JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES >Special Issue >Special Issue No. – 7, February, 2020 >AN EMPIRICAL SCIENCE RESEARCH ON BIOINFORMATICS IN MACHINE LEARNING
adminFebruary 17, 2020
I. Aerts, S., Van Loo, P., Moreau, Y., & De Moor, B. (2004). A genetic algorithm for the detection of new cis-regulatory modules in sets of coregulated genes. Bioinformatics, 20(12), 1974-1976.
II. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., …&Asari, V. K. (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), 292.
III. Alpaydin, E. (2009). Introduction to machine learning. MIT press.
IV. Bhaskar, H., Hoyle, D. C., & Singh, S. (2006). Machine learning in bioinformatics: A brief survey and recommendations for practitioners. Computers in biology and medicine, 36(10), 1104-1125.
V. Bockhorst, J., Craven, M., Page, D., Shavlik, J., &Glasner, J. (2003). A Bayesian network approach to operon prediction. Bioinformatics, 19(10), 1227-1235.
VI. Buskirk, T. D., Kirchner, A., Eck, A., &Signorino, C. S. (2018). An introduction to machine learning methods for survey researchers. Survey Practice, 11(1), 2718.
VII. Das, K., &Behera, R. N. (2017). A survey on machine learning: concept, algorithms and applications. International Journal of Innovative Research in Computer and Communication Engineering, 5(2), 1301-1309.
VIII. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., …&Schlaefer, N. (2010). Building Watson: An overview of the DeepQA project. AI magazine, 31(3), 59-79.
IX. Gentleman, R., Carey, V., Huber, W., Irizarry, R., &Dudoit, S. (Eds.). (2006). Bioinformatics and computational biology solutions using R and Bioconductor. Springer Science & Business Media.
X. Inza, I., Calvo, B., Armañanzas, R., Bengoetxea, E., Larrañaga, P., & Lozano, J. A. (2010). Machine learning: an indispensable tool in bioinformatics. In Bioinformatics methods in clinical research (pp. 25-48). Humana Press.
XI. Kaur, S., & Jindal, S. (2016). A survey on machine learning algorithms. Int J Innovative Res AdvEng (IJIRAE), 3(11), 2349-2763.
XII. Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., …& Robles, V. (2006). Machine learning in bioinformatics. Briefings in bioinformatics, 7(1), 86-112.
XIII. Mathé, C., Sagot, M. F., Schiex, T., &Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic acids research, 30(19), 4103-4117.
XIV. Manyika, J. (2011). Big data: The next frontier for innovation, competition, and productivity.
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation.
XV. Mitra, S., Datta, S., Perkins, T., &Michailidis, G. (2008). Introduction to machine learning and bioinformatics. Chapman and Hall/CRC.
XVI. Parmigiani, G., Garrett, E. S., Irizarry, R. A., &Zeger, S. L. (2003). The analysis of gene expression data: an overview of methods and software. In The analysis of gene expression data (pp. 1-45). Springer, New York, NY.
XVII. Sapp, C. E. (2017). Preparing and architecting for machine learning. Gartner Technical Professional Advice, 1-37.
XVIII. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.