RNA thermometers are common in α- and γ-proteobacteria
- Torsten Waldminghaus
,Anja Fippinger ,Juliane Alfsmann andFranz Narberhaus
Abstract
Expression of many rhizobial small heat-shock genes is controlled by the ROSE element, a thermoresponsive structure in the 5′-untranslated region of the corresponding mRNAs. Using a bioinformatics approach, we found more than 20 new potential ROSE-like RNA thermometers upstream of small heat-shock genes in a wide variety of α- and γ-proteobacteria. Northern blot analyses revealed heat-inducible transcripts of the representative candidateCaulobacter crescentus CC2258,Escherichia coli ibpA andSalmonella typhimurium ibpA genes. Typical σ32-type promoters were mapped upstream of the potential RNA thermometers by primer extension. Additional translational control was demonstrated in alacZ reporter system and by site-directed mutagenesis. RNA secondary structure predictions strongly suggest that the Shine-Dalgarno sequence in the RNA thermometers is masked at low temperatures. Combining two regulatory modules, a σ32 promoter and a ROSE-type RNA thermometer, provides a novel stringent mechanism to control expression of small heat-shock genes.
References
Allen, S.P., Polazzi, J.O., Gierse, J.K., and Easton, A.M. (1992). Two novel heat shock genes encoding proteins produced in response to heterologous protein expression inEscherichia coli.J. Bacteriol.174,6938–6947.10.1128/jb.174.21.6938-6947.1992Search in Google Scholar
Altuvia, S., Kornitzer, D., Teff, D., and Oppenheim, A.B. (1989). Alternative mRNA structures of thecIII gene of bacteriophage lambda determine the rate of its translation initiation.J. Mol. Biol.210,265–280.10.1016/0022-2836(89)90329-XSearch in Google Scholar
Babst, M., Hennecke, H., and Fischer, H.M. (1996). Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression inBradyrhizobium japonicum.Mol. Microbiol.19,827–839.10.1046/j.1365-2958.1996.438968.xSearch in Google Scholar
Balsiger, S., Ragaz, C., Baron, C., and Narberhaus, F. (2004). Replicon-specific regulation of small heat shock genes inAgrobacterium tumefaciens.J. Bacteriol.186,6824–6829.10.1128/JB.186.20.6824-6829.2004Search in Google Scholar
Chowdhury, S., Ragaz, C., Kreuger, E., and Narberhaus, F. (2003). Temperature-controlled structural alterations of an RNA thermometer.J. Biol. Chem.278,47915–47921.10.1074/jbc.M306874200Search in Google Scholar
Chuang, S.E. and Blattner, F.R. (1993). Characterization of twenty-six new heat shock genes ofEscherichia coli.J. Bacteriol.175,5242–5252.10.1128/jb.175.16.5242-5252.1993Search in Google Scholar
Chuang, S.E., Burland, V., Plunkett, G. III, Daniels, D.L., and Blattner, F.R. (1993). Sequence analysis of four new heat-shock genes constituting thehslTS/ibpAB andhslVU operons inEscherichia coli.Gene134,1–6.10.1016/0378-1119(93)90167-2Search in Google Scholar
El-Samad, H., Kurata, H., Doyle, J.C., Gross, C.A., and Khammash, M. (2005). Surviving heat shock: control strategies for robustness and performance.Proc. Natl. Acad. Sci. USA102,2736–2741.10.1073/pnas.0403510102Search in Google Scholar PubMed PubMed Central
Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.J. Bacteriol.177,4121–4130.10.1128/jb.177.14.4121-4130.1995Search in Google Scholar PubMed PubMed Central
Hapfelmeier, S., Stecher, B., Barthel, M., Kremer, M., Muller, A.J., Heikenwalder, M., Stallmach, T., Hensel, M., Pfeffer, K., Akira, S., and Hardt, W.D. (2005). TheSalmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allowSalmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms.J. Immunol.174,1675–1685.10.4049/jimmunol.174.3.1675Search in Google Scholar PubMed
Hoe, N.P. and Goguen, J.D. (1993). Temperature sensing inYersinia pestis: translation of the LcrF activator protein is thermally regulated.J. Bacteriol.175,7901–7909.10.1128/jb.175.24.7901-7909.1993Search in Google Scholar
Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y., and Schumann, W. (1997). ThednaK operon ofBacillus subtilis is heptacistronic.J. Bacteriol.179,1153–1164.10.1128/jb.179.4.1153-1164.1997Search in Google Scholar
Hurme, R., Berndt, K.D., Normark, S.J., and Rhen, M. (1997). A proteinaceous gene regulatory thermometer inSalmonella.Cell90,55–64.10.1016/S0092-8674(00)80313-XSearch in Google Scholar
Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. (2002). An RNA thermosensor controls expression of virulence genes inListeria monocytogenes.Cell110,551–561.10.1016/S0092-8674(02)00905-4Search in Google Scholar
Mandal, M. and Breaker, R.R. (2004). Gene regulation by riboswitches.Nat. Rev. Mol. Cell. Biol.5,451–463.10.1038/nrm1403Search in Google Scholar
Mathews, D.H., Sabina, J., Zuker, M., and Turner, D.H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.J. Mol. Biol.288,911–940.10.1006/jmbi.1999.2700Search in Google Scholar
Miller, J.H. (1972). Experiments in Molecular Genetics (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar
Minton, N.P. (1984). Improved plasmid vectors for the isolation of translationallac gene fusions.Gene31,269–273.10.1016/0378-1119(84)90220-8Search in Google Scholar
Morita, M., Kanemori, M., Yanagi, H., and Yura, T. (1999a). Heat-induced synthesis of σ32 inEscherichia coli: structural and functional dissection ofrpoH mRNA secondary structure.J. Bacteriol.181,401–410.10.1128/JB.181.2.401-410.1999Search in Google Scholar PubMed PubMed Central
Morita, M.T., Tanaka, Y., Kodama, T.S., Kyogoku, Y., Yanagi, H., and Yura, T. (1999b). Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor.Genes Dev.13,655–665.10.1101/gad.13.6.655Search in Google Scholar PubMed PubMed Central
Münchbach, M., Nocker, A., and Narberhaus, F. (1999). Multiple small heat shock proteins in rhizobia.J. Bacteriol.181,83–90.10.1128/JB.181.1.83-90.1999Search in Google Scholar PubMed PubMed Central
Nagai, H., Yano, R., Erickson, J.W., and Yura, T. (1990). Transcriptional regulation of the heat shock regulatory generpoH inEscherichia coli: involvement of a novel catabolite-sensitive promoter.J. Bacteriol.172,2710–2715.10.1128/jb.172.5.2710-2715.1990Search in Google Scholar
Nakahigashi, K., Yanagi, H., and Yura, T. (1995). Isolation and sequence analysis ofrpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.Nucleic Acids Res.23,4383–4390.Search in Google Scholar
Narberhaus, F. (2002a). mRNA-mediated detection of environmental conditions.Arch. Microbiol.178,404–410.10.1007/s00203-002-0481-8Search in Google Scholar
Narberhaus, F. (2002b). α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network.Microbiol. Mol. Biol. Rev.66,64–93.10.1128/MMBR.66.1.64-93.2002Search in Google Scholar
Narberhaus, F., Käser, R., Nocker, A., and Hennecke, H. (1998). A novel DNA element that controls bacterial heat shock gene expression.Mol. Microbiol.28,315–323.10.1046/j.1365-2958.1998.00794.xSearch in Google Scholar
Narberhaus, F., Waldminghaus, T., and Chowdhury, S. (2006). RNA thermometers. FEMS Microbiol. Rev., in press (doi: 10.1111/j.1574-6976.2005.00004.x).Search in Google Scholar
Nocker, A., Hausherr, T., Balsiger, S., Krstulovic, N.P., Hennecke, H., and Narberhaus, F. (2001a). A mRNA-based thermosensor controls expression of rhizobial heat shock genes.Nucleic Acids Res.29,4800–4807.10.1093/nar/29.23.4800Search in Google Scholar
Nocker, A., Krstulovic, N.P., Perret, X., and Narberhaus, F. (2001b). ROSE elements occur in disparate rhizobia and are functionally interchangeable between species.Arch. Microbiol.176,44–51.10.1007/s002030100294Search in Google Scholar
Norrander, J., Kempe, T., and Messing, J. (1983). Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis.Gene26,101–106.10.1016/0378-1119(83)90040-9Search in Google Scholar
Nudler, E. and Mironov, A.S. (2004). The riboswitch control of bacterial metabolism.Trends Biochem. Sci.29,11–17.10.1016/j.tibs.2003.11.004Search in Google Scholar
Poindexter, J.S. (1964). Biological properties and classification of theCaulobacter group.Bacteriol. Rev.28,231–295.10.1128/br.28.3.231-295.1964Search in Google Scholar
Pridmore, R.D. (1987). New and versatile cloning vectors with kanamycin-resistance marker.Gene56,309–312.10.1016/0378-1119(87)90149-1Search in Google Scholar
Richmond, C.S., Glasner, J.D., Mau, R., Jin, H., and Blattner, F.R. (1999). Genome-wide expression profiling inEscherichia coli K-12.Nucleic Acids Res.27,3821–3835.10.1093/nar/27.19.3821Search in Google Scholar PubMed PubMed Central
Sambrook, J.E., Fritsch, F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar
Stülke, J. and Hillen, W. (2000). Regulation of carbon catabolism inBacillus species.Annu. Rev. Microbiol.54,849–880.10.1146/annurev.micro.54.1.849Search in Google Scholar PubMed
Tews, I., Findeisen, F., Sinning, I., Schultz, A., Schultz, J.E., and Linder, J.U. (2005). The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme.Science308,1020–1023.10.1126/science.1107642Search in Google Scholar PubMed
Winkler, W.C. (2005). Metabolic monitoring by bacterial mRNAs.Arch. Microbiol.183,151–159.10.1007/s00203-005-0758-9Search in Google Scholar PubMed
Yamanaka, K., Mitta, M., and Inouye, M. (1999). Mutation analysis of the 5′ untranslated region of the cold shockcspA mRNA ofEscherichia coli.J. Bacteriol.181,6284–6291.10.1128/JB.181.20.6284-6291.1999Search in Google Scholar PubMed PubMed Central
Yura, T., Kanemori, M., and Morita, M. (2000). The heat shock response: regulation and function. In: Bacterial Stress Responses, R. Hengge-Aronis and G. Storz, eds. (Washington, DC, USA: ASM Press), pp. 3–18.Search in Google Scholar
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res.31,3406–3415.10.1093/nar/gkg595Search in Google Scholar PubMed PubMed Central
©2005 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Highlight: RNA Biochemistry
- microRNA-guided posttranscriptional gene regulation
- How to find small non-coding RNAs in bacteria
- Species-specific antibiotic-ribosome interactions: implications for drug development
- The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties
- Alternative pre-mRNA splicing in the human system: unexpected role of repetitive sequences as regulatory elements
- 6S RNA – an ancient regulator of bacterial RNA polymerase rediscovered
- RNA thermometers are common in α- and γ-proteobacteria
- Inhibition of mRNA deadenylation and degradation by ultraviolet light
- Linear three-iron centres are unlikely cluster degradation intermediates during unfolding of iron-sulfur proteins
- Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II
- Structural properties of substrate proteins determine their proteolysis by the mitochondrial AAA+ protease Pim1
- Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center
- Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease
- Acknowledgement
- Contents Biological Chemistry Volume 386, 2005
- Author Index
- Subject Index
Articles in the same Issue
- Highlight: RNA Biochemistry
- microRNA-guided posttranscriptional gene regulation
- How to find small non-coding RNAs in bacteria
- Species-specific antibiotic-ribosome interactions: implications for drug development
- The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties
- Alternative pre-mRNA splicing in the human system: unexpected role of repetitive sequences as regulatory elements
- 6S RNA – an ancient regulator of bacterial RNA polymerase rediscovered
- RNA thermometers are common in α- and γ-proteobacteria
- Inhibition of mRNA deadenylation and degradation by ultraviolet light
- Linear three-iron centres are unlikely cluster degradation intermediates during unfolding of iron-sulfur proteins
- Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II
- Structural properties of substrate proteins determine their proteolysis by the mitochondrial AAA+ protease Pim1
- Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center
- Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer's disease
- Acknowledgement
- Contents Biological Chemistry Volume 386, 2005
- Author Index
- Subject Index