99Accesses
13Citations
3Altmetric
Abstract
Osteoporosis affects a large number of people in industrialised countries. It has clinical and public-health impacts, most importantly due to subsequent fractures. Osteoporotic fractures are one of the most common causes of disability and are associated with enormous healthcare expenditure. The majority of existing treatment options for osteoporosis only inhibit bone resorption and prevent excessive bone loss but are not capable of stimulating bone formation. However, several recentin vitro andin vivo studies in animals demonstrated that HMG-CoA reductase inhibitors stimulate the production of bone morphogenetic protein (BMP-2), which is a potent regulating protein in osteoblast differentiation and activity. This suggests that HMG-CoA reductase inhibitors may have an anabolic effect on bones, making them a potentially interesting treatment option for osteoporosis. Additionally, several studies in humans showed that some HMG-CoA reductase inhibitors may have a beneficial effect on bone turnover and may lead to an increase in bone mineral density.
Consequently, several observational studies tried to evaluate whether use of HMG-CoA reductase inhibitors is associated with a decreased risk of fractures. Even though not all results of these epidemiological studies, using different designs in different study populations, were entirely consistent, they provided substantial evidence that HMG-CoA reductase inhibitor use may decrease the bone fracture risk by approximately 50%. On the other hand, reanalyses of two randomised controlled trials of HMG-CoA reductase inhibitor therapy, designed to assess cardiovascular outcomes, could not show that patients treated with HMG-CoA reductase inhibitors had a lower fracture risk in comparison with placebo-treated patients.
Therefore, to conclusively assess the potential of HMG-CoA reductase inhibitors in the prevention and treatment of osteoporosis, randomised controlled trials need to be performed to address this conflicting issue. Until the results of such trials are available, practitioners should prescribe the drugs that have been proven to reduce the risk of osteoporotic fractures.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.


Similar content being viewed by others
References
Anon. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94(6): 646–50
Iqbal MM. Osteoporosis: epidemiology, diagnosis, and treatment. South Med J 2000; 93(1): 2–18
Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359(9319): 1761–7
Ray NF, Chan JK, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12(1): 24–35
Delmas PD. Treatment of postmenopausal osteoporosis. Lancet 2002; 359(9322): 2018–26
Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 1997; 350(9077): 550–5
Lane NE, Sanchez S, Modin GW, et al. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis: results of a randomized controlled clinical trial. J Clin Invest 1998; 102(8): 1627–33
Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk in rats using PTH 1–34 [letter]. Trends Endocrinol Metab 2001; 12(9): 383
Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286(5446): 1946–9
Meier CR, Schlienger RG, Kraenzlin ME, et al. HMG-CoA reductase inhibitors and the risk of fractures. JAMA 2000; 283(24): 3205–10
Chan KA, Andrade SE, Boles M, et al. Inhibitors of hydroxymethyglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet 2000; 355(9222): 2185–8
Wang PS, Solomon DH, Mogun H, et al. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 2000; 283(24): 3211–6
Pasco JA, Kotowicz MA, Henry MJ, et al. Statin use, bone mineral density, and fracture risk: Geelong osteoporosis study. Arch Intern Med 2002; 162(5): 537–40
Clearfield MB. Statins: balancing benefits, efficacy and safety. Expert Opin Pharmacother 2002; 3(5): 469–77
Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344(8934): 1383–9
Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesteremia. N Engl J Med 1995; 333(20): 1301–7
Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279(20): 1615–22
West Scotland Coronary Prevention Group. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998; 97(15): 1440–5
Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335(14): 1001–9
Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339(19): 1349–57
Ross SD, Allen IE, Connelly JE, et al. Clinical outcomes in statin treatment trials: a meta-analysis. Ann Intern Med 1999: 159(15): 1793–802
LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282(24): 2340–6
Bilheimer DW, Grundy SM, Brown MS, et al. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci U S A 1983; 80(13): 4124–8
Davignon J, Laaksonen R. Low-density lipoprotein-independent effects of statins. Curr Opin Lipidol 1999; 10(6): 543–59
Undas A, Brozek J, Musial J. Anti-inflammatory and antithrombotic effects of statins in the management of coronary artery disease. Clin Lab 2002; 48(5–6): 287–96
Werner N, Nickenig G, Laufs U. Pleiotropic effects of HMGCoA reductase inhibitors. Basic Res Cardiol 2002; 97(2): 105–16
Vasa M, Fichtischerer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103(24): 2885–90
Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105(25): 3017–24
Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet 2000; 356(9242): 1627–31
Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalence of Alzheimer disease associated with 3-hydrox-y-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57(10): 1439–43
Hajjar I, Schumpert J, Hirth V, et al. The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J Gerontol A Biol Sci Med Sci 2002; 57(7): M414–8
Shovman O, Levy Y, Gilburd B, et al. Antiinflammatory and immunomodulatory properties of statins. Immunol Res 2002; 25(3): 271–85
McFarlane SI, Muniyappa R, Francisco R, et al. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 2002; 87(4): 1451–8
Sugiyama M, Kodama T, Konishi K, et al. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 2000; 271(3): 688–92
Woo JT, Kasai S, Stern PH, et al. Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts. J Bone Miner Res 2000; 15(4): 650–62
Maeda T, Matsunuma A, Kawane T, et al. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 2001; 280(3): 874–7
Ohnaka K, Shimoda S, Nawata H, et al. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 2001; 287(2): 337–42
Oxlund H, Dalstra M, Andreassen TT. Statin given perorally to adult rats increases cancellous bone mass and compressive strength. Calcif Tissue Int 2001; 69(5): 299–304
Maritz FJ, Conradie MM, Hulley PA, et al. Effect of statins on bone mineral density and bone histomorphometry in rodents. Arterioscler Thromb Vasc Biol 2001; 21(10): 1636–41
Bjarnason NH, Riis BJ, Christiansen C. The effect of fluvastatin on parameters of bone remodeling. Osteoporos Int 2001; 12(5): 380–4
Stein EA, Farnier M, Waldstreicher J, et al. Effects of statins on biomarkers of bone metabolism: a randomised trial. Nutr Metab Cardiovasc Dis 2001; 11(2): 84–7
Chan MH, Mak TW, Chiu RW, et al. Simvastatin increases serum osteocalcin concentration in patients treated for hypercholesterolaemia. J Clin Endocrinol Metab 2001; 86(9): 4556–9
Sugiyama T, Kawai S. Changes in bone biochemical markers after high-dose cerivastatin treatment in a woman with osteogenesis imperfecta. J Bone Miner Metab 2001; 19(6): 382–4
Edwards CJ, Hart DJ, Spector TD. Oral statins and increased bone-mineral density in postmenopausal women. Lancet 2000: 355(9222): 2218–9
Chung YS, Lee MD, Lee SK, et al. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab 2000; 85(3): 1137–42
Watanabe S, Fukumoto S, Takeuchi Y, et al. Effects of 1-year treatment with fluvastatin or pravastatin on bone. Am J Med 2001; 110(7): 584–7
Funkhouser HL, Adera T, Adler RA. Effect of HMG-CoA reductase inhibitors (statins) on bone mineral density. J Clin Densitom 2002; 5(2): 151–8
Wada Y, Nakamura Y, Koshiyama H. Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes [letter]. Arch Intern Med 2000; 160(18): 2865
Sirola J, Honkanen R, Kroger H, et al. Relation of statin use and bone loss: a prospective population-based cohort study in early postmenopausal women. Osteoporos Int 2002; 13(7): 537–41
Edwards CJ, Russell RG, Spector TD. Statins and bone: myth or reality? Calcif Tissue Int 2001; 69(2): 63–6
Mundy GR. Statins and their potential for osteoporosis. Bone 2001; 29(6): 495–7
Cushenberry LM, Bittner MR. Potential use of HMG-CoA reductase inhibitors for osteoporosis. Ann Pharmacother 2002; 36(4): 671–8
Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. Curr Pharm Des 2001; 7(8): 715–36
Das UN. Nitric oxide as the mediator of the antiosteoporotic actions of estrogens, statins, and essential fatty acids. Exp Biol Med 2002; 227(2): 88–93
Whitfield JF. Statins: new drugs for treating osteoporosis? Expert Opin Investig Drugs 2001; 10(3): 409–15
Garrett IR, Mundy GR. The role of statins as potential targets for bone formation. Arthritis Res 2002; 4(4): 237–40
Edwards CJ, Specter TD. Statins as modulators of bone formation. Arthritis Res 2002; 4(3): 151–3
Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 1998; 13(4): 581–9
Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A 1999; 96(1): 133–8
van Beek E, Pieterman E, Cohen L, et al. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 1999; 264(1): 108–11
Cummings SR, Bauer DC. Do statins prevent both cardiovascular disease and fracture? JAMA 2000; 283(24): 3255–7
Bauer DC, Mundy GR, Jamal SA, et al. Statin use, bone mass and fracture: an analysis of two prospective studies [abstract]. J Bone Miner Res 1999; 14Suppl. 1: S179
van Staa TP, Wegman S, de Vries F, et al. Use of statins and risk of fractures. JAMA 2001; 285(14): 1850–5
Meier CR, Schlienger RG, Kraenzlin ME, et al. Statins and fracture risk. JAMA 2001; 286(6): 669–70
Hennessy S, Strom BL. Statins and fracture risk. JAMA 2001; 285(14): 1888–9
LaCroix AZ, Cauley JA, Jackson R, et al. Does statin use reduce risk of fracture in postmenopausal women? Results from the women’s health initiative study (WHI-OS) [abstract]. J Bone Miner Res 2000; 15Suppl. 1: S155
Pedersen TR, Kjekshus J. Statin drugs and the risk of fracture. 4S Study Group. JAMA 2000; 284(15): 1921–2
Reid IR, Hague W, Emberson J, et al. Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial: Long-term Intervention with Pravastatin in Ischaemic Disease. Lancet 2001; 357(9255): 509–12
Wierzbicki AS, Reynolds TM. Statins and fractures. Lancet 2001; 357(9271): 1887–9
Acknowledgements
Christoph R. Meier is recipient of a grant from the Swiss National Science Foundation (grant number 32-056 751). The Boston Collaborative Drug Surveillance Program is supported in part by grants from AstraZeneca, Bayer AG, Berlex Laboratories, Boehringer Ingelheim Pharmaceuticals, Inc., Boots Healthcare International, Bristol-Myers Squibb Pharmaceutical Research Institute, Glaxo Wellcome Inc., Hoffmann-La Roche Ltd, Janssen Pharmaceutica, L.P., RW Johnson Pharmaceutical Research Institute, McNeil Consumer Products Company, Novartis Farmacéutica, S.A., and Searle. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.
Author information
Authors and Affiliations
Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, CH-4031, Switzerland
Raymond G. Schlienger & Christoph R. Meier
Department of Pharmacy, Institute of Clinical Pharmacy, University of Basel, Basel, Switzerland
Raymond G. Schlienger
Boston Collaborative Drug Surveillance Program, Boston University Medical Center, Lexington, Massachusetts, USA
Christoph R. Meier
- Raymond G. Schlienger
You can also search for this author inPubMed Google Scholar
- Christoph R. Meier
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence to Raymond G. Schlienger.
Rights and permissions
About this article
Cite this article
Schlienger, R.G., Meier, C.R. HMG-CoA Reductase Inhibitors in Osteoporosis.Drugs Aging20, 321–336 (2003). https://doi.org/10.2165/00002512-200320050-00002
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative