Movatterモバイル変換


[0]ホーム

URL:


Sentence Alignment Methods for Improving Text Simplification Systems

Sanja Štajner,Marc Franco-Salvador,Simone Paolo Ponzetto,Paolo Rosso,Heiner Stuckenschmidt


Abstract
We provide several methods for sentence-alignment of texts with different complexity levels. Using the best of them, we sentence-align the Newsela corpora, thus providing large training materials for automatic text simplification (ATS) systems. We show that using this dataset, even the standard phrase-based statistical machine translation models for ATS can outperform the state-of-the-art ATS systems.
Anthology ID:
P17-2016
Volume:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Month:
July
Year:
2017
Address:
Vancouver, Canada
Editors:
Regina Barzilay,Min-Yen Kan
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
97–102
Language:
URL:
https://aclanthology.org/P17-2016/
DOI:
10.18653/v1/P17-2016
Bibkey:
Cite (ACL):
Sanja Štajner, Marc Franco-Salvador, Simone Paolo Ponzetto, Paolo Rosso, and Heiner Stuckenschmidt. 2017.Sentence Alignment Methods for Improving Text Simplification Systems. InProceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 97–102, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
Sentence Alignment Methods for Improving Text Simplification Systems (Štajner et al., ACL 2017)
Copy Citation:
PDF:
https://aclanthology.org/P17-2016.pdf
Video:
 https://aclanthology.org/P17-2016.mp4
Data
Newsela


[8]ページ先頭

©2009-2025 Movatter.jp