Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Transgenic Animal Models in Biomedical Research

  • Protocol

Part of the book series:Methods in Molecular Biology™ ((MIMB,volume 360))

Summary

Transgenic animals have become a key tool in functional genomics to generate models for human diseases and validate new drugs. Transgenesis includes the addition of foreign genetic information to animals and specific inhibition of endogenous gene expression. Recently, animal models provided novel insight and significantly improved our understanding of the initiation and perpetuation of human diseases. Moreover, they are an invaluable tool for target discovery, validation, and production of therapeutic proteins. However, despite the generation of several transgenic and knockout models, obtaining relevant models still faces several theoretical and technical challenges. Indeed, genes of interest are not always available and gene addition or inactivation sometimes does not allow clear conclusions because of the intrinsic complexity of living organisms or the redundancy of some metabolic pathways. In addition to homologous recombination, endogenous gene expression can be specifically inhibited using several mechanisms such as RNA interference. Here, some animal models are described to illustrate their importance in biomedical research. Moreover, guidelines for generation of these animals are presented.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Brown, S. D. and Balling, R. (2001) Systematic approaches to mouse mutagenesis.Curr. Opin. Genet. Dev.11, 268–273.

    Article CAS PubMed  Google Scholar 

  2. Houdebine, L. M. (2004) Preparation of recombinant proteins in milk.Methods Mol. Biol.267, 485–494.

    CAS PubMed  Google Scholar 

  3. Houdebine, L. M. and Weill, B. (1999) The impact of transgenesis and cloning on cell and organ xenotransplantation to humans, inFocus on Biotechnology (Van Brockhoven, A., Shapiro, F., and Anne, J., eds.), Kluwer Academic Publishers, pp. 351–361.

    Google Scholar 

  4. Houdebine, L. M. (2002) Transgenesis to improve animal production.Livest. Prod. Sci.74, 255–268.

    Article  Google Scholar 

  5. Houdebine, L. M. (ed.) (1997)Transgenic Animals. Generation and Use. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  6. Pinkert, C. A. (2002)Transgenic Animal Technology. Academic, Orlando, FL.

    Google Scholar 

  7. Schedl, A., Larin, Z., Montoliu, L., et al. (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection.Nucleic Acids Res.21, 4783–4787.

    Article CAS PubMed  Google Scholar 

  8. Hostetler, H. A., Peck, S. L., and Muir, W. M. (2003) High efficiency production of germ-line transgenic Japanese medaka (Oryzias latipes) by electroporation with direct current-shifted radio frequency pulses.Transgenic Res.12, 413–424.

    Article CAS PubMed  Google Scholar 

  9. Dupuy, A. J., Clark, K., Carlson, C. M., et al. (2002) Mammalian germ-line transgenesis by transposition.Proc. Natl. Acad. Sci. USA99, 4495–4499.

    Article CAS PubMed  Google Scholar 

  10. Tamura, T., Thibert, C., Royer, C., et al. (1999) Germiline transformation of the silkwormBombyx mori L. using a piggyBac transposon derived vector.Nat. Biotechnol.18, 81–84.

    Google Scholar 

  11. Mikkelsen, J. G., Yant, S. R., Meuse, L., Huang, Z., Xu, H., and Kay, M. A. (2003) Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expressionin vivo. Mol. Ther.8, 654–665.

    Article CAS PubMed  Google Scholar 

  12. Masuda, K., Yamamoto, S., Endoh, M., and Kaneda, Y. (2004) Transposon-independent increase of transcription by the Sleeping Beauty transposase.Biochem. Biophys. Res. Commun.317, 796–800.

    Article CAS PubMed  Google Scholar 

  13. Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors.Science295, 868–872.

    Article CAS PubMed  Google Scholar 

  14. Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C., and Schatten, G. (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes.Science291, 309–312.

    Article CAS PubMed  Google Scholar 

  15. McGrew, M. J., Sherman, A., Ellard, F. M., et al. (2004) Efficient production of germline transgenic chickens using lentiviral vectors.EMBO Rep.5, 728–733.

    Article CAS PubMed  Google Scholar 

  16. Hofmann, A., Kessler, B., Ewerling, S., et al. (2003) Efficient transgenesis in farm animals by lentiviral vectors.EMBO Rep.4, 1054–1060.

    Article CAS PubMed  Google Scholar 

  17. Whitelaw, C. B. A. (2004) Transgenic livestock made easy.Trends Biotechnol.22, 157–159.

    Article CAS PubMed  Google Scholar 

  18. Hofmann, A., Zakhartchenko, V., Weppert, M., et al. (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes.Biol. Reprod.71, 405–409.

    Article CAS PubMed  Google Scholar 

  19. Fassler, R. (2004) Lentiviral transgene vectors.EMBO Rep.5, 28–29.

    Article PubMed CAS  Google Scholar 

  20. Pfeifer, A., Hofmann, A., Kessler, B., and Wolf, E. (2004) Response to Whitelaw: Lentiviral transgenesis in livestock.Trends Biotechnol.22, 159–160.

    Article CAS  Google Scholar 

  21. Wolfgang, M. J., Eisele, S. G., Browne, M. A., et al. (2001) Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos.Proc. Natl. Acad. Sci. USA98, 10,728–10,732.

    Article CAS PubMed  Google Scholar 

  22. Sanchez, O., Toledo, J. R., Rodriguez, M. P., and Castro, F. O. (2004) Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats.J. Biotechnol.114, 89–97.

    Article CAS PubMed  Google Scholar 

  23. Lipps, H. J., Jenke, A. C., Nehlsen, K., Scinteie, M. F., Stehle, I. M., and Bode, J. (2003) Chromosome-based vectors for gene therapy.Gene304, 23–33.

    Article CAS PubMed  Google Scholar 

  24. Lindenbaum, M., Perkins, E., Csonka, E., et al. (2004) A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy.Nucleic Acids Res.32, e172.

    Article PubMed CAS  Google Scholar 

  25. Kuroiwa, Y., Kasinathan, P., Choi, Y. J., et al. (2002) Cloned transchromosomic calves producing human immunoglobulin.Nat. Biotechnol.20, 889–894.

    Article CAS PubMed  Google Scholar 

  26. Lavitrano, M., Bacci, M. L., Forni, M., et al. (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation.Proc. Natl. Acad. Sci. USA99, 14,230–14,235.

    Article CAS PubMed  Google Scholar 

  27. Lavitrano, M., Forni, M., Bacci, M. L., et al. (2003) Sperm mediated gene transfer in pig: Selection of donor boars and optimization of DNA uptake.Mol. Reprod. Dev.64, 284–291.

    Article CAS PubMed  Google Scholar 

  28. Wang, H. J., Lin, A. X., Zhang, Z. C., and Chen, Y. F. (2001) Expression of porcine growth hormone gene in transgenic rabbits as reported by green fluorescent protein.Anim. Biotechnol.12, 101–110.

    Article CAS PubMed  Google Scholar 

  29. Wang, K. (2003) Improving sperm mediated transgenesis: linker based sperm gene transfer: application to multiple species with a high success rate, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.

    Google Scholar 

  30. Marsh-Armstrong, N., Huang, H., Berry, D. L., and Brown, D. D. (1999) Germline transmission of transgenes inXenopus laevis. Proc. Natl. Acad. Sci. USA96, 14,389–14,393.

    Article CAS PubMed  Google Scholar 

  31. Kato, M., Ishikawa, A., Kaneko, R., Yagi, T., Hochi, S., and Hirabayashi, M. (2004) Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA: a preli Carl A. Pinkert Ed. (Ed.)minary study.Mol. Reprod. Dev.69, 153–158.

    Article CAS PubMed  Google Scholar 

  32. Moreira, P. N., Giraldo, P., Cozar, P., et al. (2004) Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection.Biol. Reprod.71, 1943–1947.

    Article CAS PubMed  Google Scholar 

  33. Chan, A. W., Luetjens, C. M., Dominko, T., et al. (2000) Transgene ICSI reviewed: Foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey.Mol. Reprod. Dev.56, 325–328.

    Article CAS PubMed  Google Scholar 

  34. Thermes, V., Grabher, C., Ristoratore, F., et al. (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish.Mech. Dev.118, 91–98.

    Article CAS PubMed  Google Scholar 

  35. Chang, K., Qian, J., Jiang, M., et al. (2002) Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.BMC Biotechnol.2, 5.

    Article PubMed  Google Scholar 

  36. Wang, K. (2003) Improving sperm mediated transgenesis: linker based sperm gene transfer: application to multiple species with a high success rate, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.

    Google Scholar 

  37. Celebi, C., Auvray, P., Benvegnu, T., Plusquellec, D., Jegou, B., and Guillaudeux, T. (2002) Transient transmission of a transgene in mouse offspring followingin vivo transfection of male germ cells.Mol. Reprod. Dev.62, 477–482.

    Article CAS PubMed  Google Scholar 

  38. Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003) Germ cell transplantation in goats.Mol. Reprod. Dev.64, 422–428.

    Article CAS PubMed  Google Scholar 

  39. Readhead, C., Jarvis, S., Morgan, D., and Winston, R. (2003) Male germ cells: manipulating their genome, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.

    Google Scholar 

  40. Oatley, J. M., de Avila, D. M., Reeves, J. J., and McLean, D. J. (2004) Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue.Biol. Reprod.71, 494–501.

    Article CAS PubMed  Google Scholar 

  41. Schnieke, A. E., Kind, A. J., Ritchie, W. A., et al. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Science278, 2130–2133.

    Article CAS PubMed  Google Scholar 

  42. Cibelli, J. B., Stice, S. L., Golueke, P. J., et al. (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells.Nat. Biotechnol.16, 642–646.

    Article CAS PubMed  Google Scholar 

  43. Capecchi, M. R. (1989) Altering the genome by homologous recombination.Science244, 1288–1292.

    Article CAS PubMed  Google Scholar 

  44. Cohen-Tannoudji, M., Robine, S., Choulika, A., et al. (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells.Mol. Cell Biol.18, 1444–1448.

    CAS PubMed  Google Scholar 

  45. Epinat, J. C., Arnould, S., Chames, P., et al. (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells.Nucleic Acids Res.31, 2952–2962.

    Article CAS PubMed  Google Scholar 

  46. Farhadi, H. F., Lepage, P., Forghani, R., et al. (2003) A combinatorial network of evolutionarily conserved myelin basic protein regulatory sequences confers distinct glial-specific phenotypes.J. Neurosci.23, 10,214–10,223.

    CAS PubMed  Google Scholar 

  47. Bode, J., Schlake, T., Iber, M., et al. (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes.Biol. Chem.381, 801–813.

    Article CAS PubMed  Google Scholar 

  48. Baer, A. and Bode, J. (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes.Curr. Opi. Biotechnol.12, 473–480.

    Article CAS  Google Scholar 

  49. Houdebine, L. M. (2003)Animal Trangenesis and Cloning. Wiley, Chichester, U.K.

    Book  Google Scholar 

  50. West, A. G., Gaszner, M., and Felsenfeld, G. (2002) Insulators; many functions, many mechanisms.Genes Dev.16, 271–288.

    Article PubMed CAS  Google Scholar 

  51. Bell, A. C., West, A. G., and Felsenfeld, G. (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome.Science291, 447–450.

    Article CAS PubMed  Google Scholar 

  52. De Laat, W. and Grosveld, F. (2003) Spatial organization of gene expression: the active chromatin hub.Chromosome Res.11, 447–459.

    Article PubMed  Google Scholar 

  53. Taboit-Dameron, F., Malassagne, B., Viglietta, C., et al. (1999) Association of the 5′HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits.Transgenic Res.8, 223–235.

    Article CAS PubMed  Google Scholar 

  54. Rival-Gervier, S., Viglietta, C., Maeder, C., Attal, J., and Houdebine, L. M. (2002) Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice.Mol. Reprod. Dev.63, 161–167.

    Article CAS PubMed  Google Scholar 

  55. Giraldo, P., Rival-Gervier, S., Houdebine, L. M., and Montoliu, L. (2003) The potential benefits of insulators on heterologous constructs in transgenic animals.Transgenic Res.12, 751–755.

    Article CAS PubMed  Google Scholar 

  56. Zhang, Y., Muyrers, J. P., Testa, G., and Stewart, A. F. (2000) DNA cloning by homologous recombination inEscherichia coli. Nat. Biotechnol.18, 1314–1317.

    Article CAS PubMed  Google Scholar 

  57. Houdebine, L., Attal, J., and Vilotte, J. L. (2002) Vector design for transgene expression, inTransgenic Animal Technology, 2nd ed., Pinkert, C. A. (ed.), pp. 419–458.

    Google Scholar 

  58. Cohen-Tannoudji, M., Vandormael-Pournin, S., Drezen, J., Mercier, P., Babinet, C., and Morello, D. (2000) lacZ sequences prevent regulated expression of housekeeping genes.Mech. Dev.90, 29–39.

    Article CAS PubMed  Google Scholar 

  59. Whitelaw, E. and Martin, D. I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals.Nat. Genet.27, 361–365.

    Article CAS PubMed  Google Scholar 

  60. Kwaks, T. H., Sewalt, R. G., van Blokland, R., et al. (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.J. Biotechnol.115, 35–46.

    Article CAS PubMed  Google Scholar 

  61. Houdebine, L. M. and Attal, J. (1999) Internal ribosome entry sites (IRESs): reality and use.Transgenic Res.8, 157–177.

    Article CAS PubMed  Google Scholar 

  62. Mattick, J. S. and Makunin, I. V. (2005) Small regulatory RNAs in mammals.Hum. Mol. Genet.14 (Special no. R), 121–132.

    Article CAS  Google Scholar 

  63. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans. Nature391, 806–811.

    Article CAS PubMed  Google Scholar 

  64. Novina, C. D. and Sharp, P. A. (2004) The RNAi revolution.Nature430, 161–164.

    Article CAS PubMed  Google Scholar 

  65. Unwalla, H. J., Li, M. J., Kim, J. D., Li, et al. (2004) Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA.Nat. Biotechnol.22, 1573–1578.

    Article CAS PubMed  Google Scholar 

  66. Shinagawa, T. and Ishii, S. (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter.Genes Dev.17, 1340–1345.

    Article CAS PubMed  Google Scholar 

  67. Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002) siRNA-mediated gene silencingin vitro andin vivo. Nat. Biotechnol.20, 1006–1010.

    Article CAS PubMed  Google Scholar 

  68. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells.Proc. Natl. Acad. Sci. USA101, 1927–1932.

    Article CAS PubMed  Google Scholar 

  69. Sen, G., Wehrman, T. S., Myers, J. W., and Blau, H. M. (2004) Restriction enzyme-generated siRNA (REGS) vectors and libraries.Nat. Genet.36, 183–189.

    Article CAS PubMed  Google Scholar 

  70. Shirane, D., Sugao, K., Namiki, S., Tanabe, M., Iino, M., and Hirose, K. (2004) Enzymatic production of RNAi libraries from cDNAs.Nat. Genet.36, 190–196.

    Article CAS PubMed  Google Scholar 

  71. Hohjoh, H. (2004) Enhancement of RNAi activity by improved siRNA duplexes.FEBS Lett.557, 193–198.

    Article CAS PubMed  Google Scholar 

  72. Mittal, V. (2004) Improving the efficiency of RNA interference in mammals.Nat. Rev. Genet.5, 355–365.

    Article CAS PubMed  Google Scholar 

  73. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference.Nat. Biotechnol.22, 326–330.

    Article CAS PubMed  Google Scholar 

  74. Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference.Nucleic Acids Res.32, 936–948.

    Article CAS PubMed  Google Scholar 

  75. Yoshinari, K., Miyagishi, M., and Taira, K. (2004) Effects on RNAi of the tight structure, sequence and position of the targeted region.Nucleic Acids Res.32, 691–699.

    Article CAS PubMed  Google Scholar 

  76. Williams, B. R. (2005) Dicing with siRNA.Nat. Biotechnol.23, 181–182.

    Article CAS PubMed  Google Scholar 

  77. Chalk, A. M., Wahlestedt, C., and Sonnhammer, E. L. (2004) Improved and automated prediction of effective siRNA.Biochem. Biophys. Res. Commun319, 264–274.

    Article CAS PubMed  Google Scholar 

  78. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex.Cell115, 199–208.

    Article CAS PubMed  Google Scholar 

  79. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias.Cell115, 209–216.

    Article CAS PubMed  Google Scholar 

  80. Kim, D. H., Behlke, M. A., Rose, S. D., Chang, M. S., Choi, S., and Rossi, J. J. (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy.Nat. Biotechnol.23, 222–226.

    Article CAS PubMed  Google Scholar 

  81. Siolas, D., Lerner, C., Burchard, J., et al. (2005) Synthetic sh RNA as potent RNAi triggers.Nat. Biotechnol.23, 227–231.

    Article CAS PubMed  Google Scholar 

  82. Luo, K. Q. and Chang, D. C. (2004) The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region.Biochem. Biophys. Res. Commun.318, 303–310.

    Article CAS PubMed  Google Scholar 

  83. Snove, O., Jr., and Holen, T. (2004) Many commonly used siRNAs risk off-target activity.Biochem. Biophys. Res. Commun.319, 256–263.

    Article CAS PubMed  Google Scholar 

  84. Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., and Maclachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.Nat. Biotechnol.23, 457–462.

    Article CAS PubMed  Google Scholar 

  85. Yelin, R., Dahary, D., Sorek, R., et al. (2003) Widespread occurrence of antisense transcription in the human genome.Nat. Biotechnol.21, 379–386.

    Article CAS PubMed  Google Scholar 

  86. Carmichael, G. G. (2003) Antisense starts making more sense.Nat. Biotechnol.21, 371–372.

    Article CAS PubMed  Google Scholar 

  87. Ying, S. Y. and Lin, S. L. (2004) Intron-derived microRNAs—fine tuning of gene functions.Gene342, 25–28.

    Article CAS PubMed  Google Scholar 

  88. Ying, S. Y. and Lin, S. L. (2005) Intronic microRNAs.Biochem. Biophys. Res. Commun326, 515–520.

    Article CAS PubMed  Google Scholar 

  89. Kawasaki, H. and Taira, K. (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells.Nature431, 211–217.

    Article CAS PubMed  Google Scholar 

  90. Morris, K. V., Chan, S. W., Jacobsen, S. E., and Looney, D. J. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells.Science305, 1289–1292.

    Article CAS PubMed  Google Scholar 

  91. Zeng, Y., Yi, R., and Cullen, B. R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.Proc. Natl. Acad. Sci. USA100, 9779–9784.

    Article CAS PubMed  Google Scholar 

  92. He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation.Nat. Rev. Genet.5, 522–531.

    Article CAS PubMed  Google Scholar 

  93. Xie, X., Lu, J., Kulbokas, E. J., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals.Nature434, 338–345.

    Article CAS PubMed  Google Scholar 

  94. Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II.EMBO J.23, 4051–4060.

    Article CAS PubMed  Google Scholar 

  95. Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for micro RNA processing and function in human cells.RNA9, 112–123.

    Article CAS PubMed  Google Scholar 

  96. Ecclestin, A. and Eggleston, A. K. (2004) RNA interference.Nature431, 337–378.

    Article CAS  Google Scholar 

  97. Clayton, J. (2004) RNA interference: the silent treatment.Nature431, 599–605.

    Article PubMed CAS  Google Scholar 

  98. Müller, M. (2000) Increasing disease resistance in transgenic domestic, inMolecular Farming (Toutant, J. P. and Balazs, E., eds.), INRA Editions, Paris, pp. 87–98.

    Google Scholar 

  99. Jones, S. D. and Marasco, W. A. (1997) Intracellular antibodies (intrabodies): potential applications in transgenic animal research and engineered resistance to pathogens, inTransgenic Animal Generation and Use (Houdebine, L. M., ed.), Harwood Academic Publishers, Amsterdam, pp. 501–506.

    Google Scholar 

  100. Chang, P. Y., Benecke, H., Le Marchand-Brustel, Y., Lawitts, J., and Moller, D. E. (1994) Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice.J. Biol. Chem.269, 16,034–16,040.

    CAS PubMed  Google Scholar 

  101. Ono, E., Amagai, K., Taharaguchi, S., et al. (2004) Transgenic mice expressing a soluble form of porcine nectin-1/herpesvirus entry mediator C as a model for pseudorabies-resistant livestock.Proc. Natl. Acad. Sci. USA101, 16,150–16,155.

    Article CAS PubMed  Google Scholar 

  102. Chen, Y. T., Levasseur, R., Vaishnav, S., Karsenty, G., and Bradley, A. (2004) Bigenic Cre/loxP, puDeltatk conditional genetic ablation.Nucleic Acids Res.32, e161.

    Article PubMed CAS  Google Scholar 

  103. Saito, M., Iwawaki, T., Taya, C., et al. (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice.Nat. Biotechnol.19, 746–750.

    Article CAS PubMed  Google Scholar 

  104. Jiang, W., Zhou, L., Breyer, B., et al. (2001) Tetracycline-regulated gene expression mediated by a novel chimeric repressor that recruits histone deacetylases in mammalian cells.J. Biol. Chem.276, 45,168–45,174.

    Article CAS PubMed  Google Scholar 

  105. Weber, W. and Fussenegger, M. (2004) Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering.Curr. Opin. Biotechnol.15, 383–391.

    Article CAS PubMed  Google Scholar 

  106. Boutonnet, C., Boijoux, O., Bernat, S., et al. (2004) Pharmacological-based translational induction of transgene expression in mammalian cells.EMBO Rep.5, 721–727.

    Article CAS PubMed  Google Scholar 

  107. Cecconi, F. and Meyer, B. I. (2000) Gene trap: a way to identify novel genes and unravel their biological function.FEBS Lett.480, 63–71.

    Article CAS PubMed  Google Scholar 

  108. Jackson, I. J. (2001) Mouse mutagenesis on target.Nat. Genet.28, 198–200.

    Article CAS PubMed  Google Scholar 

  109. Medico, E., Gambarotta, G., Gentile, A., Comoglio, P. M., and Soriano, P. (2001) A gene trap vector system for identifying transcriptionally responsive genes.Nat. Biotechnol.19, 579–582.

    Article CAS PubMed  Google Scholar 

  110. Mitchell, K. J., Pinson, K. I., Kelly, O. G., et al. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development.Nat. Genet.28, 241–249.

    Article CAS PubMed  Google Scholar 

  111. Goodwin, N. C., Ishida, Y., Hartford, S., et al. (2001) DelBank: a mouse ES-cell resource for generating deletions.Nat. Genet.28, 310–311.

    Article CAS PubMed  Google Scholar 

  112. Houdebine, L. M. (2002) Antibody manufacture in transgenic animals and comparisons with other systems.Curr. Opin. Biotechnol.13, 625–629.

    Article CAS PubMed  Google Scholar 

  113. Houdebine, L. M. and Weill, B. (1999) The impact of transgenesis and cloning on cell and organ xenotransplantation to humans, inFocus on Biotechnology (Van Brockhoven, A., Shapiro, F., and Anne, J., eds.), Kluwer Academic Publishers, pp. 351–361.

    Google Scholar 

  114. Lai, L., Kolber-Simonds, D., Park, K. W., et al. (2002) Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science295, 1089–1092.

    Article CAS PubMed  Google Scholar 

  115. Dai, Y., Vaught, T. D., Boone, J., et al. (2002) Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs.Nat. Biotechnol.20, 251–255.

    Article CAS PubMed  Google Scholar 

  116. Switzer, W. M., Michler, R. E., Shanmugam, V., et al. (2001) Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues, or organs.Transplantation71, 959–965.

    Article CAS PubMed  Google Scholar 

  117. Oldmixon, B. A., Wood, J. C., Ericsson, T. A., et al. (2002) Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine.J. Virol.76, 3045–3048.

    Article CAS PubMed  Google Scholar 

  118. Chan, F., Bradley, A., Wensel, T. G., and Wilson, J. H. (2004) Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy.Proc. Natl. Acad. Sci. USA101, 9109–9114.

    Article CAS PubMed  Google Scholar 

  119. Boulanger, L., Mallet, S., Chense, P., et al. (2002) Advantages and limits of using the ubiquitous expressed EF1alpha promoter for transgenesisin vivo andin vitro in rabbit.Transgenic Res.11, 88.

    Google Scholar 

  120. al Gubarg, K. and Houdebine, L. M. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibered confocal fluorescience microscopy.Eur. J. Cell Biol., in press.

    Google Scholar 

  121. Devgan, V., Rao, M. R., and Seshagiri, P. B. (2004) Impact of embryonic expression of enhanced green fluorescent protein on early mouse development.Biochem. Biophys. Res. Commun.313, 1030–1036.

    Article CAS PubMed  Google Scholar 

  122. Pailhoux, E., Vigier, B., Chaffaux, S., et al. (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats.Nat. Genet.29, 453–458.

    Article CAS PubMed  Google Scholar 

  123. Vaiman, D. (2003) Sexy transgenes: the impact of gene transfer and gene inactivation technologies on the understanding of mammalian sex determination.Transgenic Res.12, 255–269.

    Article CAS PubMed  Google Scholar 

  124. Shillingford, J. M. and Henneighausen, L. (2001) Experimental mouse genetics-answering fundamental questions about mamary gland biology.Trends Endocrinol Metab12, 402–408.

    Article CAS PubMed  Google Scholar 

  125. Kong, J. and Xu, Z. (2000) Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis.Neurosci Lett.281, 72–74.

    Article CAS PubMed  Google Scholar 

  126. Moll, J., Barzaghi, P., Lin, S., et al. (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy.Nature413, 302–307.

    Article CAS PubMed  Google Scholar 

  127. Esler, W. P. and Wolfe, M. S. (2001) A portrait of Alzheimer secretases—new features and familiar faces.Science293, 1449–1454.

    Article CAS PubMed  Google Scholar 

  128. Lewis, J., Dickson, D. W., Lin, W. L., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP.Science293, 1487–1491.

    Article CAS PubMed  Google Scholar 

  129. Chapman, P. F., Falinska, A. M., Knevett, S. G., and Ramsay, M. F. (2001) Genes, models and Alzheimer’s disease.Trends Genet.17, 254–261.

    Article CAS PubMed  Google Scholar 

  130. Moore, R. C. and Melton, D. W. (1997) Transgenic analysis of prion diseases. Mol. Hum. Reprod.3, 529–544.

    Article CAS PubMed  Google Scholar 

  131. Prusiner, S. B., Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology.Cell93, 337–348.

    Article CAS PubMed  Google Scholar 

  132. Scott, M. R., Will, R., Ironside, J., et al. (1999) Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans.Proc. Natl. Acad. Sci. USA96, 15,137–15,142.

    Article CAS PubMed  Google Scholar 

  133. Raeber, A. J., Race, R. E., Brandner, S., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie.EMBO J.16, 6057–6065.

    Article CAS PubMed  Google Scholar 

  134. Scott, M. R., Safar, J., Telling, G., et al. (1997) Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice.Proc. Natl. Acad. Sci. USA94, 14,279–14,284.

    Article CAS PubMed  Google Scholar 

  135. Manolakou, K., Beaton, J., McConnell, I., et al. (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice.Proc. Natl. Acad. Sci. USA98, 7402–7407.

    Article CAS PubMed  Google Scholar 

  136. Vilette, D., Andreoletti, O., Archer, F., et al. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein.Proc. Natl. Acad. Sci. USA98, 4055–4059.

    Article CAS PubMed  Google Scholar 

  137. Betarbet, R., Sherer, T. B., and Greenamyre, J. T. (2002) Animal models of Parkinson’s disease.Bioessays24, 308–318.

    Article CAS PubMed  Google Scholar 

  138. Rubinsztein, D. C. (2002) Lessons from animal models of Huntington’s disease.Trends Genet.18, 202–209.

    Article CAS PubMed  Google Scholar 

  139. Ranger, A. M., Malynn, B. A., and Korsmeyer, S. J. (2001) Mouse models of cell death.Nat. Genet.28, 113–118.

    Article CAS PubMed  Google Scholar 

  140. De Boer, J., Andressoo, J. O., De Wit, J., et al. (2002) Premature aging in mice deficient in DNA repair and transcription.Science296, 1276–1279.

    Article PubMed  Google Scholar 

  141. Miller, M. W. and Rubin, E. M. (1997) Transgenic animals in atherosclerosis research, inTransgenic Animal and Generation and Use (L. M. Houdebine, ed.), Harwood Academic Publishers, Amsterdam, pp. 445–448.

    Google Scholar 

  142. Fan, J. and Watanabe, T. (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models.Pharmacol. Ther.99, 261–282.

    Article CAS PubMed  Google Scholar 

  143. Siegel, P. M., Hardy, W. R., and Muller, W. J. (2000) Mammary gland neoplasia: insights from transgenic mouse models.Bioessays22, 554–563.

    Article CAS PubMed  Google Scholar 

  144. Bartek, J. and Lukas, J. (2001) Are all cancer genes equal?Nature411, 1001–1002.

    Article CAS PubMed  Google Scholar 

  145. Yu, Q., Geng, Y., and Sicinski, P. (2001) Specific protection against breast cancers by cyclin D1 ablation.Nature411, 1017–1021.

    Article CAS PubMed  Google Scholar 

  146. Schwertfeger, K. L., Richert, M. M., and Anderson, S. M. (2001) Mammary gland involution is delayed by activated Akt in transgenic mice.Mol. Endocrinol.15, 867–881.

    Article CAS PubMed  Google Scholar 

  147. Berns, A. (2001) Cancer. Improved mouse models.Nature410, 1043–1044.

    Article CAS PubMed  Google Scholar 

  148. Johnson, L., Mercer, K., Greenbaum, D., et al. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.Nature410, 1111–1116.

    Article CAS PubMed  Google Scholar 

  149. Lecuit, M., Vandormael-Pournin, S., Lefort, J., et al. (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier.Science292, 1722–1725.

    Article CAS PubMed  Google Scholar 

  150. Oldstone, M. B., Lewicki, H., Thomas, D., et al. (1999) Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease.Cell98, 629–640.

    Article CAS PubMed  Google Scholar 

  151. Ren, R. B., Costantini, F., Gorgacz, E. J., Lee, J. J., and Racaniello, V. R. (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis.Cell63, 353–362.

    Article CAS PubMed  Google Scholar 

  152. Fausto, N. (2001) A mouse model for hepatitis C virus infection?Nat. Med.7, 890–891.

    Article CAS PubMed  Google Scholar 

  153. Dunn, C. S., Mehtali, M., Houdebine, L. M., Gut, J. P., Kirn, A., and Aubertin, A. M. (1995) Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits.J. Gene. Virol.76, 1327–1336.

    Article CAS  Google Scholar 

  154. Cohen, J. (2001) Building a small-animal model for AIDS, block by block.Science293, 1034–1036.

    Article CAS PubMed  Google Scholar 

  155. Reid, W., Sadowska, M., Denaro, F., et al. (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction.Proc. Natl. Acad. Sci. USA98, 9271–9276.

    Article CAS PubMed  Google Scholar 

  156. Carvallo, G., Canard, G., and Tucker, D. (1997) Standardization of transgenic lines: from founder to an established animal model, inTransgenic Animal Generation and Use (Houdebine, L. M., ed.), Harwood Academic Publishers, Amsterdam, pp. 403–410.

    Google Scholar 

  157. Auerbach, A. B., Norinsky, R., Ho, W., et al. (2003) Strain-dependent differences in the efficiency of transgenic mouse production.Transgenic Res.12, 59–69.

    Article CAS PubMed  Google Scholar 

  158. Abbott, A. (2004) Geneticists prepare for deluge of mutant mice.Nature432, 541.

    Article CAS PubMed  Google Scholar 

  159. Valenzuela, D. M., Murphy, A. J., Frendewey, D., et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis.Nat. Biotechnol.21, 652–659.

    Article CAS PubMed  Google Scholar 

  160. Kuroiwa, Y., Kasinathan, P., Matsushita, H., et al. (2004) Sequential targeting of the genes encoding immunoglobulin-micro and prion protein in cattle.Nat. Genet.36, 671–672.

    Article CAS  Google Scholar 

  161. Zhou, Q., Renard, J. P., Le Friec, G., et al. (2003) Generation of fertile cloned rats by regulating oocyte activation.Science302, 1179.

    Article CAS PubMed  Google Scholar 

  162. Chesne, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells.Nat. Biotechnol.20, 366–369.

    Article CAS PubMed  Google Scholar 

  163. Kwaks, T. H., Barnett, P., Hemrika, W., et al. (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells.Nat. Biotechnol.21, 553–558.

    Article CAS PubMed  Google Scholar 

  164. Szathmary, E., Jordan, F., and Pal, C. (2001) Molecular biology and evolution. Can genes explain biological complexity?Science292, 1315–1316.

    Article CAS PubMed  Google Scholar 

  165. Liggett, S. B. (2004) Genetically modified mouse models for pharmacogenomic research.Nat. Rev. Genet.5, 657–663.

    Article CAS PubMed  Google Scholar 

  166. Lee, D. and Threadgill, D. W. (2004) Investigating gene function using mouse models.Curr. Opin. Genet. Dev.14, 246–252.

    Article PubMed CAS  Google Scholar 

  167. Kues, W. A. and Niemann, H. (2004) The contribution of farm animals to human health.Trends Biotechnol.22, 286–294.

    Article CAS PubMed  Google Scholar 

  168. Moore, A. (2001) Of mice and Mendel. The predicted rise in the use of knock-out and transgenic mice should cause us to reflect on our justification for the use of animals in research.EMBO Rep.2, 554–558.

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgment

I thank Annie Paglino for her help in the preparation of the manuscript.

Author information

Authors and Affiliations

  1. Biologie du Developpement et Reproduction, Institut National de la Recherche Agronomique, Paris, France

    Louis-Marie Houdebine

Authors
  1. Louis-Marie Houdebine

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway

    Mouldy Sioud

Rights and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Houdebine, LM. (2007). Transgenic Animal Models in Biomedical Research. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 360. Humana Press. https://doi.org/10.1385/1-59745-165-7:163

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp