The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation





Abstract
:1. Introduction
2. CRCs: Epidemiology and Genetics
3. Role of the EMT in Colon Cancer Progression
4. Signaling Pathways Involved in EMT Activation during Colon Cancer Progression
5. Role of Succinate Dehydrogenase Alterations and Succinate Accumulation in CRC Onset and Progression
6. Role of Succinate in EMT, Angiogenesis and Inflammatory Pathways in CRC Cells
7. Dietary and Environmental Factors which Could Influence SDH Activity and Succinate Concentration
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.2021,71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.; Pace, U.; Rega, D.; Costabile, V.; Duraturo, F.; Izzo, P.; Delrio, P. Genetics, diagnosis and management of colorectal cancer.Oncol. Rep.2015,34, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turano, M.; Delrio, P.; Rega, D.; Cammarota, F.; Polverino, A.; Duraturo, F.; Izzo, P.; De Rosa, M. Promising Colorectal Cancer Biomarkers for Precision Prevention and Therapy.Cancers2019,11, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, M.; Rega, D.; Costabile, V.; Duraturo, F.; Niglio, A.; Izzo, P.; Pace, U.; Delrio, P. The biological complexity of colorectal cancer: Insights into biomarkers for early detection and personalized care.Therap. Adv. Gastroenterol.2016,9, 861–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, B.A.; Vega, K.J.; Houchen, C.W. Intestinal stem cells and the colorectal cancer microenvironment.World. J. Gastroenterol.2014,20, 1898–1909. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.; Lee, S.; Youn, H.; Youn, B. Role of Metabolic Reprogramming in Epithelial–Mesenchymal Transition (EMT).Int. J. Mol. Sci.2019,20, 2042. [Google Scholar] [CrossRef] [Green Version]
- Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT Factors and Metabolic Pathways in Cancer.Front. Oncol.2020,10, 499. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Frezza, C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer.FEBS J.2017,284, 3132–3144. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.; et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.Nature2016,537, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Ashrafian, H.; O’Flaherty, L.; Adam, J.; Steeples, V.; Chung, Y.L.; East, P.; Vanharanta, S.; Lehtonen, H.; Nye, E.; Hatipoglu, E.; et al. Expression profiling in progressive stages of fumarate-hydratase deficiency: The contribution of metabolic changes to tumorigenesis.Cancer Res.2010,70, 9153–9165. [Google Scholar] [CrossRef] [Green Version]
- Grassian, A.R.; Lin, F.; Barrett, R.; Liu, Y.; Jiang, W.; Korpal, M.; Astley, H.; Gitterman, D.; Henley, T.; Howes, R.Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).J. Biol. Chem.2012,287, 42180–42194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicki, S.; Gottlieb, E. Oncometabolites: Tailoring our genes.FEBS J.2015,282, 2796–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loriot, C.; Burnichon, N.; Gadessaud, N.; Vescovo, L.; Amar, L.; Libé, R.; Bertherat, J.; Plouin, P.F.; Jeunemaitre, X.; Gimenez-Roqueplo, A.P.; et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused bySDHB gene mutations.J. Clin. Endocrinol. Metab.2012,97, E954–E962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Liu, Q. Prognostic indicators for gastrointestinal stromal tumors: A review.Transl. Oncol.2020,13, 100812. [Google Scholar] [CrossRef] [PubMed]
- Nolano, A.; Medugno, A.; Trombetti, S.; Liccardo, R.; De Rosa, M.; Izzo, P.; Duraturo, F. Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome.Cancers2022,15, 75. [Google Scholar] [CrossRef]
- Duraturo, F.; Liccardo, R.; De Rosa, M.; Izzo, P. Genetics, diagnosis and treatment of Lynch syndrome: Old lessons and current challenges.Oncol. Lett.2019,17, 3048–3054. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, M.; Galatola, M.; Borriello, S.; Duraturo, F.; Masone, S.; Izzo, P. Implication ofadenomatous polyposis coli andMUTYH mutations in familial colorectal polyposis.Dis. Colon. Rectum.2009,52, 268–274. [Google Scholar] [CrossRef]
- De Rosa, M.; Galatola, M.; Quaglietta, L.; Miele, E.; De Palma, G.; Rossi, G.B.; Staiano, A.; Izzo, P. Alu-mediated genomic deletion of theserine/threonine protein kinase 11 (STK11) gene in Peutz-Jeghers syndrome.Gastroenterology2010,138, 2558–2560. [Google Scholar] [CrossRef]
- Dodaro, C.; Grifasi, C.; Florio, J.; Santangelo, M.L.; Duraturo, F.; De Rosa, M.; Izzo, P.; Renda, A. The role of mutation analysis of theAPC gene in the management of FAP patients. A controversial issue.Ann. Ital. Chir.2016,87, 321–325. [Google Scholar]
- Liccardo, R.; De Rosa, M.; Izzo, P.; Duraturo, F. Novel Implications in Molecular Diagnosis of Lynch Syndrome.Gastroenterol. Res. Pract.2017,2017, 2595098. [Google Scholar] [CrossRef] [Green Version]
- Cerasuolo, A.; Miele, E.; Russo, M.; Aversano, A.; Cammarota, F.; Duraturo, F.; Liccardo, R.; Izzo, P.; De Rosa, M. Sporadic pediatric severe familial adenomatous polyposis: A case report.Mol. Clin. Oncol.2020,13, 20. [Google Scholar] [CrossRef] [PubMed]
- Paparo, L.; Rossi, G.B.; Delrio, P.; Rega, D.; Duraturo, F.; Liccardo, R.; Debellis, M.; Izzo, P.; De Rosa, M. Differential expression ofPTEN gene correlates with phenotypic heterogeneity in three cases of patients showing clinical manifestations of PTEN hamartoma tumour syndrome.Hered. Cancer Clin. Pract.2013,11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galatola, M.; Paparo, L.; Duraturo, F.; Turano, M.; Rossi, G.B.; Izzo, P.; De Rosa, M. Beta catenin and cytokine pathway dysregulation in patients with manifestations of the “PTEN hamartoma tumor syndrome”.BMC Med. Genet.2012,13, 28. [Google Scholar] [CrossRef] [Green Version]
- Yehia, L.; Eng, C. PTEN hamartoma tumour syndrome: What happens when there is noPTEN germline mutation?Hum. Mol. Genet.2020,29, R150–R157. [Google Scholar] [CrossRef]
- Janeway, K.A.; Kim, S.Y.; Lodish, M.; Nosé, V.; Rustin, P.; Gaal, J.; Dahia, P.M.L.; Liegl, B.; Ball, E.R.; Raygada, M.; et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lackingKIT andPDGFRA mutations.Proc. Natl. Acad. Sci. USA2011,108, 314–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantaleo, M.A.; Astolfi, A.; Indio, V.; Moore, R.; Thiessen, N.; Heinrich, M.C.; Gnocchi, C.; Santini, D.; Catena, F.; Formica, S.; et al.SDHA loss-of-function mutations inKIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing.Natl. Cancer Inst.2011,103, 983–987. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, M.A.; Astolfi, A.; Urbini, M.; Nannini, M.; Paterini, P.; Indio, V.; Saponara, M.; Formica, S.; Ceccarelli, C.; Casadio, R.; et al. Analysis of all subunits,SDHA,SDHB,SDHC,SDHD, of the succinate dehydrogenase complex inKIT/PDGFRA wild-type GIST.Eur. J. Hum. Genet.2014,22, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Michalowska, I.; Ćwikła, J.; Prejbisz, A.; Kwiatek, P.; Szperl, M.; Michalski, W.; Wyrwicz, L.; Ku?mierczyk, M.; Januszewicz, A.; Maciejczyk, A.; et al. Mediastinal paragangliomas related toSDHx gene mutations.Kardiochir. Torakochirurgia Pol.2016,13, 276–282. [Google Scholar] [CrossRef]
- Bayley, J.P.; van Minderhout, I.; Weiss, M.M.; Jansen, J.C.; Oomen, P.H.N.; Menko, F.H.; Pasini, B.; Ferrando, B.; Wong, N.; Alpert, L.C.; et al. Mutation analysis ofSDHB andSDHC: Novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma.BMC. Med. Genet.2006,7, 1. [Google Scholar] [CrossRef] [Green Version]
- Müller, U. Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC).Neurogenetics2011,12, 175–181. [Google Scholar] [CrossRef]
- Kuroda, N.; Yorita, K.; Nagasaki, M.; Harada, Y.; Ohe, C.; Jeruc, J.; Raspollini, M.R.; Michal, M.; Hes, O.; Amin, M.B. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects.Pol. J. Pathol.2016,67, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanharanta, S.; Buchta, M.; McWhinney, S.R.; Virta, S.K.; Peçzkowska, M.; Morrison, C.D.; Lehtonen, R.; Januszewicz, A.; Järvinen, H.; Juhola, M.; et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma.Am. J. Hum. Genet.2004,74, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer.Nat. Med.2015,11, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, M.; Zhong, N.; Yu, D.; Jian, J.; Jiang, D.; Xiao, Y.; Wei, W.; Wang, T.; Lou, Y.; et al. Quantified CIN Score from Cell-free DNA as a Novel Noninvasive Predictor of Survival in Patients with Spinal Metastasis.Front. Cell. Dev. Biol.2021,9, 767340. [Google Scholar] [CrossRef] [PubMed]
- Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.M.; Kahraman, M.; Srinivasan, H.; et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer.Nat. Genet.2022,54, 963–975. [Google Scholar] [CrossRef]
- Ishikawa, S.; Nishida, N.; Fujino, S.; Ogino, T.; Takahashi, H.; Miyoshi, N.; Uemura, M.; Satoh, T.; Yamamoto, H.; Mizushima, T.; et al. Comprehensive profiling of novel epithelial–mesenchymal transition mediators and their clinical significance in colorectal cancer.Sci. Rep.2021,11, 11759. [Google Scholar] [CrossRef] [PubMed]
- Turano, M.; Costabile, V.; Cerasuolo, A.; Duraturo, F.; Liccardo, R.; Delrio, P.; Pace, U.; Rega, D.; Dodaro, C.A.; Milone, M.; et al. Characterisation of mesenchymal colon tumour-derived cells in tumourspheres as a model for colorectal cancer progression.Int. J. Oncol.2018,53, 2379–2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costabile, V.; Duraturo, F.; Delrio, P.; Rega, D.; Pace, U.; Liccardo, R.; Rossi, G.B.; Genesio, R.; Nitsch, L.; Izzo, P.; et al. Lithium chloride induces mesenchymal-to-epithelial reverting transition in primary colon cancer cell cultures.Int. J. Oncol.2015,46, 1913–1923. [Google Scholar] [CrossRef] [Green Version]
- Cammarota, F.; Conte, A.; Aversano, A.; Muto, P.; Ametrano, G.; Riccio, P.; Turano, M.; Valente, V.; Delrio, P.; Izzo, P.; et al. Lithium chloride increases sensitivity to photon irradiation treatment in primary mesenchymal colon cancer cells.Mol. Med. Rep.2020,21, 1501–1508. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.A.; Huang, R.Y.J.; Jackson, R.A.; Thiery, J.P. EMT: 2016.Cell2016,166, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits.Nat. Rev. Cancer2009,9, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Herranz, N.; Pasini, D.; Díaz, V.M.; Francí, C.; Gutierrez, A.; Dave, N.; Escrivà, M.; Hernandez-Muñoz, I.; Di Croce, L.; Helin, K.; et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor.Mol. Cell. Biol.2008,28, 4772–4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteman, E.L.; Fan, S.; Harder, J.L.; Walton, K.D.; Liu, C.J.; Soofi, A.; Fogg, V.C.; Hershenson, M.B.; Dressler, G.R.; Deutsch, G.H.; et al. Crumbs3 is essential for proper epithelial development and viability.Mol. Cell. Biol.2014,34, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shioiri, M.; Shida, T.; Koda, K.; Oda, K.; Seike, K.; Nishimura, M.; Takano, S.; Miyazaki, M. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients.Br. J. Cancer2006,94, 1816–1822. [Google Scholar] [CrossRef] [Green Version]
- Franco, H.L.; Casasnovas, J.; Rodríguez-Medina, J.R.; Cadilla, C.L. Redundant or separate entities? Roles of Twist1 and Twist2 as molecular switches during gene transcription.Nucleic Acids Res.2011,39, 1177–1186. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.H.; Baltimore, D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers.Cell1991,64, 459–470. [Google Scholar] [CrossRef]
- Meng, J.; Chen, S.; Han, J.X.; Qian, B.; Wang, X.R.; Zhon, W.L.; Qin, Y.; Zhang, H.; Gao, W.F.; Lei, Y.Y. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma.Cancer Res.2018,78, 4150–4162. [Google Scholar] [CrossRef] [Green Version]
- Soldatov, R.; Kaucka, M.; Kastriti, M.E.; Petersen, J.; Chontorotzea, T.; Englmaier, L.; Akkuratova, N.; Yang, Y.; Häring, M.; Dyachuk, V.; et al. Spatiotemporal structure of cell fate decisions in murine neural crest.Science2019,7, 364. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.Y.; Lee, K.W.; Shin, D.; An, S.; Cho, K.H.; Kim, S.H. A positive feedback loop bi-stably activates fibroblasts.Nat. Commun.2018,9, 3016. [Google Scholar] [CrossRef] [Green Version]
- Qin, Q.; Xu, Y.; He, T.; Qin, C.; Xu, J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms.Cell Res.2012,22, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Eger, A.; Aigner, K.; Sonderegger, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Berx, G.; Cano, A.; Beug, H.; Foisner, R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells.Oncogene2005,24, 2375–2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaderna, S.; Schmalhofer, O.; Wahlbuhl, M.; Dimmler, A.; Bauer, K.; Sultan, A.; Hlubek, F.; Jung, A.; Strand, D.; Eger, A.; et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer.Cancer Res.2008,68, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aigner, K.; Dampier, B.; Descovich, L.; Mikula, M.; Sultan, A.; Schreiber, M.; Mikulits, W.; Brabletz, T.; Strand, D.; Obrist, P.; et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity.Oncogene2007,26, 6979–6988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Sun, Y.; Ma, L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance.Cell Cycle.2015,14, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postigo, A.A.; Dean, D.C. Differential expression and function of members of the zfh-1 family of zinc finger/homeodomain repressors.Proc. Natl. Acad. Sci. USA2000,97, 6391–6396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, P.; Paul, S.; Eckstein, M.; Hampel, C.; Muenzner, J.K.; Erlenbach-Wuensch, K.; Ahmed, H.P.; Mahadevan, V.; Brabletz, T.; Hartmann, A.; et al. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells.Cell Death Dis.2020,11, 147. [Google Scholar] [CrossRef] [Green Version]
- Sreekumar, R.; Harris, S.; Moutasim, K.; DeMateos, R.; Patel, A.; Emo, K.; White, S.; Yagci, T.; Tulchinsky, E.; Thomas, G.; et al. Assessment of Nuclear ZEB2 as a Biomarker for Colorectal Cancer Outcome and TNM Risk Stratification.JAMA Netw. Open.2018,1, e183115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Chen, B.; Zhu, Z.; Ye, W.; Zeng, J.; Liu, G.; Wang, S.; Gao, J.; Xu, G.; Huang, Z. Prognostic value of ZEB-1 in solid tumors: A meta-analysis.BMC Cancer2019,19, 635. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sawada, G.; Kurashige, J.; Uchi, R.; Matsumura, T.; Ueo, H.; Takano, Y.; Akiyoshi, S.; Eguchi, H.; Sudo, T.; et al. Paired related homoeobox 1, a new EMT inducer, is involved in metastasis and poor prognosis in colorectal cancer.Br. J. Cancer2013,109, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Takano, S.; Reichert, M.; Bakir, B.; Das, K.K.; Nishida, T.; Miyazaki, M.; Heeg, S.; Collins, M.A.; Marchard, B.; Hicks, P.D.; et al. Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization.Genes Dev.2016,30, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Wu, G. SDHB deficiency promotes TGFβ-mediated invasion and metastasis of colorectal cancer through transcriptional repression complex SNAIL1-SMAD3/4.Transl. Oncol.2016,9, 512–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Winge, D.R. Emerging concepts in the flavinylation of succinate dehydrogenase.Biochim. Biophys. Acta2013,1827, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartlam, M.; Rao, Z. Crystal structure of mitochondrial respiratory membrane protein complex II.Cell2005,121, 1043–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Wang, W.; Xiang, B.; Li, N.; Huang, S.; Zhou, W.; Sun, Y.; Wang, X.; Ma, J.; Li, G.; et al. Reduced succinate dehydrogenase B expression is associated with growth and de-differentiation of colorectal cancer cells.Tumour Biol.2013,34, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Bezawork-Geleta, A.; Rohlena, J.; Dong, L.; Pacak, K.; Neuzil, J. Mitochondrial Complex II: At the Crossroads.Trends Biochem. Sci.2017,42, 312–325. [Google Scholar] [CrossRef]
- Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells.Oncotarget2014,5, 11897–11908. [Google Scholar] [CrossRef] [Green Version]
- Rasola, A.; Neckers, L.; Picard, D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells.Trends Cell Biol.2014,24, 455–463. [Google Scholar] [CrossRef]
- Lettini, G.; Sisinni, L.; Condelli, V.; Swann Matassa, D.; Simeon, V.; Maddalena, F.; Gemei, M.; Lopes, E.; Vita, G.; Del Vecchio, L.; et al. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma.Cell Death Differ.2016,23, 1792–1803. [Google Scholar] [CrossRef]
- Han, P.; Wang, Q.L.; Zhang, X. Expression of TRAP1 in gastric cancer tissue and its correlation with malignant biology.Asian Pac. J. Trop. Med.2016,9, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Pan, S.; Lai, K.; Lai, L.A.; Crispin, D.A.; Bronner, M.P.; Brentnall, T.A. Up-regulation of mitochondrial chaperone TRAP1 in ulcerative colitis associated colorectal cancer.World J. Gastroenterol.2014,20, 17037–17048. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Huang, Z.; Wei, P.; Liu, Y.; Hao, J.; Zhao, L.; Zhang, F.; Tu, Y.; Wei, T. Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer.Oncotarget2015,6, 44495–44508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.; Liu, L.; Xue, L.; Zhou, W.; Zhao, Z.; Xu, B.; Song, Y.; Zhan, Q. TRAP1 shows clinical significance and promotes cellular migration and invasion through STAT3/MMP2 pathway in human esophageal squamous cell cancer.J. Genet. Genom.2014,41, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.W.; Zainal Abidin, S.A.; Othman, I.; Naidu, R. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism.Cancers2020,12, 2462. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xiao, Z.; Ai, F.; Liu, F.; Chen, X.; Cao, K.; Ren, W.; Zhang, X.; Shu, P.; Zhang, D. miR-142-5p promotes development of colorectal cancer through targeting SDHB and facilitating generation of aerobic glycolysis.Biomed. Pharmacother.2017,92, 1119–1127. [Google Scholar] [CrossRef]
- Ullmann, P.; Qureshi-Baig, K.; Rodriguez, F.; Ginolhac, A.; Nonnenmacher, Y.; Ternes, D.; Weiler, J.; Gäbler, K.; Bahlawane, C.; Hiller, K.; et al. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production.Oncotarget2016,7, 65454–65470. [Google Scholar] [CrossRef] [Green Version]
- Pinweha, P.; Rattanapornsompong, K.; Charoensawan, V.; Jitrapakdee, S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers.Comput. Struct. Biotechnol. J.2016,14, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Puisségur, M.P.; Mazure, N.M.; Bertero, T.; Pradelli, L.; Grosso, S.; Robbe-Sermesant, K.; Maurin, T.; Lebrigand, K.; Cardinaud, B.; Hofman, V.; et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity.Cell Death Differ.2011,18, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.Biochim. Biophys. Acta2016,1857, 1086–1101. [Google Scholar] [CrossRef]
- Desideri, E.; Vegliante, R.; Ciriolo, M.C. Mitochondrial dysfunctions in cancer: Genetic defects and oncogenic signaling impinging on TCA cycle activity.Cancer Lett.2015,356, 217–223. [Google Scholar] [CrossRef]
- Selak, M.A.; Armour, S.M.; MacKenzie, E.; Boulahbel, H.; Watson, D.G.; Mansfield, K.D.; Pan, Y.; Simon, M.C.; Thompson, C.B.; Gottlieb, E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase.Cancer Cell2005,7, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Masiá, D.; Gisbert-Ferrándiz, L.; Bauset, C.; Coll, S.; Mamie, C.; Scharl, M.; Esplugues, J.V.; Alós, R.; Navarro, F.; Cosín-Roger, J.; et al. Succinate Activates EMT in Intestinal Epithelial Cells through SUCNR1: A Novel Protagonist in Fistula Development.Cells2020,9, 1104. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Huang, T.W.; Hsieh, Y.T.; Wang, Y.F.; Yen, C.C.; Lee, G.L.; Yeh, C.C.; Peng, Y.J.; Kuo, Y.Y.; Wen, H.T.; et al. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor.Mol. Cell2020,77, 213–227.e5. [Google Scholar] [CrossRef] [PubMed]
- Gilissen, J.; Jouret, F.; Pirotte, B.; Hanson, J. Insight into SUCNR1 (GPR91) structure and function.Pharmacol. Ther.2016,159, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α.Nature2013,496, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Mu, X.; You, Q. Succinate: An initiator in tumorigenesis and progression.Oncotarget2017,8, 53819–53828. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, L.; Pappan, L.; Galliher-Beckley, A.; Shi, J. IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation.Mol. Cancer2012,11, 87. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, M.; Bennett, N.; Standifer, C.; Smith, A.; Han, A.; Bettaieb, A.; Whelan, J.; Donohoe, D.R. Characterization of the Pro-Inflammatory Cytokine IL-1β on Butyrate Oxidation in Colorectal Cancer Cells.J. Cell Biochem.2017,118, 1614–1621. [Google Scholar] [CrossRef]
- Turano, M.; Cammarota, F.; Duraturo, F.; Izzo, P.; De Rosa, M. A Potential Role of IL-6/IL-6R in the Development and Management of Colon Cancer.Membranes2021,11, 312. [Google Scholar] [CrossRef]
- Mu, X.; Zhan, T.; Xu, C.; Shi, W.; Geng, B.; Shen, J.; Zhang, C.; Pan, J.; Yang, J.; Hu, S.; et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation.Oncotarget2017,8, 13174–13185. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Pollard, P.J. Succinate: A new epigenetic hacker.Cancer Cell2013,23, 709–711. [Google Scholar] [CrossRef] [Green Version]
- Letouzé, E.; Martinelli, C.; Loriot, C.; Burnichon, N.; Abermil, N.; Ottolenghi, C.; Janin, M.; Menara, M.; Nguyen, A.T.; Benit, P.; et al.SDH mutations establish a hypermethylator phenotype in paraganglioma.Cancer Cell2013,23, 739–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervera, A.M.; Bayley, J.P.; Devilee, P.; McCreath, K.J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells.Mol. Cancer2009,8, 89. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Yang, H.; Xu, W.; Ma, S.; Lin, H.; Zhu, H.; Liu, L.; Liu, Y.; Yang, C.; Xu, Y.; et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors.Genes Dev.2012,26, 1326–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science2009,324, 1029–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warburg, O. On the origin of cancer cells.Science1956,123, 309–314. [Google Scholar] [CrossRef]
- Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate.Cancer Cell2012,21, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation.Cell Metab.2008,7, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer.Oncogene2006,25, 4675–4682. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.C.; Wu, J.Y.; Wu, K.K. Cancer-derived extracellular succinate: A driver of cancer metastasis.J. Biomed. Sci.2022,29, 93. [Google Scholar] [CrossRef]
- Haffner, M.C.; Chaux, A.; Meeker, A.K.; Esopi, D.M.; Gerber, J.; Pellakuru, L.G.; Toubaji, A.; Argani, P.; Iacobuzio-Donahue, C.; Nelson, W.G.; et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers.Oncotarget2011,2, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, P.H. Hypoxia-inducible factor as a physiological regulator.Exp. Physiol.2005,90, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Semenza, G.L. Purification and characterization of hypoxia-inducible factor 1.J. Biol. Chem.1995,270, 1230–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dann, C.E.; Bruick, R.K. Dioxygenases as O2-dependent regulators of the hypoxic response pathway.Biochem. Biophys. Res. Commun.2005,338, 639–647. [Google Scholar] [CrossRef]
- Schofield, C.J.; Ratcliffe, P.J. Signalling hypoxia by HIF hydroxylases.Biochem. Biophys. Res. Commun.2005,338, 617–626. [Google Scholar] [CrossRef]
- Slattery, M.L.; Herrick, J.S.; Lundgreen, A.; Fitzpatrick, F.A.; Curtin, K.; Wolff, R.K. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk:mTOR,PTEN,STK11,RPKAA1,PRKAG2,TSC1,TSC2,PI3K and Akt1.Carcinogenesis2010,31, 1604–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoki, K.; Corradetti, M.N.; Guan, K.L. Dysregulation of the TSC-mTOR pathway in human disease.Nat. Genet.2005,37, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Plas, D.R.; Thompson, C.B. Akt-dependent transformation: There is more to growth than just surviving.Oncogene2005,24, 7435–7444. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jin, M.; Xu, H.; Shimin, Z.; He, S.; Wang, L.; Zhang, Y. Clinicopathologic significance of HIF-1α, CXCR4, and VEGF expression in colon cancer.Clin. Dev. Immunol.2010,2010, 537531. [Google Scholar] [CrossRef] [Green Version]
- Simiantonaki, N.; Taxeidis, M.; Jayasinghe, C.; Kurzik-Dumke, U.; Kirkpatrick, C.J. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression.BMC Cancer2008,8, 320. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.K.; Shen, S.Q.; Hong, J.W.; Jiang, W.; Wang, Y.Q. Hypoxia-inducible factor 1-α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions.Oncol. Lett.2018,15, 3639–3645. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Han, J.; Pang, L.; Zhao, Y.; Yang, Y.; Shen, Z. Increased PADI4 expression in blood and tissues of patients with malignant tumors.BMC Cancer2009,9, 40. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.T.; Lin, Y.T.; Tang, S.P.; Luo, C.K.; Tsai, C.T.; Shun, C.T.; Chen, C.C. Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer.Oncogene2020,39, 414–427. [Google Scholar] [CrossRef]
- Guzy, R.D.; Sharma, B.; Bell, E.; Chandel, N.S.; Schumacker, P.T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis.Mol. Cell. Biol.2008,28, 718–731. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shi, X.; Peng, Y.; Wu, M.; Zhang, P.; Xie, R.; Wu, Y.; Yan, Q.; Liu, S.; Wang, J. HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer.PLoS ONE2015,10, e0129603. [Google Scholar] [CrossRef] [PubMed]
- Atallah, R.; Olschewski, A.; Heinemann, A. Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1.Biomedicines2022,10, 3089. [Google Scholar] [CrossRef]
- Urosevic, J.; Blasco, M.T.; Llorente, A.; Bellmunt, A.; Berenguer-Llergo, A.; Guiu, M.; Cañellas, A.; Fernandez, E.; Burkov, I.; Clapés, M.; et al. ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer.Cancer Res.2020,80, 4668–4680. [Google Scholar] [CrossRef]
- Balmanno, K.; Cook, S.J. Tumour cell survival signalling by the ERK1/2 pathway.Cell Death Differ.2009,16, 368–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusaba, T.; Nakayama, T.; Yamazumi, K.; Yakata, Y.; Yoshizaki, A.; Inoue, K.; Nagayasu, T.; Sekine, I. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer.Oncol. Rep.2006,15, 1445–1451. [Google Scholar] [CrossRef] [Green Version]
- Maresca, C.; Di Maggio, G.; Stolfi, C.; Laudisi, F.; Colella, M.; Pacifico, T.; Di Grazia, A.; Di Fusco, D.; Congiu, D.; Guida, A.M.; et al. Smad7 Sustains Stat3 Expression and Signaling in Colon Cancer Cells.Cancers2022,14, 4993. [Google Scholar] [CrossRef] [PubMed]
- Gargalionis, A.N.; Papavassiliou, K.A.; Papavassiliou, A.G. Targeting STAT3 Signaling Pathway in Colorectal Cancer.Biomedicines2021,9, 1016. [Google Scholar] [CrossRef]
- Mi, W.; Wang, C.; Luo, G.; Li, J.; Zhang, Y.; Jiang, M.; Zhang, C.; Liu, N.; Jiang, X.; Yang, G.; et al. Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer.Cell Death Discov.2021,7, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Kawakami, H.; Liu, W.; Zeng, X.; Strebhardt, K.; Tao, K.; Huang, S.; Sinicrope, F.A. Targeting CDK1 and MEK/ERK Overcomes Apoptotic Resistance in BRAF-Mutant Human Colorectal Cancer.Mol. Cancer Res.2018,16, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Gao, Z.J.; Yu, X.; Wang, P. Dietary regulation in health and disease.Signal Transduct. Target Ther.2022,7, 252. [Google Scholar] [CrossRef] [PubMed]
- Jakobsdottir, G.; Xu, J.; Molin, G.; Ahrné, S.; Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.PLoS ONE2013,8, e80476. [Google Scholar] [CrossRef] [Green Version]
- Staňková, P.; Kučera, O.; Peterová, E.; Elkalaf, M.; Rychtrmoc, D.; Melek, J.; Podhola, M.; Zubáňová, V.; Červinková, Z. Western Diet Decreases the Liver Mitochondrial Oxidative Flux of Succinate: Insight from a Murine NAFLD Model.Int. J. Mol. Sci.2021,22, 6908. [Google Scholar] [CrossRef]
- Frederic Bouillaud. Inhibition of Succinate Dehydrogenase by Pesticides (SDHIs) and Energy Metabolism.Int. J. Mol. Sci.2023,24, 4045. [Google Scholar] [CrossRef] [PubMed]
- Bauset, C.; Lis-Lopez, L.; Coll, S.; Gisbert-Ferrándiz, L.; Macias-Ceja, D.C.; Seco-Cervera, M.; Navarro, F.; Esplugues, J.V.; Calatayud, S.; Ortiz-Masia, D.; et al. SUCNR1 Mediates the Priming Step of the Inflammasome in Intestinal Epithelial Cells: Relevance in Ulcerative Colitis.Biomedicines2022,10, 532. [Google Scholar] [CrossRef]
- Velcicky, J.; Wilcken, R.; Cotesta, S.; Janser, P.; Schlapbach, A.; Wagner, T.; Piechon, P.; Villard, F.; Bouhelal, R.; Piller, F.; et al. Discovery and Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with a Salt Bridge for the Improvement of Oral Exposure.J. Med. Chem.2020,63, 9856–9875. [Google Scholar] [CrossRef]
- Rabe, P.; Liebing, A.D.; Krumbholz, P.; Kraft, R.; Stäubert, C. Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamine.Cancer Lett.2022,526, 91–102. [Google Scholar] [CrossRef]
- Mills, E.L.; Pierce, K.A.; Jedrychowski, M.P.; Garrity, R.; Winther, S.; Vidoni, S.; Yoneshiro, T.; Spinelli, J.B.; Lu, G.Z.; Kazak, L.; et al. Accumulation of succinate controls activation of adipose tissue thermogenesis.Nature2018,560, 102–106. [Google Scholar] [CrossRef]
- Nannini, M.; Rizzo, A.; Indio, V.; Schipani, A.; Astolfi, A.; Pantaleo, M.A. Targeted therapy in SDH- deficient GIST.Ther. Adv. Med. Oncol.2021,13, 1–9. [Google Scholar] [CrossRef] [PubMed]
SYNDROMES | INVOLVED GENES |
---|---|
Hereditary non-polyposis colorectal cancer | |
LYNCH | MSH2,MLH1,MSH6,MSH3,PMS2,EPCAM |
NONPOLYPOSIS CRC-MSS | RPS20 |
Familial adenomatous polyposis syndromes | |
FAP/AFA: familial adenomatous polyposis (including Gardner syndrome and Turcot Syndrome)/attenuated-FAP | APC |
PPAP: polymerase proofreading-associated polyposis | POLE,POLD1 |
MAP: MUTYH associated polyposis | MUTYH |
NAP: NTHL1-associated polyposis | NTHL1 |
MSH3 polyposis | MSH3 |
Hamartomatous polyposis syndromes | |
PJS: Peuts–Jeghers syndrome | STK11 |
PHTS: PTEN hamartoma tumor syndrome (including Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome) | PTEN,SDHD |
JPS: juvenile polyposis syndrome | BMPR1A,SMAD4 |
Mixed polyposis | |
HMPS: hereditary mixed polyposis syndrome | GREM1,BRAF |
Serrated adenomas | |
SPS: serrated polyposis syndrome | RNF43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turano, M.; Vicidomini, R.; Cammarota, F.; D’Agostino, V.; Duraturo, F.; Izzo, P.; Rosa, M.D. The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation.Biomedicines2023,11, 1428. https://doi.org/10.3390/biomedicines11051428
Turano M, Vicidomini R, Cammarota F, D’Agostino V, Duraturo F, Izzo P, Rosa MD. The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation.Biomedicines. 2023; 11(5):1428. https://doi.org/10.3390/biomedicines11051428
Chicago/Turabian StyleTurano, Mimmo, Rosario Vicidomini, Francesca Cammarota, Valeria D’Agostino, Francesca Duraturo, Paola Izzo, and Marina De Rosa. 2023. "The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation"Biomedicines 11, no. 5: 1428. https://doi.org/10.3390/biomedicines11051428
APA StyleTurano, M., Vicidomini, R., Cammarota, F., D’Agostino, V., Duraturo, F., Izzo, P., & Rosa, M. D. (2023). The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation.Biomedicines,11(5), 1428. https://doi.org/10.3390/biomedicines11051428