Movatterモバイル変換


[0]ホーム

URL:


IOS Press Logo
IOS Press Ebooks
Guest Access
?
Log in
As a guest user you are not logged in or recognized by your IP address. You have access to the Front Matter, Abstracts, Author Index, Subject Index and the full text of Open Access publications.
Search
loader loading subjects...
cover
Key Relation Extraction from Biomedical Publications
Authors
Lan Huang, Ye Wang, Leiguang Gong, Casimir Kulikowski, Tian Bai
Pages
873 - 877
DOI
10.3233/978-1-61499-830-3-873
SeriesEbook
Abstract

Within the large body of biomedical knowledge, recent findings and discoveries are most often presented as research articles. Their number has been increasing sharply since the turn of the century, presenting ever-growing challenges for search and discovery of knowledge and information related to specific topics of interest, even with the help of advanced online search tools. This is especially true when the goal of a search is to find or discover key relations between important concepts or topic words. We have developed an innovative method for extracting key relations between concepts from abstracts of articles. The method focuses on relations between keywords or topic words in the articles. Early experiments with the method on PubMed publications have shown promising results in searching and discovering keywords and their relationships that are strongly related to the main topic of an article.

Download PDF
Creative Commons License

This website uses cookies

We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about theprivacy policy of IOS Press.

This website uses cookies

We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about theprivacy policy of IOS Press.


[8]ページ先頭

©2009-2025 Movatter.jp