57Accesses
3Altmetric
Abstract
We describe an applied methodology to build fuzzy models of geographical expressions, which are meant to be used for natural language generation purposes. Our approach encompasses a language grounding task within the development of an actual data-to-text system for the generation of textual descriptions of live weather data. For this, we gathered data from meteorologists through a survey and built consistent fuzzy models that aggregate the interpersonal variations found among the experts. A subset of the models was utilized in an illustrative use case, where we generated linguistic descriptions of weather maps for specific geographical expressions. These were used in a task-based evaluation to determine how well potential readers are able to identify the geographical expressions grounded on the models.
Article PDF
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
A. Gatt, E. Krahmer, Survey of the state of the art in natural language generation: core tasks, applications and evaluation, J. Artif. Intell. Res. 61 (2018), 65–170
A. Ramos-Soto, A. Bugarín, S. Barro, On the role of linguistic descriptions of data in the building of natural language generation systems, Fuzzy Sets Syst. 285 (2016), 31–51
Gartner, Neural Networks and Modern BI Platforms Will Evolve Data and Analytics, January 16, 2017. http://www.gartner.com/smarterwithgartner/nueral-networks-and-modern-bi-platforms-will-evolve-data-and-analytics/.
S.G. Sripada, E. Reiter, I. Davy, SUMTIME-MOUSAM: configurable marine weather forecast generator. Expert Update. 6(3) (2003). http://www.expertupdate.org/
A. Ramos-Soto, A. Bugarín, S. Barro, J. Taboada, Linguistic descriptions for automatic generation of textual short-term weather forecasts on real prediction data, IEEE Trans. Fuzzy Syst. 23 (2015), 44–57
E. Goldberg, N. Driedger, R. Kittredge, Using natural-language processing to produce weather forecasts, IEEE Expert. 9 (1994), 45–53
J. Hunter, Y. Freer, A. Gatt, E. Reiter, S. Sripada, C. Sykes, Automatic generation of natural language nursing shift summaries in neonatal intensive care: Bt-nurse, Artif. Intell. Med. 56 (2012), 157–172
A. Goldstein, Y. Shahar, An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data, J. Biomed. Inform. 61 (2016), 159–175
J. Yu, E. Reiter, J. Hunter, S. Sripada, Sumtimeturbine: a knowledge-based system to communicate gas turbine time-series data, in: P. Chung, C. Hinde, M.Ali (Eds.), Developments in Applied Artificial Intelligence, Lecture Notes in Computer Science, vol. 2718, Springer, Berlin, Heidelberg, 2003, pp. 379–384.
N. Marín, D. Sánchez, On generating linguistic descriptions of time series, Fuzzy Sets Syst. 285 (2016), 6–30
R. de Oliveira, Y. Sripada, E. Reiter, Designing an algorithm for generating named spatial references, in Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), Association for Computational Linguistics (ACL), Brighton, 2015, pp. 127–135.
D. Roy, E. Reiter, Connecting language to the world, Artif. Intell. 167 (2005), 1–12
E. Reiter, An architecture for data-to-text systems, The 11th European Workshop on Natural Language Generation, Schloss Dagstuhl, Germany, 2007, pp. 97–104.
J. Novikova, O. Dušek, V. Rieser, The E2E dataset: new challenges for end-to-end generation, in Proceedings of the 18th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Saarbrücken, 2017. https://arxiv.org/abs/1706.09254.
E. Reiter, S. Sripada, J. Hunter, I. Davy, Choosing words in computer-generated weather forecasts, Artif. Intell. 167 (2005), 137–169
E. Reiter, S. Sripada, Should corpora texts be gold standards for NLG? in Proceedings of the International Natural Language Generation Conference, Harriman, New York, 2002, pp. 97–104. https://www.aclweb.org/anthology/W02-2113/.
R. Turner, S. Sripada, E. Reiter, I.P. Davy, (2008) Selecting the content of textual descriptions of geographically located events in spatio-temporal weather data, in; R. Ellis, T. Allen, M. Petridis, (Eds.), Applications and Innovations in Intelligent Systems XV, Springer, London, 2007.
J. Kacprzyk, S. Zadrozny, Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries, and natural-language generation, IEEE Trans. Fuzzy Syst. 18 (2010), 461–472
A. Ramos-Soto, A. Bugarín, S. Barro, Fuzzy sets across the natural language generation pipeline, Prog. Artif. Intell. 5 (2016), 261–276
R. Turner, S. Sripada, E. Reiter, I.P.D. Davy, Using spatial reference frames to generate grounded textual summaries of georeferenced data, in Proceedings of the 2008 International Conference on Natural Language Generation (INLG08), Association for Computational Linguistics (ACL), Salt Fork, June 12–14, 2008. https://www.aclweb.org/anthology/W08-1104
R. Turner, S. Sripada, E. Reiter, Generating approximate geographic descriptions, in: E. Krahmer, M. Theune (Eds.), Empirical Methods in Natural Language Generation, Lecture Notes in Computer Science, vol. 5790, Springer, Berlin, Heidelberg, 2010, pp. 121–140.
S.C. Levinson, Space in Language and Cognition: Explorations in Cognitive Diversity, Cambridge University Press, Cambridge, vol. 5, 2003.
R. de Oliveira, S. Sripada, E. Reiter, Absolute and relative properties in geographic referring expressions, in Proceedings of the 9th International Conference on Natural Language Generation (INLG), Edinburgh, 2016, pp. 256–264.
P. Fisher, Sorites paradox and vague geographies, Fuzzy Sets Syst. 113 (2000), 7–18
V.B. Robinson, A perspective on the fundamentals of fuzzy sets and their use in geographic information systems, Trans. GIS. 7 (2003), 3–30
P. Fisher, A. Comber, R. Wadsworth, Approaches to uncertainty in spatial data, in: R. Devillers, R. Jeansoulin (Eds.), Fundamentals of Spatial Data Quality, Wiley, New Jersey, 2006, pp. 43–59.
P.F. Fisher, T.M. Orf, An investigation of the meaning of near and close on a university campus, Comput. Environ. Urban Syst. 15 (1991), 23–35
MeteoGalicia, Meteogalicia’s web site, 2018. http://www.meteogalicia.es.
A. Ramos-Soto, N. Tintarev, R. de Oliveira, E. Reiter, K. van Deemter, Natural language generation and fuzzy sets: an exploratory study on geographical referring expression generation, in IEEE World Congress on Computational Intelligence, 2016 IEEE International Conference on Fuzzy Systems, Vancouver, 2016, pp. 587–594.
A. Ramos-Soto, J.M. Alonso, E. Reiter, K. van Deemter, A. Gatt, An empirical approach for modeling fuzzy geographical descriptors, in Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Naples, 2017, pp. 1–6.
M. Delgado, M.D. Ruiz, D. Sánchez, M.A. Vila, Fuzzy quantification: a state of the art, Fuzzy Sets Syst. 242 (2014), 1–30
M. Delgado, D. Sánchez, M.A. Vila, Fuzzy cardinality based evaluation of quantified sentences, Int. J. Approx. Reason. 23 (2000), 23–66
J. Chamorro-Martínez, D. Sánchez, J.M. Soto-Hidalgo, P.M. Martínez-Jiménez, A discussion on fuzzy cardinality and quantification. Some applications in image processing, Fuzzy Sets Syst. 257 (2014), 85–101
R. Castillo-Ortega, N. Marín, D. Sánchez, A.G. Tettamanzi, Linguistic summarization of time series data using genetic algorithms, in Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11), Aix-les-Bains, France, 2011, vol. 1, pp. 416–423.
R. Castillo-Ortega, N. Marín, D. Sánchez, Linguistic query answering on data cubes with time dimension, Int. J. Intell. Syst. 26 (2011), 1002–1021
F. Diaz-Hermida, M. Pereira-Fariña, J.C. Vidal, A. Ramos-Soto, Characterizing quantifier fuzzification mechanisms: a behavioral guide for applications, Fuzzy Sets Syst. 345 (2018), 1–23
F. Diaz-Hermida, D.E. Losada, A. Bugarín, S. Barro, A probabilistic quantifier fuzzification mechanism: the model and its evaluation for information retrieval, IEEE Trans. Fuzzy Syst. 13 (2005), 688–700
A. Ramos-Soto, E. Reiter, K. van Deemter, J.M. Alonso, A. Gatt, Meteorologists and Students: a resource for language grounding of geographical descriptors, in Proceedings of the 11th International Conference on Natural Language Generation, Tilburg, The Netherlands, 2018, pp. 421–425.
A. Ramos-Soto, E. Reiter, K. van Deemter, J.M. Alonso, A. Gatt, geodescriptors, 2018. https://gitlab.citius.usc.es/alejandro.ramos/geodescriptors.
Author information
Authors and Affiliations
Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Alejandro Ramos & Jose M. Alonso
Department of Computing Science, University of Aberdeen, Aberdeen, UK
Ehud Reiter & Kees van Deemter
Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
Kees van Deemter
Institute of Linguistics and Language Technology, University of Malta, Utrecht, Malta
Albert Gatt
- Alejandro Ramos
You can also search for this author inPubMed Google Scholar
- Jose M. Alonso
You can also search for this author inPubMed Google Scholar
- Ehud Reiter
You can also search for this author inPubMed Google Scholar
- Kees van Deemter
You can also search for this author inPubMed Google Scholar
- Albert Gatt
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJose M. Alonso.
Rights and permissions
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
About this article
Cite this article
Ramos, A., Alonso, J.M., Reiter, E.et al. Fuzzy-Based Language Grounding of Geographical References: From Writers to Readers.Int J Comput Intell Syst12, 970–983 (2019). https://doi.org/10.2991/ijcis.d.190826.002
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative