On a Non-Newtonian Calculus of Variations
Abstract
1. Introduction
2. Materials and Methods
- (i)
- (commutativity);
- (ii)
- (associativity);
- (iii)
- (Euler’s/Napier’s transcendent numbere is the neutral element for ⊙);
- (iv)
- if and we define, then (inverse element).
- (v)
- ;
- (vi)
- ;
- (vii)
- ;
- (viii)
- .
- ;
- if, and only if,;
- ;
- .
2.1. Derivatives
- If, then.
- If, then;
- If, then;
- If and, then
- (a)
- If, andc is a positive constant, then (derivative of a constant);
- (b)
- (derivative of a sum);
- (c)
- (derivative of a difference);
- (d)
- (derivative of a product);
- (e)
- (chain rule).
2.2. Integrals
- Ifk is a positive constant, then—in particular, if, then;
- ;
- ;
- ;
- ;
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- If for all, then;
- (vi)
- If for all, then.
3. Results
3.1. Static Optimization
3.2. Dynamic Optimization
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grossman, M.; Katz, R.Non-Newtonian Calculus; Lee Press: Pigeon Cove, MA, USA, 1972. [Google Scholar]
- Boruah, K.; Hazarika, B.; Bashirov, A.E. Solvability of bigeometric differential equations by numerical methods.Bol. Soc. Parana. Mat.2021,39, 203–222. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Mı sırlı, E.; Tandoğdu, Y.; Özyapıcı, A. On modeling with multiplicative differential equations.Appl. Math. J. Chin. Univ. Ser. B2011,26, 425–438. [Google Scholar] [CrossRef]
- Mora, M.; Córdova-Lepe, F.; Del-Valle, R. A non-Newtonian gradient for contour detection in images with multiplicative noise.Pattern Recognit. Lett.2012,33, 1245–1256. [Google Scholar] [CrossRef]
- Ozyapici, A.; Bilgehan, B. Finite product representation via multiplicative calculus and its applications to exponential signal processing.Numer. Algorithms2016,71, 475–489. [Google Scholar] [CrossRef]
- Czachor, M. Unifying Aspects of Generalized Calculus.Entropy2020,22, 1180. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Torres, R.; Campillay-Llanos, W.; Guevara-Morales, F. Applications of proportional calculus and a non-Newtonian logistic growth model.Proyecciones2020,39, 1471–1513. [Google Scholar] [CrossRef]
- Özyapıcı, A.; Riza, M.; Bilgehan, B.; Bashirov, A.E. On multiplicative and Volterra minimization methods.Numer. Algorithms2014,67, 623–636. [Google Scholar] [CrossRef]
- Jaëck, F. Calcul différentiel et intégral adapté aux substitutions par Volterra.Hist. Math.2019,48, 29–68. [Google Scholar] [CrossRef]
- Slavík, A.Product Integration, Its History and Applications; Matfyzpress: Prague, Czech Republic, 2007; p. iv+147. [Google Scholar]
- Córdova-Lepe, F. The multiplicative derivative as a measure of elasticity in economics.TMAT Rev. Latinoam. Cienc. E Ing.2006,2, 1–8. [Google Scholar]
- Bashirov, A.E.; Kurpı nar, E.M.; Özyapıcı, A. Multiplicative calculus and its applications.J. Math. Anal. Appl.2008,337, 36–48. [Google Scholar] [CrossRef]
- Boruah, K.; Hazarika, B. On some generalized geometric difference sequence spaces.Proyecciones2017,36, 373–395. [Google Scholar] [CrossRef][Green Version]
- Campillay-Llanos, W.; Guevara, F.; Pinto, M.; Torres, R. Differential and integral proportional calculus: How to find a primitive forf(x)=1/sqrt2πe-(1/2)x2.Int. J. Math. Ed. Sci. Technol.2021,52, 463–476. [Google Scholar] [CrossRef]
- Gurefe, Y.; Kadak, U.; Misirli, E.; Kurdi, A. A new look at the classical sequence spaces by using multiplicative calculus.Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys.2016,78, 9–20. [Google Scholar]
- Leitmann, G.The Calculus of Variations and Optimal Control; Mathematical Concepts and Methods in Science and Engineering; Plenum Press: New York, NY, USA; London, UK, 1981; p. xvi+311. [Google Scholar]
- van Brunt, B.The Calculus of Variations; Universitext, Springer: New York, NY, USA, 2004; p. xiv+290. [Google Scholar] [CrossRef]
- Sidi Ammi, M.R.; Torres, D.F.M. Regularity of solutions to higher-order integrals of the calculus of variations.Int. J. Syst. Sci.2008,39, 889–895. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M.The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019; p. xiv+124. [Google Scholar] [CrossRef]
- Almeida, R.; Martins, N. Fractional variational principle of Herglotz for a new class of problems with dependence on the boundaries and a real parameter.J. Math. Phys.2020,61, 102701. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M.Quantum Variational Calculus; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Brito da Cruz, A.M.C.; Martins, N. General quantum variational calculus.Stat. Optim. Inf. Comput.2018,6, 22–41. [Google Scholar] [CrossRef]
- Martins, N.; Torres, D.F.M. Calculus of variations on time scales with nabla derivatives.Nonlinear Anal.2009,71, e763–e773. [Google Scholar] [CrossRef]
- Dryl, M.; Torres, D.F.M. Direct and inverse variational problems on time scales: A survey. InModeling, Dynamics, Optimization and Bioeconomics, II, Proceedings of the International Conference on Dynamics, Games and Science, Porto, Portugal, 17–21 February 2014; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2017; Volume 195, pp. 223–265. [Google Scholar] [CrossRef]
- Silva, C.J.; Torres, D.F.M. Two-dimensional Newton’s problem of minimal resistance.Control Cybernet.2006,35, 965–975. [Google Scholar]
- Frederico, G.S.F.; Odzijewicz, T.; Torres, D.F.M. Noether’s theorem for non-smooth extremals of variational problems with time delay.Appl. Anal.2014,93, 153–170. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Torres, D.F.M. Remarks on the calculus of variations on time scales.Int. J. Ecol. Econ. Stat.2007,9, 65–73. [Google Scholar]
- Dryl, M.; Torres, D.F.M. A general delta-nabla calculus of variations on time scales with application to economics.Int. J. Dyn. Syst. Differ. Equ.2014,5, 42–71. [Google Scholar] [CrossRef]
- Jost, J.Mathematical Methods in Biology and Neurobiology; Universitext, Springer: London, UK, 2014; p. x+226. [Google Scholar] [CrossRef]
- Lemos-Paião, A.P.; Silva, C.J.; Torres, D.F.M.; Venturino, E. Optimal control of aquatic diseases: A case study of Yemen’s cholera outbreak.J. Optim. Theory Appl.2020,185, 1008–1030. [Google Scholar] [CrossRef]
- Grbić, T.; Medić, S.; Perović, A.; Mihailović, B.; Novković, N.; Duraković, N. A premium principle based on theg-integral.Stoch. Anal. Appl.2017,35, 465–477. [Google Scholar] [CrossRef]
- Ünlüyol, E.; Salaş, S.; İşcan, I. A new view of some operators and their properties in terms of the non-Newtonian calculus.Topol. Algebra Appl.2017,5, 49–54. [Google Scholar] [CrossRef]
- Tekin, S.; Başar, F. Certain sequence spaces over the non-Newtonian complex field.Abstr. Appl. Anal.2013,2013, 739319. [Google Scholar] [CrossRef]
- Grossman, M.The First Nonlinear System of Differential and Integral Calculus; MATHCO: Rockport, MA, USA, 1979; p. xi+85. [Google Scholar]
- Grossman, M.Bigeometric Calculus; Archimedes Foundation: Rockport, MA, USA, 1983; p. vii+100. [Google Scholar]
- Riza, M.; Aktöre, H. The Runge-Kutta method in geometric multiplicative calculus.LMS J. Comput. Math.2015,18, 539–554. [Google Scholar] [CrossRef]
- Boruah, K.; Hazarika, B. Some basic properties of bigeometric calculus and its applications in numerical analysis.Afr. Mat.2021,32, 211–227. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Norozpour, S. On complex multiplicative integration.TWMS J. Appl. Eng. Math.2017,7, 82–93. [Google Scholar]
- Waseem, M.; Aslam Noor, M.; Ahmed Shah, F.; Inayat Noor, K. An efficient technique to solve nonlinear equations using multiplicative calculus.Turk. J. Math.2018,42, 679–691. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Zafar, A.A. On some Hermite-Hadamard integral inequalities in multiplicative calculus.J. Inequal. Spec. Funct.2019,10, 111–122. [Google Scholar]
- Córdova-Lepe, F. From quotient operation toward a proportional calculus.Int. J. Math. Game Theory Algebra2009,18, 527–536. [Google Scholar]
- Yazıcı, M.; Selvitopi, H. Numerical methods for the multiplicative partial differential equations.Open Math.2017,15, 1344–1350. [Google Scholar] [CrossRef]
- Boruah, K.; Hazarika, B.G-calculus.TWMS J. Appl. Eng. Math.2018,8, 94–105. [Google Scholar]
- Pap, E. Generalized real analysis and its applications.Int. J. Approx. Reason.2008,47, 368–386. [Google Scholar] [CrossRef][Green Version]
- Duyar, C.; SağIr, B.; Oğur, O. Some basic topological properties on Non-Newtonian real line.Br. J. Math. Comput. Sci.2015,9, 300–307. [Google Scholar] [CrossRef]
- Binbaşıoǧlu, D.; Demiriz, S.; Türkoǧlu, D. Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces.J. Fixed Point Theory Appl.2016,18, 213–224. [Google Scholar] [CrossRef]
- Güngör, N. Some geometric properties of the non-Newtonian sequence spaceslp(N).Math. Slovaca2020,70, 689–696. [Google Scholar] [CrossRef]
- Sağır, B.; Erdoğan, F. On non-Newtonian power series and its applications.Konuralp J. Math.2020,8, 294–303. [Google Scholar]
- Burgin, M.; Czachor, M.Non-Diophantine Arithmetics in Mathematics, Physics and Psychology; World Scientific: Singapore, 2021. [Google Scholar]
- Plakhov, A.Y.; Torres, D.F.M. Newton’s aerodynamic problem in media of chaotically moving particles.Mat. Sb.2005,196, 111–160. [Google Scholar] [CrossRef]
- Torres, D.F.M.; Plakhov, A.Y. Optimal control of Newton-type problems of minimal resistance.Rend. Semin. Mat. Univ. Politec. Torino2006,64, 79–95. [Google Scholar]
- Castillo, E.; Luceño, A.; Pedregal, P. Composition functionals in calculus of variations. Application to products and quotients.Math. Model. Methods Appl. Sci.2008,18, 47–75. [Google Scholar] [CrossRef]
- Riza, M.; Özyapici, A.; Misirli, E. Multiplicative finite difference methods.Quart. Appl. Math.2009,67, 745–754. [Google Scholar] [CrossRef]
- Yener, G.; Emiroglu, I. Aq-analogue of the multiplicative calculus:q-multiplicative calculus.Discret. Contin. Dyn. Syst. Ser. S2015,8, 1435–1450. [Google Scholar] [CrossRef]
- Stanley, D. A multiplicative calculus.Primus1999,9, 310–326. [Google Scholar] [CrossRef]
- Filip, D.A.; Piatecki, C. A non-newtonian examination of the theory of exogenous economic growth.Math. Aeterna2014,4, 101–117. [Google Scholar]
- Uzer, A. Multiplicative type complex calculus as an alternative to the classical calculus.Comput. Math. Appl.2010,60, 2725–2737. [Google Scholar] [CrossRef]
- Çakmak, A.F.; Başar, F. Certain spaces of functions over the field of non-Newtonian complex numbers.Abstr. Appl. Anal.2014,2014, 236124. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Norozpour, S. On an alternative view to complex calculus.Math. Methods Appl. Sci.2018,41, 7313–7324. [Google Scholar] [CrossRef]
- Çakmak, A.F.; Başar, F. Some new results on sequence spaces with respect to non-Newtonian calculus.J. Inequal. Appl.2012,2012, 228. [Google Scholar] [CrossRef]
- Florack, L.; van Assen, H. Multiplicative calculus in biomedical image analysis.J. Math. Imaging Vis.2012,42, 64–75. [Google Scholar] [CrossRef]
Short Biography of Author
![]() |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, D.F.M. On a Non-Newtonian Calculus of Variations.Axioms2021,10, 171. https://doi.org/10.3390/axioms10030171
Torres DFM. On a Non-Newtonian Calculus of Variations.Axioms. 2021; 10(3):171. https://doi.org/10.3390/axioms10030171
Chicago/Turabian StyleTorres, Delfim F. M. 2021. "On a Non-Newtonian Calculus of Variations"Axioms 10, no. 3: 171. https://doi.org/10.3390/axioms10030171
APA StyleTorres, D. F. M. (2021). On a Non-Newtonian Calculus of Variations.Axioms,10(3), 171. https://doi.org/10.3390/axioms10030171




