Movatterモバイル変換


[0]ホーム

URL:


IOS Press Logo
IOS Press Ebooks
Guest Access
?
Log in
As a guest user you are not logged in or recognized by your IP address. You have access to the Front Matter, Abstracts, Author Index, Subject Index and the full text of Open Access publications.
Search
loader loading subjects...
cover
PMAA: A Progressive Multi-Scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-Temporal Satellite Imagery
Authors
Xuechao Zou, Kai Li, Junliang Xing, Pin Tao, Yachao Cui
Pages
3165 - 3172
DOI
10.3233/FAIA230636
Category
Research Article
SeriesEbook
Abstract

Satellite imagery analysis plays a pivotal role in remote sensing; however, information loss due to cloud cover significantly impedes its application. Although existing deep cloud removal models have achieved notable outcomes, they scarcely consider contextual information. This study introduces a high-performance cloud removal architecture, termed Progressive Multi-scale Attention Autoencoder (PMAA), which concurrently harnesses global and local information to construct robust contextual dependencies using a novel Multi-scale Attention Module (MAM) and a novel Local Interaction Module (LIM). PMAA establishes long-range dependencies of multi-scale features using MAM and modulates the reconstruction of fine-grained details utilizing LIM, enabling simultaneous representation of fine- and coarse-grained features at the same level. With the help of diverse and multi-scale features, PMAA consistently outperforms the previous state-of-the-art model CTGAN on two benchmark datasets. Moreover, PMAA boasts considerable efficiency advantages, with only 0.5% and 14.6% of the parameters and computational complexity of CTGAN, respectively. These comprehensive results underscore PMAA’s potential as a lightweight cloud removal network suitable for deployment on edge devices to accomplish large-scale cloud removal tasks. Our source code and pre-trained models are available atunmapped: uri https://github.com/XavierJiezou/PMAA.

Download PDF
Creative Commons License

This website uses cookies

We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about theprivacy policy of IOS Press.

This website uses cookies

We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about theprivacy policy of IOS Press.


[8]ページ先頭

©2009-2025 Movatter.jp