- Karthikeyan Rajagopal ORCID:orcid.org/0000-0003-2993-71821,2,
- Atiyeh Bayani3,
- Sajad Jafari3,4,
- Anitha Karthikeyan1 &
- …
- Iqtadar Hussain5
245Accesses
Abstract
The fractional order model of a glucose-insulin regulatory system is derived and presented. It has been extensively proved in the literature that fractional order analysis of complex systems can reveal interesting and unexplored features of the system. In our investigations we have revealed that the glucose-insulin regulatory system shows multistability and antimonotonicity in its fractional order form. To show the effectiveness of fractional order analysis, all numerical investigations like stability of the equilibrium points, Lyapunov exponents, and bifurcation plots are derived. Various biological disorders caused by an unregulated glucose-insulin system are studied in detail. This may help better understand the regulatory system.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Ackerman E, Rosevear JW, McGuckin WF, 1964. A mathematical model of the glucose-tolerance test.Phys Med Biol, 9(2):203–213.https://doi.org/10.1088/0031-9155/9/2/307
Adomian G, 1990. A review of the decomposition method and some recent results for nonlinear equations.Math Comput Model, 13(7):17–43.https://doi.org/10.1016/0895-7177(90)90125-7
Aram Z, Jafari S, Ma J, et al., 2017. Using chaotic artificial neural networks to model memory in the brain.Commun Nonl Sci Numer Simul, 44:449–459.https://doi.org/10.1016/jxnsns.2016.08.025
Baghdadi G, Jafari S, Sprott JS, et al., 2015. A chaotic model of sustaining attention problem in attention deficit disorder.Commun Nonl Sci Numer Simul, 20(1):174–185.https://doi.org/10.1016/jxnsns.2014.05.015
Bajaj JS, Rao GS, Rao JS, et al., 1987. A mathematical model for insulin kinetics and its application to protein-deficient (malnutrition-related) diabetes mellitus (PDDM).J Theor Biol, 126(4):491–503.https://doi.org/10.1016/S0022-5193(87)80154-6
Bao BC, Wu PY, Bao H, et al., 2018. Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator.Chaos Sol Fract, 106:161–170.https://doi.org/10.1016/jxhaos.2017.11.025
Bao H, Wang N, Bao BC, et al., 2018. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria.Commun Nonl Sci Numer Simul, 57:264–275.https://doi.org/10.1016/jxnsns.2017.10.001
Buscarino A, Fortuna L, Frasca M, et al., 2018. Synchronization of chaotic systems with activity-driven time-varying interactions.J Compl Netw, 6(2):173–186.https://doi.org/10.1093/comnet/cnx027
Caponetto R, Dongola G, Fortuna L, et al., 2010. New results on the synthesis of FO-PID controllers.Commun Nonl Sci Numer Simul, 15(4):997–1007.https://doi.org/10.1016/jxnsns.2009.05.040
Charef A, Sun HH, Tsao YY, et al., 1992. Fractal system as represented by singularity function.IEEE Trans Autom Contr, 37(9):1465–1470.https://doi.org/10.1109/9.159595
Chen DY, Liu YX, Ma XY, et al., 2012. Control of a class of fractional-order chaotic systems via sliding mode.Nonl Dynam, 67(1):893–901.https://doi.org/10.1007/s11071-011-0002-x
Chuedoung M, Sarika W, Lenbury Y, 2009. Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays andβ-cells compartment.Nonl Anal Theory Methods Appl, 71(12):e1048–e1058.https://doi.org/10.1016/j.na.2009.01.129
Danca MF, 2015. Lyapunov exponents of a class of piecewise continuous systems of fractional order.Nonl Dynam, 81(1–2):227–237.https://doi.org/10.1007/s11071-015-1984-6
Diethelm K, 1997. An algorithm for the numerical solution of differential equations of fractional order.Electron Trans Numer Anal, 5:1–6.
Diethelm K, 2010. The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin, Germany.https://doi.org/10.1007/978-3-642-14574-2
Diethelm K, Ford NJ, 2002. Analysis of fractional differential equations.J Math Anal Appl, 265(2):229–248.https://doi.org/10.1006/jmaa.2000.7194
Diethelm K, Freed AD, 1999. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Proc Forschung und Wissenschaftliches Rechnen, p.57–71.
Diethelm K, Ford NJ, Freed AD, 2004. Detailed error analysis for a fractional Adams method.Numer Algor, 36(1):31–52.https://doi.org/10.1023/B:NUMA.0000027736.85078.be
Dudkowski D, Jafari S, Kapitaniak T, et al., 2016. Hidden attractors in dynamical systems.Phys Rep, 637:1–50.https://doi.org/10.1016/j.physrep.2016.05.002
Elsadany AEA, El-Metwally HA, Elabbasy EM, et al., 2012. Chaos and bifurcation of a nonlinear discrete prey-predator system.Comput Ecol Softw, 2(3):169–180.
Garrappa R, 2011. Predictor-corrector PECE Method for Fractional Differential Equations. MATLAB Central.
Ginoux JM, Ruskeepää H, Perc M, et al., 2018. Is type 1 diabetes a chaotic phenomenon?Chaos Sol Fract, 111:198–205.https://doi.org/10.1016/j.chaos.2018.03.033
Ginoux JM, Naeck R, Ruhomally YB, et al., 2019. Chaos in a predator-prey-based mathematical model for illicit drug consumption.Appl Math Comput, 347:502–513.https://doi.org/10.1016/j.amc.2018.10.089
Hadaeghi F, Golpayegani MRH, Jafari S, et al., 2016. Toward a complex system understanding of bipolar disorder: a chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder.Aust New Zealand J Psych, 50(8):783–792.https://doi.org/10.1177/0004867416642022
Hansen K, 1923. Oscillations in the blood sugar in fasting normal persons.J Int Med, 57(S4):27–32.https://doi.org/10.1111/j.0954-6820.1923.tb16365.x
Hilborn RC, 2000. Chaos and Nonlinear Dynamics: an Introduction for Scientists and Engineers (2nd Ed.). Oxford University Press, Oxford, USA.
Holt TA, 2003. Nonlinear dynamics and diabetes control.Endocrinologist, 13(6):452–456.https://doi.org/10.1097/01.ten.0000089917.44590.5d
Korn H, Faure P, 2003. Is there chaos in the brain? II. Experimental evidence and related models.Comptes Rendus Biol, 326(9):787–840.https://doi.org/10.1016/jxrvi.2003.09.011
Kroll MH, 1999. Biological variation of glucose and insulin includes a deterministic chaotic component.Biosystems, 50(3):189–201.https://doi.org/10.1016/S0303-2647(99)00007-6
Kumar PRAV, Sreedevi V, 2017. A review on influence of antidiabetic medications on quality of life.Eur J Pharm Med Res, 4(5):276–288.
Lakshmikantham V, Vatsala AS, 2008. Basic theory of fractional differential equations.Nonl Anal Theory Methods Appl, 69(8):2677–2682.https://doi.org/10.1016/j.na.2007.08.042
Lang DA, Matthews DR, Peto J, et al., 1979. Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings.N Engl J Med, 301(19):1023–1027.https://doi.org/10.1056/NEJM197911083011903
Leonov GA, Kuznetsov NV, Vagaitsev VI, 2011. Localization of hidden Chua’s attractors.Phys Lett A, 375(23):2230–2233.https://doi.org/10.1016/j.physleta.2011.04.037
Leonov GA, Kuznetsov NV, Vagaitsev VI, 2012. Hidden attractor in smooth Chua systems.Phys D, 241(18):1482–1486.https://doi.org/10.1016/j.physd.2012.05.016
Leonov GA, Kuznetsov NV, Mokaev TN, 2015a. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity.Commun Nonl Sci Numer Simul, 28(1–3):166–174.https://doi.org/10.1016/j.cnsns.2015.04.007
Leonov GA, Kuznetsov NV, Mokaev TN, 2015b. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion.Eur Phys J Spec Top, 224(8):1421–1458.https://doi.org/10.1140/epjst/e2015-02470-3
Liszka-Hackzell JJ, 1999. Prediction of blood glucose levels in diabetic patients using a hybrid AI technique.Comput Biomed Res, 32(2):132–144.https://doi.org/10.1006/cbmr.1998.1506
Molnar GD, Taylor WF, Langworthy AL, 1972. Plasma immunoreactive insulin patterns in insulin-treated diabetics. Studies during continuous blood glucose monitoring.Mayo Clin Proc, 47(10):709–719.
Petráš I, 2011. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin, Germany.https://doi.org/10.1007/978-3-642-18101-6
Pfeiffer EF, Meyerhoff C, Bischof F, et al., 1993. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis.Horm Metab Res, 25(2):121–124.https://doi.org/10.1055/s-2007-1002057
Pham VT, Frasca M, Caponetto R, et al., 2012. Control and synchronization of fractional-order differential equations of phase-locked loop.Chaot Model Simul, 4:623–631.
Preissl H, Lutzenberger W, Pulvermüller F, 1996. Is there chaos in the brain?Behav Brain Sci, 19(2):307–308.https://doi.org/10.1017/S0140525X00042825
Rajagopal K, Akgul A, Jafari S, et al., 2017a. Chaotic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses.Chaos Sol Fract, 103:476–487.https://doi.org/10.1016/j.chaos.2017.07.007
Rajagopal K, Karthikeyan A, Srinivasan AK, 2017b. FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization.Nonl Dynam, 87(4): 2281–2304.https://doi.org/10.1007/s11071-016-3189-z
Rajagopal K, Karthikeyan A, Duraisamy P, et al., 2019. Bifurcation, chaos and its control in a fractional order power system model with uncertainties.Asian J Contr, 21(1): 184–193.https://doi.org/10.1002/asjc.1826
Rihan FA, Hashish A, Al-Maskari F, et al., 2016. Dynamics of tumor-immune system with fractional-order.J Tumor Res, 2(1):1000109J.
Rocco A, West BJ, 1999. Fractional calculus and the evolution of fractal phenomena.Phys A, 265(3–4):535–546.https://doi.org/10.1016/S0378-4371(98)00550-0
Schiff SJ, Jerger K, Duong DH, et al., 1994. Controlling chaos in the brain.Nature, 370(6491):615–620.https://doi.org/10.1038/370615a0
Shabestari PS, Panahi S, Hatef B, et al., 2018. A new chaotic model for glucose-insulin regulatory system.Chaos Sol Fract, 112:44–51.https://doi.org/10.1016/j.chaos.2018.04.029
Sharma PR, Shrimali MD, Prasad A, et al., 2015a. Control of multistability in hidden attractors.Eur Phys J Spec Top, 224(8):1485–1491.https://doi.org/10.1140/epjst/e2015-02474-y
Sharma PR, Shrimali MD, Prasad A, et al., 2015b. Controlling dynamics of hidden attractors.Int J Bifurc Chaos, 25(4): 1550061.https://doi.org/10.1142/S0218127415500613
Tavazoei MS, Haeri M, 2007. Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems.IET Signal Process, 1(4):171–181.https://doi.org/10.1049/iet-spr:20070053
Tolba MF, AbdelAty AM, Soliman NS, et al., 2017. FPGA implementation of two fractional order chaotic systems.AEU-Int J Electron Commun, 78:162–172.https://doi.org/10.1016/j.aeue.2017.04.028
Tsirimokou G, Psychalinos C, Elwakil AS, et al., 2018. Electronically tunable fully integrated fractional-order resonator.IEEE Trans Circ Syst II, 65(2):166–170.https://doi.org/10.1109/TCSII.2017.2684710
Wolf A, Swift JB, Swinney HL, et al., 1985. Determining Lyapunov exponents from a time series.Phys D, 16(3): 285–317.https://doi.org/10.1016/0167-2789(85)90011-9
Yin C, Zhong SM, Chen WF, 2012. Design of sliding mode controller for a class of fractional-order chaotic systems.Commun Nonl Sci Numer Simul, 17(1):356–366.https://doi.org/10.1016/jxnsns.2011.04.024
Zhao CN, Xue DY, Chen YQ, 2005. A fractional order PID tuning algorithm for a class of fractional order plants. Proc IEEE Int Conf on Mechatronics and Automation, p.216–221.https://doi.org/10.1109/ICMA.2005.1626550
Author information
Authors and Affiliations
Center for Nonlinear Dynamics, Defence University, Bishoftu, 1041, Ethiopia
Karthikeyan Rajagopal & Anitha Karthikeyan
Institute of Energy, Mekelle University, Mekelle, 231, Ethiopia
Karthikeyan Rajagopal
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 159163-4311, Iran
Atiyeh Bayani & Sajad Jafari
Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, 700010, Vietnam
Sajad Jafari
Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar
Iqtadar Hussain
- Karthikeyan Rajagopal
You can also search for this author inPubMed Google Scholar
- Atiyeh Bayani
You can also search for this author inPubMed Google Scholar
- Sajad Jafari
You can also search for this author inPubMed Google Scholar
- Anitha Karthikeyan
You can also search for this author inPubMed Google Scholar
- Iqtadar Hussain
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKarthikeyan Rajagopal.
Ethics declarations
Karthikeyan RAJAGOPAL, Atiyeh BAYANI, Sajad JAFARI, Anitha KARTHIKEYAN, and Iqtadar HUSSAIN declare that they have no conflict of interest.
Additional information
Project supported by the Institute of Research and Development, Defence University, Ethiopia (No. DU/IRD/002)
Rights and permissions
About this article
Cite this article
Rajagopal, K., Bayani, A., Jafari, S.et al. Chaotic dynamics of a fractional order glucose-insulin regulatory system.Front Inform Technol Electron Eng21, 1108–1118 (2020). https://doi.org/10.1631/FITEE.1900104
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative