilson, J.E.; Klein, B.E. Heritability analysis of spherical equivalent, axial length, corneal curvature, and anterior chamber depth in the Beaver Dam Eye Study.Arch. Ophthalmol.2009,127, 649–655. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Wang, D.; Zheng, Y.; Zhang, J.; Yin, Q.; Huang, W.; Mackey, D.A.; Foster, P.J. Heritability of anterior chamber depth as an intermediate phenotype of angle-closure in Chinese: The Guangzhou Twin Eye Study.Investig. Ophthalmol. Vis. Sci.2008,49, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Lam, D.S.; Fan, D.S.; Lam, R.F.; Rao, S.K.; Chong, K.S.; Lau, J.T.; Lai, R.Y.; Cheung, E.Y. The effect of parental history of myopia on children’s eye size and growth: Results of a longitudinal study.Investig. Ophthalmol. Vis. Sci.2008,49, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Pan, C.W.; Ohno-Matsui, K.; Lin, X.; Cheung, G.C.; Gazzard, G.; Koh, V.; Hamzah, H.; Tai, E.S.; Lim, S.C.; et al. Myopia-related fundus changes in Singapore adults with high myopia.Am. J. Ophthalmol.2013,155, 991–999.e1. [Google Scholar] [CrossRef]
- Schwartz, M.; Haim, M.; Skarsholm, D. X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq.Clin. Genet1990,38, 281–286. [Google Scholar] [CrossRef]
- Young, T.L.; Ronan, S.M.; Drahozal, L.A.; Wildenberg, S.C.; Alvear, A.B.; Oetting, W.S.; Atwood, L.D.; Wilkin, D.J.; King, R.A. Evidence that a locus for familial high myopia maps to chromosome 18p.Am. J. Hum. Genet.1998,63, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T.L.; Atwood, L.D.; Ronan, S.M.; Dewan, A.T.; Alvear, A.B.; Peterson, J.; Holleschau, A.; King, R.A. Further refinement of the MYP2 locus for autosomal dominant high myopia by linkage disequilibrium analysis.Ophthalmic Genet.2001,22, 69–75. [Google Scholar] [CrossRef]
- Young, T.L.; Ronan, S.M.; Alvear, A.B.; Wildenberg, S.C.; Oetting, W.S.; Atwood, L.D.; Wilkin, D.J.; King, R.A. A second locus for familial high myopia maps to chromosome 12q.Am. J. Hum. Genet.1998,63, 1419–1424. [Google Scholar] [CrossRef] [Green Version]
- Paluru, P.; Ronan, S.M.; Heon, E.; Devoto, M.; Wildenberg, S.C.; Scavello, G.; Holleschau, A.; Makitie, O.; Cole, W.G.; King, R.A.; et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17.Investig. Ophthalmol. Vis. Sci.2003,44, 1830–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stambolian, D.; Ibay, G.; Reider, L.; Dana, D.; Moy, C.; Schlifka, M.; Holmes, T.; Ciner, E.; Bailey-Wilson, J.E. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12.Am. J. Hum. Genet.2004,75, 448–459. [Google Scholar] [CrossRef] [Green Version]
- Hammond, C.J.; Andrew, T.; Mak, Y.T.; Spector, T.D. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: A genomewide scan of dizygotic twins.Am. J. Hum. Genet.2004,75, 294–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Guo, X.; Xiao, X.; Jia, X.; Li, S.; Hejtmancik, J.F. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612.Mol. Vis.2005,11, 554–560. [Google Scholar]
- Paluru, P.C.; Nallasamy, S.; Devoto, M.; Rappaport, E.F.; Young, T.L. Identification of a novel locus on 2q for autosomal dominant high-grade myopia.Investig. Ophthalmol. Vis. Sci.2005,46, 2300–2307. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Xiao, X.; Jia, X.; Li, S.; Hejtmancik, J.F. Novel locus for X linked recessive high myopia maps to Xq23-q25 but outside MYP1.J. Med. Genet.2006,43, e20. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, R.; Moy, C.; Ciner, E.; Ibay, G.; Reider, L.; Bailey-Wilson, J.E.; Stambolian, D. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36.Hum. Genet.2006,119, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nallasamy, S.; Paluru, P.C.; Devoto, M.; Wasserman, N.F.; Zhou, J.; Young, T.L. Genetic linkage study of high-grade myopia in a Hutterite population from South Dakota.Mol. Vis.2007,13, 229–236. [Google Scholar]
- Paget, S.; Julia, S.; Vitezica, Z.G.; Soler, V.; Malecaze, F.; Calvas, P. Linkage analysis of high myopia susceptibility locus in 26 families.Mol. Vis.2008,14, 2566–2574. [Google Scholar] [PubMed]
- Yang, Z.; Xiao, X.; Li, S.; Zhang, Q. Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia.Mol. Vis.2009,15, 312–318. [Google Scholar]
- Ma, J.H.; Shen, S.H.; Zhang, G.W.; Zhao, D.S.; Xu, C.; Pan, C.M.; Jiang, H.; Wang, Z.Q.; Song, H.D. Identification of a locus for autosomal dominant high myopia on chromosome 5p13.3-p15.1 in a Chinese family.Mol. Vis.2010,16, 2043–2054. [Google Scholar]
- Shi, Y.; Qu, J.; Zhang, D.; Zhao, P.; Zhang, Q.; Tam, P.O.S.; Sun, L.; Zuo, X.; Zhou, X.; Xiao, X.; et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population.Am. J. Hum. Genet.2011,88, 805–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Li, Y.; Zhang, D.; Zhang, H.; Li, Y.; Lu, F.; Liu, X.; He, F.; Gong, B.; Cai, L.; et al. Exome sequencing identifies ZNF644 mutations in high myopia.PLoS Genet.2011,7, e1002084. [Google Scholar] [CrossRef]
- Tran-Viet, K.N.; St Germain, E.; Soler, V.; Powell, C.; Lim, S.H.; Klemm, T.; Saw, S.M.; Young, T.L. Study of a US cohort supports the role of ZNF644 and high-grade myopia susceptibility.Mol. Vis.2012,18, 937–944. [Google Scholar] [PubMed]
- Zhao, F.; Wu, J.; Xue, A.; Su, Y.; Wang, X.; Lu, X.; Zhou, Z.; Qu, J.; Zhou, X. Exome sequencing reveals CCDC111 mutation associated with high myopia.Hum. Genet.2013,132, 913–921. [Google Scholar] [CrossRef]
- Aldahmesh, M.A.; Khan, A.O.; Alkuraya, H.; Adly, N.; Anazi, S.; Al-Saleh, A.A.; Mohamed, J.Y.; Hijazi, H.; Prabakaran, S.; Tacke, M.; et al. Mutations in LRPAP1 are associated with severe myopia in humans.Am. J. Hum. Genet.2013,93, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Li, J.; Xiao, X.; Li, S.; Jia, X.; Sun, W.; Guo, X.; Zhang, Q. Detection of mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 families with early-onset high myopia by exome sequencing.Investig. Ophthalmol. Vis. Sci.2015,56, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Jin, X.; Zhu, T.; Wang, T.; Tong, P.; Tian, L.; Peng, Y.; Sun, L.; Wan, A.; Chen, J.; et al. SLC39A5 mutations interfering with the BMP/TGF-beta pathway in non-syndromic high myopia.J. Med. Genet.2014,51, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Tong, P.; Liu, Y.; Xia, L.; Wang, T.; Tian, Q.; Li, Y.; Hu, Y.; Zheng, Y.; Jin, X.; et al. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia.Genet. Med. Off. J. Am. Coll. Med. Genet.2015,17, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Li, S.; Jia, X.; Guo, X.; Zhang, Q. X-linked heterozygous mutations in ARR3 cause female-limited early onset high myopia.Mol. Vis.2016,22, 1257–1266. [Google Scholar]
- Ouyang, J.; Sun, W.; Xiao, X.; Li, S.; Jia, X.; Zhou, L.; Wang, P.; Zhang, Q. CPSF1 mutations are associated with early-onset high myopia and involved in retinal ganglion cell axon projection.Hum. Mol. Genet.2019,28, 1959–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Goh, L.; Khor, C.C.; Fan, Q.; Yu, M.; Han, S.; Sim, X.; Ong, R.T.; Wong, T.Y.; Vithana, E.N.; et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese.Ophthalmology2011,118, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Jiang, D.; Wang, P.; Gao, Y.; Sun, W.; Xiao, X.; Li, S.; Jia, X.; Guo, X.; Zhang, Q. Replication study supports CTNND2 as a susceptibility gene for high myopia.Investig. Ophthalmol. Vis. Sci.2011,52, 8258–8261. [Google Scholar] [CrossRef] [Green Version]
- Abbott, D.; Li, Y.J.; Guggenheim, J.A.; Metlapally, R.; Malecaze, F.; Calvas, P.; Rosenberg, T.; Paget, S.; Zayats, T.; Mackey, D.A.; et al. An international collaborative family-based whole genome quantitative trait linkage scan for myopic refractive error.Mol. Vis.2012,18, 720–729. [Google Scholar] [PubMed]
- Cai, X.B.; Zheng, Y.H.; Chen, D.F.; Zhou, F.Y.; Xia, L.Q.; Wen, X.R.; Yuan, Y.M.; Han, F.; Piao, S.Y.; Zhuang, W.; et al. Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients.Investig. Ophthalmol. Vis. Sci.2019,60, 4052–4062. [Google Scholar] [CrossRef] [Green Version]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation.Nature2015,526, 68–74. [Google Scholar]
- Liu, F.; Wang, J.; Xing, Y.; Li, T. Mutation screening of 17 candidate genes in a cohort of 67 probands with early-onset high myopia.Ophthalmic Physiol. Opt.2020,40, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Di Iorio, V.; Testa, F.; Tirozzi, A.; Reccia, M.G.; Lombardi, L.; Farina, O.; Simonelli, F.; Gianfrancesco, F.; Di Iorio, G.; et al. Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation.Clin. Genet.2018,93, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Inamori, Y.; Ota, M.; Inoko, H.; Okada, E.; Nishizaki, R.; Shiota, T.; Mok, J.; Oka, A.; Ohno, S.; Mizuki, N. The COL1A1 gene and high myopia susceptibility in Japanese.Hum. Genet.2007,122, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhuri, V.; Selina, A.; Loganathan, L.; Kumar, A.; Kumar, V.; Raymond, R.; Ramesh, S.; Vincy, N.; Joel, G.; James, D.; et al. Osteogenesis imperfecta: Novel genetic variants and clinical observations from a clinical exome study of 54 Indian patients.Ann. Hum. Genet.2021,85, 37–46. [Google Scholar] [CrossRef]
- Tran-Viet, K.N.; Powell, C.; Barathi, V.A.; Klemm, T.; Maurer-Stroh, S.; Limviphuvadh, V.; Soler, V.; Ho, C.; Yanovitch, T.; Schneider, G.; et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia.Am. J. Hum. Genet.2013,92, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Bartsocas, C.S.; Kastrantas, A.D. X-linked form of myopia.Hum. Hered.1981,31, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xiao, X.; Li, S.; Wang, P.; Jia, X.; Zhang, Q. Nonsyndromic high myopia in a Chinese family mapped to MYP1: Linkage confirmation and phenotypic characterization.Arch. Ophthalmol.2010,128, 1473–1479. [Google Scholar] [CrossRef] [Green Version]
- Ratnamala, U.; Lyle, R.; Rawal, R.; Singh, R.; Vishnupriya, S.; Himabindu, P.; Rao, V.; Aggarwal, S.; Paluru, P.; Bartoloni, L.; et al. Refinement of the X-linked nonsyndromic high-grade myopia locus MYP1 on Xq28 and exclusion of 13 known positional candidate genes by direct sequencing.Investig. Ophthalmol. Vis. Sci.2011,52, 6814–6819. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gao, B.; Guan, L.; Xiao, X.; Zhang, J.; Li, S.; Jiang, H.; Jia, X.; Yang, J.; Guo, X.; et al. Unique Variants in OPN1LW Cause Both Syndromic and Nonsyndromic X-Linked High Myopia Mapped to MYP1.Investig. Ophthalmol. Vis. Sci.2015,56, 4150–4155. [Google Scholar] [CrossRef] [Green Version]
- Orosz, O.; Rajta, I.; Vajas, A.; Takacs, L.; Csutak, A.; Fodor, M.; Kolozsvari, B.; Resch, M.; Senyi, K.; Lesch, B.; et al. Myopia and Late-Onset Progressive Cone Dystrophy Associate to LVAVA/MVAVA Exon 3 Interchange Haplotypes of Opsin Genes on Chromosome X.Investig. Ophthalmol. Vis. Sci.2017,58, 1834–1842. [Google Scholar] [CrossRef] [Green Version]
- Lam, D.S.; Lee, W.S.; Leung, Y.F.; Tam, P.O.; Fan, D.S.; Fan, B.J.; Pang, C.P. TGFbeta-induced factor: A candidate gene for high myopia.Investig. Ophthalmol. Vis. Sci.2003,44, 1012–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhang, Q.J.; Xiao, X.S.; Li, J.Z.; Zhang, F.S.; Li, S.Q.; Li, W.; Li, T.; Jia, X.Y.; Guo, L.; et al. The SNPs analysis of encoding sequence of interacting factor gene in Chinese population.Zhonghua Yi Xue Yi Chuan Xue Za Zhi2003,20, 454–456. [Google Scholar]
- Hasumi, Y.; Inoko, H.; Mano, S.; Ota, M.; Okada, E.; Kulski, J.K.; Nishizaki, R.; Mok, J.; Oka, A.; Kumagai, N.; et al. Analysis of single nucleotide polymorphisms at 13 loci within the transforming growth factor-induced factor gene shows no association with high myopia in Japanese subjects.Immunogenetics2006,58, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Pertile, K.K.; Schache, M.; Islam, F.M.; Chen, C.Y.; Dirani, M.; Mitchell, P.; Baird, P.N. Assessment of TGIF as a candidate gene for myopia.Investig. Ophthalmol. Vis. Sci.2008,49, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.J.; Kung, Y.J.; Lin, Y.J.; Sheu, J.J.; Chen, B.H.; Lan, Y.C.; Lai, C.H.; Hsu, Y.A.; Wan, L.; Tsai, F.J. Association of the lumican gene functional 3'-UTR polymorphism with high myopia.Investig. Ophthalmol. Vis. Sci.2010,51, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.T.; Wang, I.J.; Shih, Y.F.; Lin, L.L. The association of haplotype at the lumican gene with high myopia susceptibility in Taiwanese patients.Ophthalmology2009,116, 1920–1927. [Google Scholar] [CrossRef]
- Metlapally, R.; Ki, C.S.; Li, Y.J.; Tran-Viet, K.N.; Abbott, D.; Malecaze, F.; Calvas, P.; Mackey, D.A.; Rosenberg, T.; Paget, S.; et al. Genetic association of insulin-like growth factor-1 polymorphisms with high-grade myopia in an international family cohort.Investig. Ophthalmol. Vis. Sci.2010,51, 4476–4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.P.; Duggal, P.; Lee, K.E.; Klein, R.; Bailey-Wilson, J.E.; Klein, B.E. Confirmation of linkage to ocular refraction on chromosome 22q and identification of a novel linkage region on 1q.Arch. Ophthalmol.2007,125, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Leung, K.H.; Fung, W.Y.; Mak, J.Y.; Li, Y.M.; Yap, M.K.; Yip, S.P. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families.Investig. Ophthalmol. Vis. Sci.2009,50, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.L.; Hsi, E.; Chen, K.C.; Pan, Y.R.; Wang, Y.S.; Juo, S.H. A functional polymorphism at 3'UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese.Investig. Ophthalmol. Vis. Sci.2011,52, 3500–3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, T.K.; Lam, C.Y.; Lam, D.S.; Chiang, S.W.; Tam, P.O.; Wang, D.Y.; Fan, B.J.; Yam, G.H.; Fan, D.S.; Pang, C.P. AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia.Mol. Vis.2009,15, 2239–2248. [Google Scholar] [PubMed]
- Naiglin, L.; Gazagne, C.; Dallongeville, F.; Thalamas, C.; Idder, A.; Rascol, O.; Malecaze, F.; Calvas, P. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36.J. Med. Genet.2002,39, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Flitcroft, D.I.; Loughman, J.; Wildsoet, C.F.; Williams, C.; Guggenheim, J.A.; Consortium, C. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia.Investig. Ophthalmol. Vis. Sci.2018,59, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, Y.; Leung, K.H.; Lo, K.K.; Fung, W.Y.; Ng, P.W.; Shi, M.G.; Yap, M.K.; Yip, S.P. TGFB1 as a susceptibility gene for high myopia: A replication study with new findings.Arch. Ophthalmol.2009,127, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, H.; Yamada, R.; Gotoh, N.; Hayashi, H.; Yamashiro, K.; Shimada, N.; Ohno-Matsui, K.; Mochizuki, M.; Saito, M.; Iida, T.; et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1.PLoS Genet.2009,5, e1000660. [Google Scholar] [CrossRef]
- Lin, H.J.; Wan, L.; Chen, W.C.; Lin, J.M.; Lin, C.J.; Tsai, F.J. Muscarinic acetylcholine receptor 3 is dominant in myopia progression.Investig. Ophthalmol. Vis. Sci.2012,53, 6519–6525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Qu, J.; Xu, X.; Zhou, X.; Zou, H.; Wang, N.; Li, T.; Hu, X.; Zhao, Q.; Chen, P.; et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population.Hum. Mol. Genet.2011,20, 2861–2868. [Google Scholar] [CrossRef] [Green Version]
- Mak, J.Y.; Yap, M.K.; Fung, W.Y.; Ng, P.W.; Yip, S.P. Association of IGF1 gene haplotypes with high myopia in Chinese adults.Arch Ophthalmol2012,130, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Meng, W.; Butterworth, J.; Bradley, D.T.; Hughes, A.E.; Soler, V.; Calvas, P.; Malecaze, F. A genome-wide association study provides evidence for association of chromosome 8p23 (MYP10) and 10q21.1 (MYP15) with high myopia in the French Population.Investig. Ophthalmol. Vis. Sci.2012,53, 7983–7988. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Gong, B.; Chen, L.; Zuo, X.; Liu, X.; Tam, P.O.; Zhou, X.; Zhao, P.; Lu, F.; Qu, J.; et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population.Hum. Mol. Genet.2013,22, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Khor, C.C.; Miyake, M.; Chen, L.J.; Shi, Y.; Barathi, V.A.; Qiao, F.; Nakata, I.; Yamashiro, K.; Zhou, X.; Tam, P.O.; et al. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia.Hum. Mol. Genet.2013,22, 5288–5294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, C.L.; Wojciechowski, R.; Oexle, K.; Murgia, F.; Portas, L.; Li, X.; Verhoeven, V.J.; Vitart, V.; Schache, M.; Hosseini, S.M.; et al. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.PLoS ONE2014,9, e107110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Ségurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits.Nat. Genet.2016,48, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meguro, A.; Yamane, T.; Takeuchi, M.; Miyake, M.; Fan, Q.; Zhao, W.; Wang, I.J.; Mizuki, Y.; Yamada, N.; Nomura, N.; et al. Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis.Ophthalmology2020,127, 1612–1624. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Li, F.F.; Lu, S.Y.; Kam, K.W.; Tam, P.O.S.; Tham, C.C.; Pang, C.P.; Yam, J.C.S.; Chen, L.J. Association of the ZC3H11B, ZFHX1B and SNTB1 genes with myopia of different severities.Br. J. Ophthalmol.2020,104, 1472–1476. [Google Scholar] [CrossRef]
- Tang, S.M.; Ma, L.; Lu, S.Y.; Wang, Y.M.; Kam, K.W.; Tam, P.O.S.; Young, A.L.; Pang, C.P.; Yam, J.C.S.; Chen, L.J. Association of the PAX6 gene with extreme myopia rather than lower grade myopias.Br. J. Ophthalmol.2018,102, 570–574. [Google Scholar] [CrossRef]
- Hysi, P.G.; Young, T.L.; Mackey, D.A.; Andrew, T.; Fernandez-Medarde, A.; Solouki, A.M.; Hewitt, A.W.; Macgregor, S.; Vingerling, J.R.; Li, Y.J.; et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25.Nat. Genet.2010,42, 902–905. [Google Scholar] [CrossRef]
- Gong, Q.; Janowski, M.; Xie, M.; Yang, G.; Liu, L. Rasgrf1 mRNA expression in myopic eyes of guinea pigs.Clin. Exp. Optom.2017,100, 174–178. [Google Scholar] [CrossRef]
- Solouki, A.M.; Verhoeven, V.J.; van Duijn, C.M.; Verkerk, A.J.; Ikram, M.K.; Hysi, P.G.; Despriet, D.D.; van Koolwijk, L.M.; Ho, L.; Ramdas, W.D.; et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14.Nat Genet2010,42, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Quint, W.H.; Tadema, K.C.D.; de Vrieze, E.; Lukowicz, R.M.; Broekman, S.; Winkelman, B.H.J.; Hoevenaars, M.; de Gruiter, H.M.; van Wijk, E.; Schaeffel, F.; et al. Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish.Commun. Biol.2021,4, 676. [Google Scholar] [CrossRef]
- Verhoeven, V.J.; Hysi, P.G.; Wojciechowski, R.; Fan, Q.; Guggenheim, J.A.; Hohn, R.; MacGregor, S.; Hewitt, A.W.; Nag, A.; Cheng, C.Y.; et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia.Nat. Genet.2013,45, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Stambolian, D.; Wojciechowski, R.; Oexle, K.; Pirastu, M.; Li, X.; Raffel, L.J.; Cotch, M.F.; Chew, E.Y.; Klein, B.; Klein, R.; et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error.Hum. Mol. Genet.2013,22, 2754–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkatchenko, A.V.; Tkatchenko, T.V.; Guggenheim, J.A.; Verhoeven, V.J.; Hysi, P.G.; Wojciechowski, R.; Singh, P.K.; Kumar, A.; Thinakaran, G.; Consortium for Refractive, E.; et al. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans.PLoS Genet.2015,11, e1005432. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Verhoeven, V.J.; Wojciechowski, R.; Barathi, V.A.; Hysi, P.G.; Guggenheim, J.A.; Hohn, R.; Vitart, V.; Khawaja, A.P.; Yamashiro, K.; et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error.Nat. Commun.2016,7, 11008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, R.L.; Guggenheim, J.A.; Eye, U.K.B.; Vision, C. Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci.Hum. Genet.2018,137, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.I.; Mishra, A.; Vitart, V.; Bykhovskaya, Y.; Hohn, R.; Springelkamp, H.; Cuellar-Partida, G.; Gharahkhani, P.; Bailey, J.N.C.; Willoughby, C.E.; et al. Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.Nat. Commun.2019,10, 155. [Google Scholar] [CrossRef]
- Fan, Q.; Barathi, V.A.; Cheng, C.Y.; Zhou, X.; Meguro, A.; Nakata, I.; Khor, C.C.; Goh, L.K.; Li, Y.J.; Lim, W.; et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia.PLoS Genet.2012,8, e1002753. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.Y.; Schache, M.; Ikram, M.K.; Young, T.L.; Guggenheim, J.A.; Vitart, V.; MacGregor, S.; Verhoeven, V.J.; Barathi, V.A.; Liao, J.; et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error.Am. J. Hum. Genet.2013,93, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Fan, B.J.; Chen, X.; Sondhi, N.; Sharmila, P.F.; Soumittra, N.; Sripriya, S.; Sacikala, S.; Asokan, R.; Friedman, D.S.; Pasquale, L.R.; et al. Family-Based Genome-Wide Association Study of South Indian Pedigrees Supports WNT7B as a Central Corneal Thickness Locus.Investig. Ophthalmol. Vis. Sci.2018,59, 2495–2502. [Google Scholar] [CrossRef] [Green Version]
- Miyake, M.; Yamashiro, K.; Tabara, Y.; Suda, K.; Morooka, S.; Nakanishi, H.; Khor, C.C.; Chen, P.; Qiao, F.; Nakata, I.; et al. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia.Nat. Commun.2015,6, 6689. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.Y.; Tang, S.M.; Li, F.F.; Kam, K.W.; Tam, P.O.S.; Yip, W.W.K.; Young, A.L.; Tham, C.C.; Pang, C.P.; Yam, J.C.; et al. Association of WNT7B and RSPO1 with Axial Length in School Children.Investig. Ophthalmol. Vis. Sci.2020,61, 11. [Google Scholar] [CrossRef] [PubMed]
- Tedja, M.S.; Wojciechowski, R.; Hysi, P.G.; Eriksson, N.; Furlotte, N.A.; Verhoeven, V.J.M.; Iglesias, A.I.; Meester-Smoor, M.A.; Tompson, S.W.; Fan, Q.; et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error.Nat. Genet.2018,50, 834–848. [Google Scholar] [CrossRef]
- Greenfield, D.S.; Bagga, H.; Knighton, R.W. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography.Arch. Ophthalmol.2003,121, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, D.S.; Leung, K.S.; Mohamed, S.; Chan, W.M.; Palanivelu, M.S.; Cheung, C.Y.; Li, E.Y.; Lai, R.Y.; Leung, C.K. Regional variations in the relationship between macular thickness measurements and myopia.Investig. Ophthalmol. Vis. Sci.2007,48, 376–382. [Google Scholar] [CrossRef]
- Wood, A.; Binns, A.; Margrain, T.; Drexler, W.; Povazay, B.; Esmaeelpour, M.; Sheen, N. Retinal and choroidal thickness in early age-related macular degeneration.Am. J. Ophthalmol.2011,152, 1030–1038.e1032. [Google Scholar] [CrossRef]
- Gao, X.R.; Huang, H.; Kim, H. Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort.Hum. Mol. Genet.2019,28, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, Y.; Yoshikawa, M.; Miyake, M.; Tabara, Y.; Shimada, N.; Zhao, W.; Oishi, A.; Nakanishi, H.; Hata, M.; Akagi, T.; et al. CCDC102B confers risk of low vision and blindness in high myopia.Nat. Commun.2018,9, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankish, A.; Diekhans, M.; Ferreira, A.M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE reference annotation for the human and mouse genomes.Nucleic Acids Res.2019,47, D766–D773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders.Nucleic Acids Res.2015,43, D789–D798. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xue, Y.; Amin, M.T.; Yang, Y.; Yang, J.; Zhang, W.; Yang, W.; Niu, X.; Zhang, H.Y.; Gong, J. ncRNA-eQTL: A database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types.Nucleic Acids Res.2020,48, D956–D963. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, R.; Congdon, N.; Bowie, H.; Munoz, B.; Gilbert, D.; West, S.K. Heritability of refractive error and familial aggregation of myopia in an elderly American population.Investig. Ophthalmol. Vis. Sci.2005,46, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Rahi, J.S.; Cumberland, P.M.; Peckham, C.S. Myopia over the lifecourse: Prevalence and early life influences in the 1958 British birth cohort.Ophthalmology2011,118, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Kam, K.W.; French, A.N.; Yu, M.; Chen, L.J.; Young, A.L.; Rose, K.A.; Tham, C.C.; Pang, C.P.; Yam, J.C. Independent Influence of Parental Myopia on Childhood Myopia in a Dose-Related Manner in 2,055 Trios: The Hong Kong Children Eye Study.Am. J. Ophthalmol.2020,218, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, J.; Cui, T.; Hu, A.; Fan, G.; Zhang, R.; Yang, H.; Sun, B.; Jonas, J.B. Refractive error in urban and rural adult Chinese in Beijing.Ophthalmology2005,112, 1676–1683. [Google Scholar] [CrossRef]
- Sherwin, J.C.; Reacher, M.H.; Keogh, R.H.; Khawaja, A.P.; Mackey, D.A.; Foster, P.J. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis.Ophthalmology2012,119, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- French, A.N.; Morgan, I.G.; Mitchell, P.; Rose, K.A. Risk factors for incident myopia in Australian schoolchildren: The Sydney adolescent vascular and eye study.Ophthalmology2013,120, 2100–2108. [Google Scholar] [CrossRef]
- Fan, Q.; Wojciechowski, R.; Kamran Ikram, M.; Cheng, C.Y.; Chen, P.; Zhou, X.; Pan, C.W.; Khor, C.C.; Tai, E.S.; Aung, T.; et al. Education influences the association between genetic variants and refractive error: A meta-analysis of five Singapore studies.Hum. Mol. Genet.2014,23, 546–554. [Google Scholar] [CrossRef]
- Saw, S.M.; Hong, C.Y.; Chia, K.S.; Stone, R.A.; Tan, D. Nearwork and myopia in young children.Lancet2001,357, 390. [Google Scholar] [CrossRef]
- Bez, D.; Megreli, J.; Bez, M.; Avramovich, E.; Barak, A.; Levine, H. Association Between Type of Educational System and Prevalence and Severity of Myopia Among Male Adolescents in Israel.JAMA Ophthalmol.2019,137, 887–893. [Google Scholar] [CrossRef]
- Pozarickij, A.; Williams, C.; Hysi, P.G.; Guggenheim, J.A.; Eye, U.K.B.; Vision, C. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development.Commun. Biol.2019,2, 167. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Huang, W.; Zheng, Y.; Huang, L.; Ellwein, L.B. Refractive error and visual impairment in school children in rural southern China.Ophthalmology2007,114, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I. The complex interactions of retinal, optical and environmental factors in myopia aetiology.Prog. Retin. Eye Res.2012,31, 622–660. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Lau, T.; Rong, S.S.; Yazar, S.; Chen, L.J.; Mackey, D.A.; Lucas, R.M.; Pang, C.P.; Yam, J.C. Vitamin D and its pathway genes in myopia: Systematic review and meta-analysis.Br. J. Ophthalmol.2019,103, 8–17. [Google Scholar] [CrossRef]
- Tideman, J.W.L.; Polling, J.R.; Jaddoe, V.W.V.; Vingerling, J.R.; Klaver, C.C.W. Environmental Risk Factors Can Reduce Axial Length Elongation and Myopia Incidence in 6- to 9-Year-Old Children.Ophthalmology2019,126, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Tarczy-Hornoch, K.; Cotter, S.A.; Matsumura, S.; Mitchell, P.; Rose, K.A.; Katz, J.; Saw, S.M.; Varma, R.; Consortium, P. Association of Parental Myopia with Higher Risk of Myopia Among Multiethnic Children Before School Age.JAMA Ophthalmol.2020,138, 501–509. [Google Scholar] [CrossRef]
- Jiang, X.; Tarczy-Hornoch, K.; Stram, D.; Katz, J.; Friedman, D.S.; Tielsch, J.M.; Matsumura, S.; Saw, S.M.; Mitchell, P.; Rose, K.A.; et al. Prevalence, Characteristics, and Risk Factors of Moderate or High Hyperopia among Multiethnic Children 6 to 72 Months of Age: A Pooled Analysis of Individual Participant Data.Ophthalmology2019,126, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Chen, C.T.; Chang, L.C.; Niu, Y.Z.; Chen, M.L.; Liao, L.L.; Rose, K.; Morgan, I.G. Increased Time Outdoors Is Followed by Reversal of the Long-Term Trend to Reduced Visual Acuity in Taiwan Primary School Students.Ophthalmology2020,127, 1462–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, A.N.; Morgan, I.G.; Mitchell, P.; Rose, K.A. Patterns of myopigenic activities with age, gender and ethnicity in Sydney schoolchildren.Ophthalmic Physiol. Opt.2013,33, 318–328. [Google Scholar] [CrossRef]
- Cuellar-Partida, G.; Lu, Y.; Kho, P.F.; Hewitt, A.W.; Wichmann, H.E.; Yazar, S.; Stambolian, D.; Bailey-Wilson, J.E.; Wojciechowski, R.; Wang, J.J.; et al. Assessing the Genetic Predisposition of Education on Myopia: A Mendelian Randomization Study.Genet. Epidemiol.2016,40, 66–72. [Google Scholar] [CrossRef]
- Pozarickij, A.; Williams, C.; Guggenheim, J.A.; The UK Biobank Eye and Vision Consortium. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia.Mol. Genet. Genomics.2020,295, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.B.; Wu, J.; Huang, X.F.; Feng, C.Y.; Cai, X.B.; Mao, J.Y.; Xiang, L.; Wu, K.C.; Xiao, X.; Kloss, B.A.; et al. Trio-based exome sequencing arrests de novo mutations in early-onset high myopia.Proc. Natl. Acad. Sci. USA2017,114, 4219–4224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention.Prog. Retin. Eye Res.2018,62, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Chua, W.H.; Balakrishnan, V.; Chan, Y.H.; Tong, L.; Ling, Y.; Quah, B.L.; Tan, D. Atropine for the treatment of childhood myopia.Ophthalmology2006,113, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2).Ophthalmology2012,119, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Yam, J.C.; Jiang, Y.; Tang, S.M.; Law, A.K.P.; Chan, J.J.; Wong, E.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control.Ophthalmology2019,126, 113–124. [Google Scholar] [CrossRef]
- Yam, J.C.; Li, F.F.; Zhang, X.; Tang, S.M.; Yip, B.H.K.; Kam, K.W.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report.Ophthalmology2020,127, 910–919. [Google Scholar] [CrossRef]
- Qassim, A.; Souzeau, E.; Hollitt, G.; Hassall, M.M.; Siggs, O.M.; Craig, J.E. Risk Stratification and Clinical Utility of Polygenic Risk Scores in Ophthalmology.Transl. Vis. Sci. Technol.2021,10, 14. [Google Scholar] [CrossRef]
- Lin, H.; Long, E.; Ding, X.; Diao, H.; Chen, Z.; Liu, R.; Huang, J.; Cai, J.; Xu, S.; Zhang, X.; et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.PLoS Med.2018,15, e1002674. [Google Scholar] [CrossRef]
- Ghorbani Mojarrad, N.; Plotnikov, D.; Williams, C.; Guggenheim, J.A.; Eye, U.K.B.; Vision, C. Association Between Polygenic Risk Score and Risk of Myopia.JAMA Ophthalmol.2020,138, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Tideman, J.W.L.; Parssinen, O.; Haarman, A.E.G.; Khawaja, A.P.; Wedenoja, J.; Williams, K.M.; Biino, G.; Ding, X.; Kahonen, M.; Lehtimaki, T.; et al. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia.JAMA Ophthalmol.2021,139, 601–609. [Google Scholar] [CrossRef]
- Lanca, C.; Kassam, I.; Patasova, K.; Foo, L.L.; Li, J.; Ang, M.; Hoang, Q.V.; Teo, Y.Y.; Hysi, P.G.; Saw, S.M. New Polygenic Risk Score to Predict High Myopia in Singapore Chinese Children.Transl. Vis. Sci. Technol.2021,10, 26. [Google Scholar] [CrossRef]
- Chen, L.J.; Li, F.F.; Lu, S.Y.; Zhang, X.J.; Kam, K.W.; Tang, S.M.; Tam, P.O.; Yip, W.W.; Young, A.L.; Tham, C.C.; et al. Association of polymorphisms inZFHX1B, KCNQ5 andGJD2 with myopia progression and polygenic risk prediction in children.Br. J. Ophthalmol.2021,105, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Foster, P.J.; Johnson, G.J.; Seah, S.K. Education, socioeconomic status, and ocular dimensions in Chinese adults: The Tanjong Pagar Survey.Br. J. Ophthalmol.2002,86, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, V.J.; Buitendijk, G.H.; Consortium for Refractive Error and Myopia (CREAM); Rivadeneira, F.; Uitterlinden, A.G.; Vingerling, J.R.; Hofman, A.; Klaver, C.C. Education influences the role of genetics in myopia.Eur. J. Epidemiol.2013,28, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, K.A.; Morgan, I.G.; Ip, J.; Kifley, A.; Huynh, S.; Smith, W.; Mitchell, P. Outdoor activity reduces the prevalence of myopia in children.Ophthalmology2008,115, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
Locus | Location | Gene | Inheritance | Ethnicity | Reference |
---|---|---|---|---|---|
MYP1 | Xq28 | OPN1LW,OPN1MW | X-linked | Danish | Schwartz et al., 1990 [32] |
MYP2 | 18p11.31 | n.r. | AD | Chinese and European | Young 1998, Young 2001 [33,34] |
MYP3 | 12q21-q23 | n.r. | AD | German/Italian | Young 1998 [35] |
MYP5 | 17q21-q22 | n.r. | AD | English/Canadian | Paluru et al., 2003 [36] |
MYP6 | 22q13.33 | SCO2 | AD | Ashkenazi Jewish | Stambolian et al., 2004 [37] |
MYP7 | 11p13 | n.r. | Multifactorial | Caucasian | Hammond et al., 2004 [38] |
MYP8 | 3q26 | n.r. | Multifactorial | Caucasian | Hammond et al., 2004 [38] |
MYP9 | 4q12 | n.r. | Multifactorial | Caucasian | Hammond et al., 2004 [38] |
MYP10 | 8p23 | n.r. | Multifactorial | Caucasian | Hammond et al., 2004 [38] |
MYP11 | 4q22-q27 | n.r. | AD | Chinese | Zhang et al., 2005 [39] |
MYP12 | 2q37.1 | n.r. | AD | Northern European | Paluru et al., 2005 [40] |
MYP13 | Xq23-q27.2 | n.r. | X-linked | Chinese | Zhang et al., 2006 [41] |
MYP14 | 1q36 | n.r. | n.r. | Ashkenazi Jewish | Wojciechowski et al., 2006 [42] |
MYP15 | 10q21.1 | n.r. | AD | Caucasian | Nallasamy et al., 2007 [43] |
MYP16 | 5p15.33-p15.2 | n.r. | AD | Chinese | Lam et al., 2008 [24] |
MYP17 | 7p15 | n.r. | AD | French and Algerian | Paget et al., 2008 [44] |
MYP18 | 14q22.1-q24.2 | n.r. | AR | Chinese | Yang et al., 2009 [45] |
MYP19 | 5p13.3-p15.1 | n.r. | AD | Chinese | Ma et al., 2010 [46] |
MYP20 | 13q12.12 | n.r. | AD | Chinese | Shi et al., 2011 [47] |
MYP21 | 1p22.2 | ZNF644 | AD | Chinese, Caucasian and African American | Shi et al., 2011 Tran-Viet et al., 2012 [48,49] |
MYP22 | 4q35.1 | CCDC111 | AD | Chinese | Zhao et al. 2013 [50] |
MYP23 | 4p16.3 | LRPAP1 | AR | Saudi Arabian and Chinese | Aldahmesh et al. 2013 Jiang et al. 2015 [51,52] |
MYP24 | 12q13.3 | SLC39A5 | AD | Chinese | Guo et al., 2014 [53] |
MYP25 | 5q31.1 | P4HA2 | AD | Chinese | Guo et al., 2015 [54] |
MYP26 | Xq13.1 | ARR3 | X-linked | Chinese | Xiao et al., 2016 [55] |
MYP27 | 8q24.3 | CPSF1 | AD | Chinese | Ouyang et al., 2019 [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-M.; Lu, S.-Y.; Zhang, X.-J.; Chen, L.-J.; Pang, C.-P.; Yam, J.C. Myopia Genetics and Heredity.Children2022,9, 382. https://doi.org/10.3390/children9030382
Wang Y-M, Lu S-Y, Zhang X-J, Chen L-J, Pang C-P, Yam JC. Myopia Genetics and Heredity.Children. 2022; 9(3):382. https://doi.org/10.3390/children9030382
Chicago/Turabian StyleWang, Yu-Meng, Shi-Yao Lu, Xiu-Juan Zhang, Li-Jia Chen, Chi-Pui Pang, and Jason C. Yam. 2022. "Myopia Genetics and Heredity"Children 9, no. 3: 382. https://doi.org/10.3390/children9030382
APA StyleWang, Y.-M., Lu, S.-Y., Zhang, X.-J., Chen, L.-J., Pang, C.-P., & Yam, J. C. (2022). Myopia Genetics and Heredity.Children,9(3), 382. https://doi.org/10.3390/children9030382