Loading metrics
Open Access
Peer-reviewed
Research Article
Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in theDrosophila melanogaster Neurofibromatosis-1 Growth Deficiency
- James A. Walker,
Affiliations Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
⨯ - Jean Y. Gouzi,
Current address: Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre “Alexander Fleming,” Vari, Greece.
Affiliation Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America
⨯ - Jennifer B. Long,
Affiliation Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
⨯ - Sidong Huang,
Current address: Department of Biochemistry, McIntyre Medical Building, Montreal, Quebec, Canada.
Affiliation Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
⨯ - Robert C. Maher,
Affiliation Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America
⨯ - Hongjing Xia,
Affiliation Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America
⨯ - Kheyal Khalil,
Affiliation Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America
⨯ - Arjun Ray,
Affiliation Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America
⨯ - David Van Vactor,
Affiliation Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
⨯ - René Bernards,
Affiliation Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
⨯ - André Bernards
* E-mail:abernards@helix.mgh.harvard.edu
Current address: Department of Biochemistry, McIntyre Medical Building, Montreal, Quebec, Canada.
Affiliations Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts, United States of America, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
⨯
Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in theDrosophila melanogaster Neurofibromatosis-1 Growth Deficiency
- James A. Walker,
- Jean Y. Gouzi,
- Jennifer B. Long,
- Sidong Huang,
- Robert C. Maher,
- Hongjing Xia,
- Kheyal Khalil,
- Arjun Ray,
- David Van Vactor,
- René Bernards
- Published: November 21, 2013
- https://doi.org/10.1371/journal.pgen.1003958
Figures
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. AmongDrosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and otherdNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whetherdNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of thedNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicateddAlk tyrosine kinase, its activating ligandjelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in thedNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show thatdAlk,jeb andCCKLR-17D1 are among mutants that also suppress a recently identifieddNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore thedNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that humanALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man.
Author Summary
Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserveddNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss ofdNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of thedNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to thedNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Citation:Walker JA, Gouzi JY, Long JB, Huang S, Maher RC, Xia H, et al. (2013) Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in theDrosophila melanogaster Neurofibromatosis-1 Growth Deficiency. PLoS Genet 9(11): e1003958. https://doi.org/10.1371/journal.pgen.1003958
Editor:Gregory P. Copenhaver, The University of North Carolina at Chapel Hill, United States of America
Received:December 7, 2012;Accepted:October 1, 2013;Published: November 21, 2013
Copyright: © 2013 Walker et al. This is an open-access article distributed under the terms of theCreative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding:JAW, RCM, HX, KK, AR and AB were supported by NIH/NGMS grant 1-R01 GM084220. AB also received support from an anonymous donor. JYG was supported by Young Investigator Award from the Children's Tumor Foundation. SH and RB were supported by Dutch cancer society grant NKI 2009-4496. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
Introduction
RASopathies, caused by mutations that activate Ras/ERK signaling, are a group of related disorders with features that include facial dysmorphism, skeletal, skin and cardiac defects, cognitive deficits, reduced growth and an increased cancer risk[1]. Neurofibromatosis type 1 (NF1; OMIM 162200), caused by loss of a RasGAP, and Noonan syndrome, caused by mutations that alter Ras/ERK pathway proteins SOS1, KRAS, NRAS, RAF1, BRAF, CBL, PTPN11, or SHOC2, are the most common members of this group, affecting 1 in 3,000, or as many as 1 in 1,000 live births, respectively[2],[3]. The genetics of these disorders provides a strong argument that excess Ras/ERK signaling underlies common RASopathy symptoms, and much effort remains focused on attenuating Ras/ERK signaling as a strategy for therapeutic intervention. However, whether life-long pharmacological inhibition of Ras/ERK signaling is a viable strategy to treat the full range of often non-life-threatening, but nonetheless serious symptoms of these chronic disorders, remains an open question. This motivates our work to better understand the molecular and cellular pathways responsible for NF1 symptom development, in the hope this will identify more specific therapeutic targets.
We have been interested in usingDrosophila melanogaster as a model to investigate NF1 functionsin vivo, following our identification of a conserveddNf1 ortholog predicting a protein that is 60% identical to human neurofibromin over its entire 2802 amino acid length[4]. Like human neurofibromin, the Drosophila protein functions as a GAP for conventional (dRas1) and R-Ras-like (dRas2) GTPases[4],[5]. This functional conservation made it all the more surprising when both initially identifieddNf1 homozygous null mutant phenotypes, a postembryonic growth deficiency and a neuropeptide-elicited NMJ electrophysiological defect, appeared insensitive to genetic manipulations that attenuate Ras signaling strength, but were suppressed by increasing signaling through the cAMP-dependent PKA pathway[4],[6]. The genetic link betweendNf1 and cAMP/PKA led to further studies, which demonstrated that similar to many children with NF1[7], andNf1+/− mice[8],dNf1−/− flies exhibit specific learning and memory deficits[9]. Biochemical studies with fly brain extracts further revealed that loss ofdNf1 is associated with reduced GTP-γS-stimulated but not basal adenylyl cyclase (AC) activity[9], and with defects in both classical and unconventional AC pathways[10]. Arguing that the cAMP related function of NF1 is evolutionary conserved, GTP-γS-stimulated AC activity and cAMP levels were also reduced in E12.5Nf1−/− mouse brain[11], and defects in cAMP generation appear to explain the unique sensitivity toNf1 heterozygosity of murine central nervous system neurons[12]. Arguing that NF1 may regulate cAMP signaling at least in part in a cell autonomous manner, reduced cAMP levels and AC activity were also found inNF1 deficient human astrocytes[13]. Thus, while there is little doubt that aberrant AC signaling is an evolutionary conservedNF1 phenotype, we and others have reached conflicting conclusions about the underlying mechanism.
Based on Drosophila phenotypic rescue studies with humanNF1 transgenes, others reported that neurofibromin has physically separable functions as a negative regulator of Ras and a positive mediator of AC/PKA signaling. This conclusion followed from findings that NF1-GAP activity was not required to rescuedNf1 size[10] or learning[14] phenotypes, whereas a transgene encoding a C-terminal part of human neurofibromin that did not include the GAP catalytic domain did suppress both defects. In obvious conflict, in similar experiments withdNf1 transgenes, we found that neuronal expression of a functional NF1-GAP catalytic segment was necessary and sufficient to suppress the systemic growth defect, and that other protein segments had no effect. Moreover, thedNf1 growth defect was also suppressed by neuronal expression of the Drosophila p120RasGAP ortholog, and although we extended earlier findings by showing that heterozygous loss ofdRas1 ordRas2, or of a comprehensive set of Ras effector proteins did not modify the growth defect, these mutations also did not reduce the elevated phospho-ERK level in thedNf1 central nervous system (CNS). However, some Ras/ERK pathway double mutants did suppress both defects, leading us to conclude that excess neuronal Ras/ERK signaling is the proximal cause of the non-cell-autonomousdNf1 growth defect[5]. Further supporting this notion, recent work implicated the neuronaldAlk tyrosine kinase receptor and its activating ligandjelly belly (jeb) as rate-limiting activators ofdNf1 regulated Ras/ERK pathways responsible for both systemic growth and olfactory learning defects[15].
The above evidence underlies our hypothesis that loss ofdNf1 increases neuronal dAlk/Ras/ERK activity, which in turn causes reduced cAMP/PKA signaling, which may or may not be cell-autonomous. Obviously, identifying additional components ofdNf1-regulated growth controlling pathways followed by functional analysis might help to test this hypothesis. Here we report results of adNf1 growth deficiency modifier screen, which identified components of tyrosine kinase/Ras/ERK and neuropeptide/cAMP/PKA pathways in addition to genes involved in synaptic morphogenesis and functioning. Further analysis showed that the requirement fordNf1 and cAMP/PKA in Drosophila growth regulation involves different tissues, withdNf1 required broadly in larval neurons, and cAMP/PKA signaling specifically in AKH-producing cells and perhaps in other parts of the neuroendocrine ring gland. These results, and the recent discovery of a noveldNf1 synaptic overgrowth phenotype[16] that is also suppressed by several genes identified in our screen, set the stage for further work to more precisely define how loss ofdNf1 causes Ras/ERK and other signaling defects, the ultimate consequence of which is reduced systemic growth.
Results
Loss ofdNf1 Does Not Phenocopy Starvation or Alter Developmental Timing
Animals use elaborate hormonal mechanisms to coordinate nutrient availability and feeding with changes in metabolism and overall growth. Since starvation or crowding during the larval phase of the Drosophila life cycle reduces systemic growth[17], we first examined whether the small size ofdNf1 mutants reflected reduced feeding. Arguing against this hypothesis, wild-type anddNf1 larvae ingested similar amounts of dye-stained food throughout their development (Figure 1A). Unlike apumpless (ppl) mutant[18],dNf1 larvae also showed no tendency to move away from a food source (Figure 1B). Analysis of the expression of the starvation-induciblePepck andLip3 genes[18] provided further evidence that loss ofdNf1 does not phenocopy starvation (Figure 1C).
(A) Wild-type (w1118) anddNf1 larvae ingest similar amounts of food. Larvae at different stages of development were photographed after 25 minutes of feeding on dye-colored yeast paste. (B) As opposed toppl mutants, wild-type anddNf1 larvae do not wander from a food source (fraction of wandering larvae: WT 3.5% (SD 0.007),dNf1 2.5% (SD 0.007) andppl 65% (SD 0.057)). In a similar assay,dNf1 larvae also showed no abnormality in moving towards a food source (not shown). (C) RNA blot analysis of the starvation-sensitive genes, PEPCK andLip3 shows thatdNf1 larvae do not show elevated levels of either mRNA under normal feeding conditions. (D) Wild-type anddNf1 larvae show no significant differences in developmental timing, as assessed by time of pupariation after egg deposition (AED). (E) ThedNf1 growth rate, as assessed by larval weight, is reduced throughout larval development when compared to wild-type or aRas2>UAS-dNf1 control. (F) Two hypomorphic insulin receptor alleles,InR05545 andInR327, do not modifydNf1 pupal size. (G) ILP mRNA expression is not obviously reduced indNf1 larvae. H)dNf1 adult flies show no altered longevity compared to wild-type controls. (I) Over-expression ofIlp2 from ahs-Ilp2 transgene indNf1 larvae results in a similar increase in size as in wild-type flies.
Mechanisms that control Drosophila growth have been the topic of intense study and much has been learned about how an interplay between insulin-like peptide (ILP) controlled growth rate and ecdysone controlled growth duration determines overall growth (see[19] and[20] for reviews). Arguing against an important role for ecdysone or other factors that control the length of the larval growth period, no differences in the expression of canonical ecdysone-regulated genes was found (results not shown) and no difference in developmental timing between wild-type anddNf1 mutants was detected (Figure 1D andS1). Rather, a reduced growth rate throughout larval development results in an approximately 25% weight reduction ofdNf1 pupae relative to isogenic controls (Figure 1E andS1).
Drosophila ILPs control systemic growth, metabolism, longevity, and female fecundity[21]–[24]. Among the eight Drosophila ILP genes,Ilp2,Ilp3 andIlp5 are co-expressed in bilateral clusters of seven insulin-producing neurosecretory cells (IPCs) in the larval brain[21]. Ablation of these cells causes a severe reduction in overall size, which is rescued by inducing the expression of ahsp70-Ilp2 transgene[22],[23]. However, several results argue against a role for ILPs in thedNf1 growth defect. Firstly, two hypomorphic insulin receptor alleles,InR05545 andInR327, did not affectdNf1 pupal size (Figure 1F). Secondly, qRT-PCR analysis of RNA extracted from wandering wild-type anddNf1 third instar larvae detected no major differences in the expression ofIlp1 (not shown),Ilp2,Ilp3,Ilp5,Ilp6 andIlp7 in fed larvae. Among the three IPC expressed ILP genes, the expression ofIlp3 andIlp5 is reduced in response to starvation[21]. Starved wild-type anddNf1 larvae showed a similar reduction inIlp5 expression, whereasIlp3 showed a less pronounced response (Figure 1G). Thirdly, while certain insulin receptor or insulin receptor substrate (chico) mutants have an up to 85% increased life span[25],[26], the lifespan ofdNf1 mutants and isogenic controls was comparable (Figure 1H). We note that others previously reported a reduced life span for the originally identifieddNf1 p-element alleles, generated in a different genetic background[27]. Finally, we previously showed thatIlp2-GAL4 drivenUAS-dNf1 expression in IPCs did not rescue thedNf1 size defect[5]. Although daily heat shocking ofhsp70-ilp2 carrying larvae increased the size ofdNf1 pupae, indicating that mutants do not lack the ability to respond to insulin, similar induction of this transgene, as previously noted[21], also substantially increased the size of wild-type controls (Figure 1I). Thus, reduced insulin signaling does not provide an obvious explanation for the slowerdNf1 growth rate, prompting us to perform a screen to identify other genes involved indNf1-mediated systemic growth control.
Screen for Dominant Modifiers ofdNf1 Systemic Growth Phenotype
While mostdNf1 defects are poorly suited for use in modifier screens, the postembryonic growth defect is robust and readily quantified during the pupal stage[4]. However, using this phenotype in a screen is complicated by the fact that organismal size is sexually dimorphic (females are larger than males) and affected by population density, feeding, environmental factors and genetic background differences. With these confounding factors in mind, we used the crossing schemes outlined inFigure 2 to test collections of isogenic 1st and 2nd chromosome deficiencies fordNf1E2 pupal size modifier effects or synthetic lethal interactions. For each of 139 1st and 347 2nd chromosome deficiencies from the Exelixis[28], DrosDel[29] or Bloomington Stock Center (BSC) collections, we generatedDf(1)/+; Nf1E2/Nf1E2 (Figure 2A) orDf(2)/+; Nf1E2/Nf1E2 (Figure 2B) stocks, respectively. Notably, our work identified only few synthetic lethal interactions, and in all cases tested the synthetic lethality has been specific to the chromosome carrying theNf1E2 allele, and not observed when the same deficiency was tested inNf1E2/Nf1E1 null trans-heterozygotes[5]. To guard against size differences caused by inadvertent differences in population density or environmental conditions, each deficiency was scored at least twice using an initial rough caliper measurement of pupae attached to the side of culture vials. For each candidate modifying deficiency thus identified, microscopy combined with image analysis was used to determine the precise head-to-tail length of at least 40 pupae, which were then allowed to individually eclose in order to establish their sex. Several controls were next performed to eliminate non-specific modifiers or artifactual results. First, for all suppressors the continued presence of theNf1E2 nonsense mutation was confirmed by a PCR assay (Figure S2). Secondly, as a critical specificity control, all modifying deficiencies were analyzed in a wild-type background to eliminate those that affect pupal size irrespective ofdNf1 genotype. Further analysis of some of these non-specific modifiers demonstrated that loss ofAct57B dominantly increases pupal size, whereas heterozygous loss of the glutamate transporterEaat1 has the opposite effect. Thirdly, because pupal size is a function of larval growth rate and duration, modifying deficiencies were monitored for obvious changes in developmental timing.Table 1 shows the number of screened chromosome 1, 2L and 2R deficiencies, the fraction of genes uncovered and the number ofdNf1 and wild-type pupal size modifying deficiencies and loci identified.Figure 2C shows the magnitude of the pupal size modification of typical enhancers and suppressors. The number of modifying deficiencies exceeds the number of identified loci, because many modifying deficiencies uncover overlapping genomic segments (Figure 3). Not unexpectedly, individual modifying deficiencies increase or decreasedNf1 pupal size to different extents (Figure 4).
Isogenic 1st and 2nd chromosomes deficiencies from the Exelixis, DrosDel and Bloomington Stock Center collections were tested for their ability to alterdNf1 female pupal size. Crossing schemes to generateDf(1)/+; dNf1E2 (A) andDf(2)/CyO; dNf1E2 (B) screening stocks. Thetubby-markedTM6B 3rd chromosome balancer allowed the selection ofdNf1E2 homozygotes for measurements. (C) Examples of deficiencies that suppress or enhance thedNf1 size defect. Scale bar = 1 mm.
Locations of modifying deficiencies (drawn to scale) on the 1st and 2nd (2L and 2R) chromosomes. Deficiencies that enhance or suppress are shown in red and green, respectively. Non-specific deficiencies that dominantly affect the size of wild-type pupae are in blue. Many modifying deficiencies uncover overlapping genomic segments.
Female pupal lengths for the indicated 1, 2L and 2R deficiencies. Control measurements fordNf1E2 and wild-type (w1118) are in black. Colors for enhancing, suppressing and non-specific deficiencies are as inFigure 2. Pupal lengths are shown in mm, error bars denote standard deviations and are based on measurements described inTable S2. All shown deficiencies modifydNf1 female pupal size withp-values<0.01.
Some large non-modifying deficiencies identified in our screen completely overlapped with smaller modifying ones. In such cases, stocks were re-ordered and reanalyzed. If these tests replicated the original results, genetic complementation analysis or PCR amplification using transposon and flanking sequence-specific primers was used to confirm the mapping of the deficiencies in question. This procedure identified several mismapped or mislabeled deficiencies, most of which have since been withdrawn by stock centers. Any suspect or recessive modifying deficiency, or any deficiency that uncovers genes with non-specific size phenotypes, such asMinute loci[30],[31], were eliminated from further analysis.Table S1 lists these deficiencies and the reason for their exclusion.
During work to identify genes responsible for observed effects, we prioritized genes uncovered by suppressing deficiencies over those uncovered by enhancers. We also prioritized modifying loci uncovered by more than one deficiency, strong modifiers over weak ones, and genes uncovered by smaller deficiencies over those uncovered by larger ones, reasoning that effects of smaller deficiencies are more likely due to the loss of single genes. Validating the screen, suppressingDf(2R)Exel7144 uncoversdAlk and partially overlapping suppressingDf(2R)BSC199 andDf(2R)BSC699 each uncover the gene for its activating ligand,jeb, both previously identified as dominant suppressors ofdNf1 size, learning, and neuronal ERK over-activation phenotypes[15]. Other uncovered candidate modifiers, such as PKA catalytic and regulatory subunit genes, were tested in crosses with loss-of-function alleles and/or by tissue-specific knockdown using at least two independent UAS-RNAi transgenes, most of which were obtained from the Vienna Drosophila Stock Center (VDRC)[32]. For deficiencies that lacked obvious candidate modifiers, we used the UAS-RNAi approach to more broadly screen uncovered genes.Figure S3 shows examples of modifiers identified by this latter approach. Although the nutrient sensing fat body and other tissues outside of the CNS play important roles in Drosophila growth control[33],[34], candidate modifiers have only been tested by RNAi knockdown in neurons or glial cells. We focused on these cell types, because neuronalUAS-dNf1 expression sufficed to suppress the growth phenotype[5].
ThedNf1 pupal size modifiers identified to date can be classified into three non-exclusive categories, the first of which consists of the previously implicateddAlk/jeb receptor/ligand pair and two not previously implicated other genes involved in Ras-mediated signal transduction. Another expected category includes genes involved in cAMP/PKA signaling, including the previously reporteddnc cAMP phosphodiesterase suppressor[35], and the newly identified PKA catalytic subunit gene,PKA-C1, which acts as an enhancer. This group also includes theCCKLR-17D1 drosulfakinin receptor, recently implicated as a cAMP-coupled promoter of synaptic growth[36], which is particularly interesting given the recent identification of adNf1 larval NMJ overgrowth phenotype[16]. Finally, our screen also identified multiple genes whose roles indNf1 growth control had not been anticipated and whose functional relevance remains to be established. Several genes in this group are predominantly expressed in brain or have known neuronal functions, including genes coding for the aforementioned CCKLR-17D1 receptor, the synaptic scaffold protein Dap160, the neuronal RNA binding protein elav, the neuronal Na,K ATPase interacting protein NKAIN[37], and the larval brain and alimentary channel expressed amino acid transporter NAAT1[38]. Other genes in this group includeCKIIbeta2, encoding a casein kinase regulatory subunit, the endosomal trafficking proteinsdeep-orange andcarnation, theNotch modifier heparan sulfate 3-O sulfotransferaseHs3st-B[39], and the ubiquitin E3 ligasesHERC2,which acts as a suppressor, and CUL3, which has the opposite effect.Table 2 lists deficiencies that modifydNf1 but not wild-type pupal size, limited to those for which the responsible gene has been identified.Table S2 identifies all analyzed deficiencies, indicates which modifieddNf1 pupal size (providing female pupal sizes as a gauge of modification strength), which also altered wild-type pupal size, and which deficiencies altered developmental timing.
dNf1 Pupal Size Modifiers Involved in Jeb/dAlk/Ras/ERK Signaling
We previously reported that thedAlk receptor tyrosine kinase[40] acts as a rate-limiting activator of neuronal Ras/ERK pathways responsible fordNf1 size and learning defects[15]. Therefore, the fact that thedAlk andjeb genes are uncovered by one and two suppressing deficiencies, respectively (Table 2), validates our screen. Others recently reported that Jeb/dAlk signaling allows brain growth to be spared at the expense of other tissues in nutrient restricted Drosophila, and identified a glial cell niche around neuroblasts as the source of Jeb under these conditions[41]. To determine whether glial cells also produce Jeb involved in overall growth control under normal conditions, we used glial and neuronal Gal4 drivers to test the effect of tissue-specificjeb anddAlk knockdown. Arguing that neurons are the main source of Jeb involved in systemic growth control under non-starvation conditions,jeb knockdown with theRas2-Gal4, C23-Gal4, and n-syb-Gal4 neuronal drivers[5] increaseddNf1E2 pupal size (Figure 5A), whereas theNrv2-Gal4, Eaat1-Gal4 and Gli-Gal4 glial drivers had no effect (data not shown). The only glial driver that gave rise to partial rescue was the pan-glialrepo-Gal4 line, although this effect was not enhanced by co-expressingUAS-Dcr2. Control experiments showed that any driver used in these and other experiments had no effect on pupal size in the absence of UAS transgenes or vice-versa, that UAS transgenes had no effect in the absence of Gal4 drivers (Figure 5A and data not shown). Finally, extending previous findings and further confirming a role forjeb as a dominantdNf1 size defect suppressor, thejebweli loss-of-function allele[42] dominantly increaseddNf1 pupal size (Figure 5B)
(A) Neuronal expression ofdAlk RNAi usingRas2-Gal4,Ras2-Gal4+UAS-Dcr-2,c23-Gal4 orn-syb-Gal4 drivers suppresses thedNf1 size defect. Expression ofjeb RNAi with the same neuronal drivers also suppresses. Weaker suppression is observed whenjeb RNAi expression is controlled by the pan-glialrepo-Gal4 driver. Dark grey bars are control measurements of Gal4 drivers in thedNf1 background. Light grey bars are sizes of wild-type (w1118) anddNf1E2 controls. (B) Suppression of thedNf1 size defect by the indicatedjeb,cnk,Dsor1 andamx alleles. (C) Neuronalcnk,Dsor1 oramx knockdown suppressed thedNf1 size defect. In the case ofDsor1 v107276 andamx, cultures were maintained at 18°C to prevent lethality observed at 25°C. Some RNAi transgene/driver combinations were lethal (†) even at 18°C. (D) Validation ofdnc andPka-C1 asdNf1 modifiers was obtained in crosses withdncM14,dncML,Pka-C16353 andPka-C1BG02142 loss-of-function alleles. In this and subsequent figures, * and ** denotep-values<0.05 and <0.01, respectively.
Previously, heterozygous mutations affecting RAF/MEK/ERK kinase cascade componentsDraf (pole hole;phl),Dsor1/dMEK, or ERK/rolled (rl), did not modifydNf1 size[5]. In agreement, twophl-uncovering deficiencies,Df(1)ED6574 andDf(1)ED11354, did not score as modifiers (Table S2). Norl uncovering deficiencies were analyzed, butDf(1)Exel9049, which is among the stronger suppressors identified, deletesDsor1 and only two other genes, the neurogenic genealmondex (amx), andCG17754, predicting a BTB and Kelch domain protein. Arguing that reduced Ras/ERK signaling upon loss ofDsor1 combined with abnormal neuronal differentiation due to loss ofamx may synergistically cause the observed strong effect,Ras2-Gal4 driven UAS-RNAi transgenes targeting either gene, while causing pupal lethality at 25°C, increaseddNf1 pupal size at lower temperatures (Figure 5C). Moreover, suppression of thedNf1 pupal size defect was also observed upon individual heterozygous loss of eitherDsor1 oramx, although at least with the tested alleles, combined loss of both genes did not have a more pronounced effect (Figure 5B). Previously, we did not observe suppression of thedNf1E2 pupal size defect in crosses with theDsor1S-1221 allele[5]. A potential explanation may be thatDsor1LH110 is a null mutant[43], whereas the molecular nature ofDsor1S-1221 is undetermined. Genetic background differences between theseDsor1 alleles are another potential explanation for the discrepant results.
Multiple screens aimed at identifying genes involved in Drosophila tyrosine kinase/Ras signaling have been performed[44]–[52]. Among the genes identified, several are uncovered by 1st and 2nd chromosome deficiencies that do not modifydNf1 size. SuppressingDf(2R)BSC161 uncovers 27 genes including connector enhancer of KSR (cnk), a scaffold protein that functions as a bimodal (both positive and negative) regulator of RAS/MAPK signaling[53],[54]. Supporting a role forcnk as adNf1 modifier, thecnkXE-385 andcnkE-2083 alleles acted as dominant suppressors (Figure 5B), and suppression was also observed upon RNAi-mediated Cnk knockdown usingRas2-Gal4 orP(GawB)C23-Gal4 neuronal drivers (Figure 5C). However,Df(2R)BSC154, which uncoverscnk and only nine other genes, did not score as a modifier (Table S2).
dNf1 Size Modifiers Involved in cAMP/PKA Signaling
ThedNf1 growth defect is suppressed by heat shock-induced expression of a constitutively active murine PKA catalytic subunit transgene, called PKA*[4], or by loss of thedunce (dnc) cAMP phosphodiesterase[35]. Further validating our screen, twodnc uncovering deficiencies and another that removes the region immediately upstream of thednc coding region, all scored as suppressors (Table 2). Moreover, thePka-R2 gene, encoding a cAMP binding regulatory PKA subunit, whose dissociation from the catalytic subunit activates the latter, is uncovered by two additional suppressing deficiencies, whereas a deficiency that uncovers the majorPka-C1 catalytic subunit gene scored as an enhancer (Table 2).Df(1)ED7261, which uncovers therutabaga (rut) adenylyl cyclase, did not score as a modifier (not shown). Confirmation ofdnc andPka-C1 as the genes responsible for the observed effects was obtained in crosses with threednc and threePka-C1 loss-of-function alleles (Table 2).Pka-R2 remains an attractive candidate suppressor, but expressionPka-R2RNAi transgenes in neurons had no effect and its role as adNf1 modifier remains unconfirmed (results not shown).
NoveldNf1 Modifiers
Recently, the cAMP-coupled CCKLR-17D1 drosulfakinin receptor, but not its closely related CCKLR-17D3 paralog, was identified as a positive regulator of synaptic growth[36]. TheCCKLR-17D1 gene is uncovered by three suppressing deficiencies, includingDf(1)Exel9051, which uncovers only three other genes. The closely linkedCCKLR-17D3 paralog is not uncovered byDf(1)Exel9051, and whileRas2-Gal4 orP(GawB)C23-Gal4 driven neuronalCCKLR-17D1 RNAi expression strongly suppressed thedNf1 pupal size defect, similar suppression ofCCKLR-17D3 had no effect (Figure 6A).
(A)Ras2-Gal4 orC23-Gal4 driven neuronal RNAi knockdown ofCCKLR-17D1 but notCCKLR-17D3 suppressed thedNf1 pupal size defect. (B) Identification of dynamin-associated protein 160 (Dap160) as a suppressor ofdNf1 growth. Neuronal RNAi targeting ofDap160 increaseddNf1 pupal size as did twoDap160 loss-of-function alleles. (C) Twoelav alleles dominantly suppress thedNf1 size defect. (D) Neuronal expression of a Rab9 RNAi transgene or of a dominant negative Rab9 mutant suppresses thedNf1 size defect.
BeyondCCKLR-17D1, severaldNf1 size modifiers are expressed in brain and/or have neuronal functions. Among these, dynamin-associated protein 160 (Dap160) is an intersectin-related scaffold implicated in synaptic vesicle exocytosis and neuroblast proliferation[55]–[58].Dap160 is uncovered by suppressing deficienciesDf(2L)Exel6047 andDf(2L)BSC302, whose region of overlap encompasses ten genes. We note thatDf(2L)Exel6047 also uncovers the DrosophilaRet tyrosine kinase gene, the human ortholog of which is the receptor for glial-derived neurotrophic factor.Ret initially appeared an especially attractive candidate suppressor, because activatingRET and inactivatingNF1 mutations can both lead to human pheochromocytoma[59], and because DrosophilaRet is expressed in larval brain neurons that resemble neuroendocrine cells[60]. However, among multiple lines of evidence that argue against a role forRet in thedNf1 growth defect,UAS-dNf1 re-expression directed by a newly generatedRet-Gal4 driver that recapitulates the endogenous larval brain Ret expression pattern (Figure S4B), or RNAi-mediated Ret inhibition, did not modifydNf1 pupal size, nor did expression of aUAS-Ret K805A kinase dead transgene. Moreover,Ret-Gal4 driven expression ofUAS-Ret transgenes carrying the activating C695R mutation, which mimics a mutation found in multiple endocrine neoplasia type 2 did not phenocopy thedNf1 reduced growth phenotype, although the same transgene did produce the previously described rough eye phenotype when driven byGMR-Gal4[60];Figure S4C]. Further arguing against a role indNf1 growth control,Ret is uncovered by non-modifyingDf(2L)BSC312. By contrast,Dap160 loss-of-function alleles (Dap160Δ1 and Dap160Δ2;[56]), orDap160 RNAi expression driven by three neuronal Gal4 drivers, suppressed thedNf1 pupal size defect, identifying it as the responsible modifier (Figure 6B).
The gene for the neuronal RNA binding protein elav is uncovered by suppressingDf(1)Exel6221 andDf(1)ED6396 whose region of overlap includes just three other genes. Identifyingelav as the responsible modifier,elav1 andelavG0031 alleles strongly suppressed (Figure 6C).Rab9 is a modifier uncovered by suppressing deficiencyDf(2L)Exel8041. Neuronal but not glialRab9RNAi expression increasesdNf1 pupal size, and the same result is seen upon neuronal expression of a Rab9 dominant negative[61] mutant (Figure 6D).
NAAT1, coding for a larval gut and brain expressed amino acid transporter with a unique affinity for D-amino acids[38], is uncovered by suppressingDf(1)Exel6290 andDf(1)BSC533 whose region of overlap includes only four other genes. IdentifyingNAAT1 as the responsible suppressor, three neuronal Gal4 lines driving the expression of threeNAAT1 targeting RNAi transgenes suppressed thedNf1 size defect, whereasRepo-Gal4 driven glial expression had no effect (Figure 7A andTable 2).
(A) Validation ofNAAT1,HERC2 andHs3st-B asdNf1 modifiers. All three genes were identified by systematic RNAi screening of genes uncovered by suppressing deficiencies. (B) Loss-of-function alleles of Class C Vacuolar Protein Sorting complex subunitscarnation (car/Vps33A) anddeep-orange (dor/Vps18) increasedNf1 pupal size. C) RNAi-mediated neuronalcar ordor knockdown was not particularly effective, suggesting these genes may function elsewhere to modifydNf1-dependent growth.
Mammalian E3 ubiquitin ligase HERC2 controls the ubiquitin-dependent assembly of DNA repair proteins on damaged chromosomes[62]. DrosophilaHERC2 is uncovered by suppressing deficiencyDf(1)Exel6254, which also uncovers thesyx16, coding for syntaxin 16. NoHERC2 alleles exist, butRas2-Gal4 driven expression of aUAS-HERC2RNAi transgene (v105374) strongly suppressed thedNf1 pupal size defect (Figure 7A), whereas similar knockdown ofSyx16 had no statistically significant effect (not shown). The gene for another E3 ligase component,Cul-3, is uncovered by three enhancing deficiencies, and aCul-3 loss-of-function allele orRas2-Gal4 driven expression of aCul-3 RNAi transgene both enhanced thedNf1 size defect, identifying it as the responsible gene (Table 2).
SuppressingDf(1)Exel9068 uncovers only four genes, including one encoding the TORC2 complex subunit Rictor. However, systematicRas2-Gal4 driven RNAi knockdown ofDf(1)Exel9068 uncovered genes identifiedHs3st-B, encoding one of two Drosophila heparan sulfate 3-O sulfotransferases, as a potentdNf1 size defect suppressor (Figure 7A), whereas knockdown of Rictor had no effect (not shown). Others previously identifiedHs3st-B as a positive regulator of Notch signaling[39]. However, the heparan sulfate proteoglycan substrates ofHs3st-B bind various growth factors and other ligands and have been implicated in a variety of biological processes. Exactly why loss ofHs3st-B suppresses thedNf1 growth defect remains to be determined.
Two functionally relateddNf1 growth defect suppressorscarnation (car/Vps33A) anddeep-orange (dor/Vps18), encode subunits of the Class C Vacuolar Protein Sorting (VPS) complex, required for the delivery of endosomal vesicles to lysosomes[63];Figure 7B]. TheVps16A gene encodes a third member of this complex[64], but whetherVps16A located on the 3rd chromosome also acts as adNf1 suppressor, or whether pharmacological inhibition of lysosomal degradation affectsdNf1 pupal size are questions that remain to be answered.
B4/Susi is a coiled-coil protein without obvious orthologs outside of insects. It functions as a negative regulator of Drosophila class I phosphatidylinositol-3 kinase Pi3K92E/Dp110 by binding to its Pi3K21B/dP60 regulatory subunit. HomozygousB4 mutants have an increased body size[65], which may explain whyRas2-Gal4-driven RNAi-mediated suppression ofB4, uncovered by suppressing deficiencyDf(2L)BSC147, increaseddNf1 pupal size (not shown). However, whetherB4 is the responsible dominant modifier is doubtful, given that it is also uncovered byDf(2L)BSC692, a non-modifying deficiency. Moreover, we previously found that heterozygous loss ofPi3K21B, or neuronal expression of a dominant negativePi3K92E transgene, did not modifydNf1 pupal size[5]. BeyondB4,dNf1 size modifying deficiencies uncovered no genes involved in the canonical growth regulating pathways mediated by insulin and ecdysone. Indeed, several such genes were uncovered by non-modifying deficiencies. Among these genes, fat body expressed insulin-like growth factorIlp6, which regulates larval growth in the post-feeding phase[66],[67], is uncovered by two non-modifying deficiencies. A single non-modifying deficiency,Df(2L)BSC206, uncovers both thechico andpten genes, whose products antagonistically control insulin-stimulated Pi3K92E/Dp110 activity, leading to changes in body, organ, and cell size[68],[69]. Among subunits of the cell growth regulating mTORC1 complex,raptor is uncovered by three andTor by one non-modifying deficiency. Among genes implicated in ecdysone signaling, the ecdysone co-receptorultraspiracle and the ecdysone-induced growth regulatingDHR4 nuclear receptor[70] are each uncovered by non-modifying deficiencies, and two such deficiencies uncoverPtth, coding for prothoracicotropic hormone, which provides developmental timing cues by stimulating the production of ecdysone[71],[72]. These results reinforce our conclusion that the canonical growth regulating pathways involving insulin and ecdysone play no obvious roles indNf1 growth control.
Manipulating cAMP/PKA Signaling in the Ring Gland AffectsdNf1 Systemic Growth Non-Cell-Autonomously
Several results argue that defects in Ras/ERK and cAMP/PKA signaling responsible for thedNf1 growth defect involve non-overlapping cell populations. Firstly, heat shock-inducedhsp70-PKA*, orRas2-Gal4 induced attenuatedUAS-PKA* transgene (see below) expression rescued thedNf1 pupal size defect, but failed to reduce the elevated larval brain phospho-ERK level (Figure 8A). Moreover, several neuronal RNAi drivers that increasedNf1 pupal size when drivingUAS-dNf1[5], failed to modify this phenotype when drivingdncRNAi transgenes, even in the presence of theUAS-Dcr-2 RNAi enhancer (Table 3). This prompted us to investigate whether genetic manipulation of cAMP/PKA signaling in cells other thandNf1 requiring neurons was more effective.
(A) The elevated larval CNS pERK level ofdNf1 mutants is reduced by neuronal expression ofdNf1, but not by neuronal or heat-shock induced ubiquitous expression of PKA*. Western blot of pERK levels in larval CNS of the indicated genotypes. In lane 6, larvae received a daily 20 min 37°C heat shock throughout development, a protocol that suppresses thedNf1 growth defect[4]. (B) Structure ofUAS-PKA* transgenes with 1 to 5 UAS elements. The lethality of these transgenes when driven with eitherAc5C-Gal4 orelav-Gal4 is indicated by † whereas (−) indicates viable offspring. (C) Western blot of adult head lysates showing relative expression ofGMR-Gal4-driven transgenic PKA*. Tubulin is used as a loading control. (D) Expression of PKA* or knockdown ofdnc by shRNAi in the ring gland rescues thedNf1 pupal size defect. In contrast,UAS-dNf1 expression with the same ring gland drivers fails to restore systemic growth. (E–H) Expression pattern ofAkh-Gal4 drivingUAS-GFP, co-stained with DAPI and anti-dNF1. GFP expression in the corpora cardiaca (CC) is indicated. Scale bar = 50 µm. As previously noted[74], anti-dNf1 staining is strong in the CNS, whereas staining in the ring gland is close to background.
To manipulate cAMP/PKA signaling tissue-specifically we used threeUAS-dncRNAi transgenes. We also generated a series of attenuatedUAS-PKA* transgenes using vectors with modified Gal4-inducible promoters harboring just 2, 3 or 4 Gal4-binding UAS elements (Figure 8B and C). We made the latter transgenes because aUAS-PKA* expression using the five UAS element containing standard UAS-T vector is lethal in combination with most Gal4 drivers[73]. As reported previously[74], drivingUAS-dNf1 ubiquitously withAct5C-Gal4, or broadly in neurons withelav-Gal4,Ras2-Gal4,c23-Gal4, or386Y-Gal4 restoreddNf1 pupal size, whereas driving the same transgene with more restricted neuronal or non-neuronal drivers had no effect (Figure 8D andTable 3). By contrast, driving the expression ofUAS-dncRNAi or attenuatedUAS-PKA* transgenes with the same set of broadly expressed neuronal drivers was ineffective (Tables 3 andS5). We note that expression of the2×UAS-PKA* and3×-UAS-PKA* transgenes was generally well tolerated, whereas the4×UAS-PKA* and the5×UAS-PKA* transgenes exhibited increasing levels of lethality (Tables 3 andS5). Arguing that rescue of thedNf1 growth defect by manipulating cAMP/PKA signaling ordNf1 expression involves different cells, strong pupal size rescue was observed by increasing cAMP/PKA signaling in adipokinetic hormone-producing cells at the base of the neuroendocrine ring gland using theAkh-Gal4 driver (Figure 8D). Rescue was also observed with theFeb36-Gal4 andAug21-Gal4 ring gland drivers (Figure 8D), which give rise to expression in the corpora allata, the source of juvenile hormone, but not with the P0206-Gal4 or Mai60-Gal4 drivers, which express predominantly in the prothoracic gland (Table 3). The tissue specificity of all Gal4 drivers used in this and other experiments was verified by microscopic observation of dissectedUAS-GFP expressing larvae (Table S4 andFigures 8E–H andS5).
dAlk,Jeb,Cnk andCCKLR-17D1 Suppress adNf1 NMJ Architectural Defect
During larval development, significant expansion of the NMJ arbor must occur, reflecting the steady muscle growth that takes place during larval life. As the NMJ grows, additional branches and boutons are added to the initial synaptic arbor that forms during late embryonic stages upon motor axon contact with its target muscle. As a result, at the wandering third instar stage, wild-type NMJs contain a highly stereotyped, segment specific number of synaptic boutons[75]. Recently, it was reported thatdNf1 functions presynaptically to constrain NMJ synaptic growth and neurotransmission[16]. IndNf1 null mutant wandering third instar larvae, while the distribution of major presynaptic proteins is unaffected, increased overall size and synaptic bouton number is apparent at multiple NMJs, supporting a specific role fordNf1 in restricting NMJ expansion[16]. SeveraldNf1 suppressors that emerged in the current screen have also been linked to synapse morphogenesis, including CCKLR-17D1, which functions as a promoter of NMJ growth[36]. As our screen identifiedCCKLR-17D1 as a dominantdNf1 size defect suppressor, we wanted to confirm thedNf1 NMJ phenotype and test whetherCCKLR-17D1 and other suppressors affected this defect.
By quantifying bouton number at the NMJ on muscles 6 and 7, we confirmed thatdNf1 mutants have a significant increase in mean bouton number (Figure 9A and B). In addition, this analysis confirmed previously published phenotypes fordAlk,jeb andCCKLR-17D1[36],[76]. Importantly, thedNf1 synaptic overgrowth phenotype is dominantly suppressed byCCKLR-17D1,dAlk,jeb, andcnk alleles (Figure 9B), arguing that all four genes are epistatic todNf1. As a control we analyzed an allele ofspitz (spi), which encodes an EGF-like growth factor and is uncovered by suppressingDf(2L)Exel8041. However,spi shows no genetic interaction withdNf1, as loss ofspi modified neither the pupal size nor the NMJ overgrowth phenotypes (Figure 9B and data not shown).
(A–E) Representative micrographs of larval muscle 6/7 NMJs of the indicated genotypes. F: Mean bouton number per NMJ normalized to wild-type control. Compared to wild-type (w1118; A),dNf1 mutants (dNf1E2; B) have an increased bouton number. While acnk loss-of-function allele had no obvious NMJ phenotype, it dominantly suppressed thedNf1 NMJ defect (C). Similarly, thedNf1 NMJ phenotype was suppressed inDf(1)Exel9051 males that lack CCKLR-17D1 (D), while females heterozygous for CCKLR-17D1 (E) showed a lower level of suppression.Spitz (spi) is uncovered by a modifying deficiency but does not affectdNf1 size and was used as a negative control. In panels A–E, scale bars represent 5 µm. In panel F, error bars denote standard error of the mean.
Human ALK Is Expressed in Schwann Cells and May Serve as a Therapeutic Target in NF1
The identification ofdAlk as a suppressor of all hitherto analyzeddNf1 defects prompted us to explore whether human ALK represents a therapeutic target in NF1. Given our hypothesis that NF1 negatively regulates ALK stimulated Ras/ERK signaling, in order to play such a role, ALK and NF1 must be co-expressed in cells that give rise to symptoms. We previously found thatdNf1 anddAlk expression overlaps extensively in Drosophila larval and adult CNS[15], and the expression of orthologs of both genes also overlaps in the murine CNS[77],[78]. While overlapping CNS expression is compatible with a role for ALK in NF1-associated cognitive dysfunction, a causative role in another hallmark NF1 symptom, peripheral nerve-associated tumors, is less obvious. Among the near universal symptoms on NF1, benign neurofibromas consist of Schwann cells, perineurial fibroblasts, infiltrating mast cells, and nerve elements, with the Schwann cells sustaining the secondNF1 hit[79]. To test whether increased ALK signaling in the absence of NF1 might play a role in the development of neurofibromas, we used reverse transcription/PCR to detect the presence or absence ofALK mRNA in neurofibroma-derivedNF1−/− Schwann cells andNF1+/− fibroblasts, using RNAs kindly provided by Drs. Eric Legius and Eline Beert. In these experiments, two different primer sets readily detected ALK mRNA inNF1−/− Schwann cells, but not inNF1+/− fibroblasts derived from the same tumors (Figure S6).
To test whether functional interactions between NF1 and ALK exist in human cells, we used the SK-SY5Y and Kelly neuroblastoma cells, both of which harbor constitutively active F1174LALK alleles, and both of which are highly sensitive to pharmacological ALK inhibition[80]. Compatible with a role for NF1 as a negative regulator of mitogenic ALK/RAS signals, qRT-PCR verifiedNF1 knockdown with two shRNA retroviral vectors increased the resistance of both lines to ALK inhibitors NVP-TAE684 and Crizotinib (Figures 10A, 10C andS7). Compatible with a model in which NF1 negatively regulates ALK/RAS signaling,NF1 knockdown resulted in elevated ERK and AKT activation (Figures 10B). Moreover, expression of activatedKRAS,BRAF, orMEK transgenes, but not of other Ras effector transgenes, in SH-SY5Y cells conferred similar resistance to ALK inhibition (Figure S8).
(A)NF1 knockdown confers resistance to ALK inhibitors in human neuroblastoma cells. SH-SY5Y cells expressing pRS and shGFP control vectors, or shNF1 vectors were grown in the absence or presence 50 nM NVP-TAE684 or 250 nM crizotinib. The cells were fixed, stained and photographed after 14 (untreated and crizotinib treated), or 21 (NVP-TAE684 treated) days. (B) Down-regulation ofNF1 results in elevated level of phosphorylated p-ERK and p-AKT. Western blot analysis of total lysates of SH-SY5Y cells expressing pRS, shGFP or shNF1 vectors. (C) The level ofNF1 knockdown by each of the RNAi vectors was measured by examining theNF1 mRNA levels by qRT-PCR. Error bars denote standard deviation.
Discussion
The work reported here was motivated by the fact that human NF1 is a characteristically variable disease, the severity of which is controlled at least in part by symptom-specific modifier genes[81]. Thus, a genetic analysis in Drosophila might not only reveal molecular pathways controlled by the highly conserved (50% identical) dNf1 protein, but also provide clues to the identity of human modifiers, which by virtue of their rate-limiting roles in symptom development might serve as therapeutic targets. The current work was also motivated by the fact that, for reasons that remain poorly understood, mostdNf1 null mutant phenotypes are rescued by increasing, or phenocopied by decreasing, cAMP/PKA signaling. The identification of genetic modifiers of a cAMP/PKA sensitive defect might reveal how loss of dNf1 affects cAMP/PKA signaling, and help to resolve the long-standing controversy as to whether dNf1 affects cAMP/PKA signaling directly, independent of its role as a Ras regulator[10],[27], or indirectly, secondary to a Ras signaling defect[5],[15].
While recognizing that none of the thus far identifieddNf1 phenotypes are ideally suited for use in modifier screens, we selected the pupal size defect as the phenotype to analyze in our screen for three main reasons. First, pupariation occurs at the end of the larval growth period, and pupal size is readily assessed by inspecting pupae attached to the side of culture vials, making this phenotype amenable to a large-scale screen. Second, the growth defect is among several cAMP/PKA sensitivedNf1 phenotypes. Finally, reduced growth is also a symptom of human NF1 and other RASopathies[1],[82]. However, while compelling reasons support the selection of this phenotype, confounding factors include that Drosophila size is a sexually dimorphic phenotype affected by population density, feeding, environmental conditions such as temperature, and genetic background differences. Moreover, while heterozygousdNf1 mutants are marginally smaller than wild-type pupae[5], the more robust size phenotype (∼15% reduction in linear dimensions, ∼25% reduction in weight) used in our screen is only observed upon homozygous loss ofdNf1. Thus, our screen was not designed to find modifiers that act on the dNf1 protein itself, like the recently identified SPRED proteins[83]. Finally, organism size is a function of growth rate and duration, both of which are regulated by hormonal cascades that involve cross-talk between the larval brain, the neuroendocrine ring gland, the fat body and other tissues[19],[84]. Thus, a screen for modifiers ofdNf1-regulated growth may uncover genes involved in various aspects of systemic growth control.
Early attempts to identifydNf1 pupal size modifiers were abandoned when >95% of large X-ray induced 2nd chromosome deficiencies were found to be lethal in adNf1 background (Glenn Cowley, Iswar Hariharan and A.B., unpublished), or when a pilot chemical mutagenesis screen found the reliable mapping of identified enhancer or suppressor mutations to be impracticable (Suzanne Brill, Iswar Hariharan and A.B., unpublished). Both aborted screens informed the current effort, which used precisely defined small deficiencies, isogenic crossing schemes and experimental protocols that guarded against population density differences. In total we analyzed 486 1st and 2nd chromosome deficiencies that together uncover well over 80% of chromosome 1, 2L and 2R genes (Table 1). Among the screened deficiencies, 132 (27.2%) significantly modifieddNf1 pupal size (p<0.01; two-tailed Student'st-test). While this is a large number, 20 deficiencies were subsequently eliminated because they also affect wild-type size. Several modifying deficiencies also uncover overlapping genomic segments, further reducing the number ofdNf1 modifying loci to 76. During follow-up studies aimed at identifying responsible genes, we prioritized genes uncovered by suppressing deficiencies over those uncovered by enhancing ones, modifiers uncovered by overlapping deficiencies over those uncovered by single deletions, modifiers uncovered by small deficiencies over those uncovered by larger ones and stronger modifiers over weaker ones. We also limited ourselves to genes that function in the nervous system, based on the consideration thatdNf1 re-expression in larval neurons is sufficient to suppress the growth defect[5].
We previously reported thatdNf1 growth and learning defects are phenocopied by increasing neuronal Jeb/dAlk/ERK signaling, and suppressed by genetic or pharmacological attenuation of this pathway[15]. Validating our screen, deficiencies that uncoverjeb anddAlk were identified as dominantdNf1 size defect suppressors. Others recently reported that Jeb/dAlk signaling allows brain growth to be spared at the expense of other tissues in nutrient restricted Drosophila and identified a glial cell niche around neuroblasts as the source of Jeb under these conditions[41]. However, Jeb involved in systemic growth appears of mainly neuronal origin, as RNAi-mediatedjeb knockdown in neurons increaseddNf1 pupal size, whereas only one of four tested glial drivers produced partial rescue (Figure 5A).
The identification of cAMP/PKA pathway modifiersdnc,PKA-C1 and tentativelyPKA-R2 further validates our screen. Arguing that increased PKA activity doesn't suppressdNf1 defects by attenuating Ras/Raf/MEK/ERK signaling,hsp70-PKA* transgene expression, using a daily heat shock regimen that suppresses thedNf1 size defect[4], does not reduce the elevateddNf1 larval brain phospho-ERK level, and neither doesRas2-Gal4 driven neuronalUAS-PKA* expression (Figure 8D). Providing further mechanistic clues, our results demonstrate thatdNf1 and cAMP/PKA both affect systemic growth non-cell-autonomously, but not necessarily in the same cells. Thus, we previously showed that only relatively broadly expressed neuronal Gal4 drivers restored mutant growth when drivingUAS-dNf1, whereas multiple drivers expressed in specific subsets of neurons, including several expressed in the ring gland, lacked the ability to restoredNf1 growth[5]. By contrast, usingUAS-dncRNAi or a series of newly generated attenuated UAS-PKA* transgenes that avoid the toxicity associated with high level PKA expression[73], we now show that manipulating cAMP/PKA signaling with broadly expressed neuronal Gal drivers does not affect thedNf1 size phenotype, whereas the same transgenes induced with three ring gland drivers did suppress. Intriguingly, the most potent rescue was observed whenUAS-dncRNAi or attenuatedUAS-PKA* transgenes were driven in AKH-producing cells at the base of the ring gland, whereas weaker rescue was also observed with two ring gland drivers that show overlapping expression in the juvenile hormone producing corpora allata. This suggests that thedNf1 growth deficiency involves a defect in processes controlled by one or both of these neuroendocrine hormones.
As might be expected of a screen that used systemic growth as a read-out, our work identified a diverse set of potential modifiers. Notably, however, among a non-exhaustive set of 18 1st or 2nd chromosome genes implicated in various aspects of Drosophila body, organ, and/or cell size control (dAlk, B4, chico, hpo, Hr4, Ilp6, jeb, Mer, mir-8, Pi3K21B, Pten, Ptth, SNF1A, sNPF, step, Tor,ush and yki; seeTable S3 for details), onlydAlk andjeb scored as dominantdNf1 pupal size modifiers, whereas the remaining 16 genes were uncovered by non-modifying deficiencies, or in the case ofPtth, by two deficiencies that altered developmental timing (Table S2). Further explaining this lack of overlap, the previously implicated PI3 kinase regulatorB4 act in a recessive manner and several of the above listed genes function outside of the CNS. Our screen excluded such genes, becausedNf1 controls growth non-cell-autonomously by regulating neuronal Ras[5]. As previously noted, a special case is provided by insulin pathway componentschico andPten, which affect growth antagonistically. Both genes map within 5 kb of each other on the 2nd chromosome and are uncovered by the same non-modifying deficiency.
Two newly identifieddNf1 growth defect suppressors,Dap160 andCCKLR-17D1, affect synaptic architecture or functioning[36],[56],[57]. BecausedNf1 was recently reported to function downstream of focal adhesion kinase to restrain NMJ synaptic growth and neurotransmission[16], and because the cholecystokinin receptor relatedCCKLR-17D1 drosulfakinin receptor stimulates NMJ growth[36], we analyzed whether this and three Ras signaling relateddNf1 size defect suppressors also affected NMJ architecture. Our results confirm thatdNf1 mutants exhibit synaptic overgrowth, and show that loss ofCCKLR-17D1 suppresses this defect. Importantly, loss ofjeb,dAlk, orcnk similarly suppresses both size and synaptic overgrowth defects, suggesting that both phenotypes may be related.
The results presented here further support our previous conclusion that excess neuronal Jeb/dAlk/Ras/MEK/ERK signaling is the root cause of the cAMP/PKA sensitivedNf1 systemic growth defect. What happens downstream of this primary defect remains less clear, although our demonstration that increasing cAMP/PKA signaling in AKH-producing cells and other parts of the neuroendocrine ring gland suppresses the size defect provides an important new clue, not only about pathways involved in thedNf1 growth defect, but also about the likely non-cell-autonomous cause of similar growth defects ofPKA-C1 ordCreb2 mutants[85],[86]. Other questions that remain to be fully answered concern the role of the NMJ architectural defect in thedNf1 growth deficiency and the role of Jeb/dAlk signaling in the NMJ defect. We note in this respect that thatC. elegans ALK ortholog,T10H9.2, has been implicated in synapse formation[87], and that recent work suggests a role for trans-synaptic Jeb/dAlk signaling in the control of neurotransmission and synaptic morphology[88]. However, while thedNf1 growth defect is due to excess dAlk signaling in neurons, NMJ synapse formation has been suggested to involve the release of presynaptic Jeb activating postsynaptic dAlk[88]. Further work will have to establish whether the suppression of thedNf1 NMJ overgrowth phenotype byjeb,dAlk andcnk involves cell autonomous roles for these genes at synapses, or non-cell-autonomous functions elsewhere in the CNS. Further work is also required to reveal the functional significance and the sites of action of other novel modifiers identified in our screen.
From a clinical perspective, perhaps the most relevant questions raised by our work are whether NF1 regulated ALK/RAS/ERK signaling is evolutionarily conserved and whether excessive ALK/RAS/ERK signaling contributes to human NF1 symptoms. Much indirect evidence hints at a positive answer to both questions. First, the expression of ALK and NF1 largely overlaps in the murine nervous system[77],[78], same as it does in Drosophila[15]. Second, ALK functions as an oncogene and NF1 as a tumor suppressor in neuroblastoma[89]–[94]. Third, midkine, a ligand that activates mammalian ALK[95], is produced byNF1−/− Schwann cells, present at elevated levels in NF1 patient skin and serum, and acts as a mitogen for NF1 tumor cell lines[96]–[98]. We add to this evidence by showing that shRNA-mediatedNF1 knockdown renders two oncogenic ALK-driven human neuroblastoma cell lines resistant to pharmacological ALK inhibition, and by confirming thatALK mRNA is expressed in neurofibroma-derivedNF1−/− human Schwann cells. These findings make a strong case that ALK should be explored as a therapeutic target in NF1, and that loss ofNF1 expression should be considered as a potential mechanism in cases of acquired resistance to ALK inhibition[99].
Materials and Methods
Fly Stocks and Experiments
ThedNf1E1 anddNf1E2 alleles have been described[5]. Exelixis, DrosDel and BSC deficiencies were obtained from the Bloomington Stock Center. Transgenic RNAi lines were obtained from the ViennaDrosophila Research Center (VDRC) and the TRiP Collection at Harvard Medical School.Eaat1SM1 andEaat1SM2 were provided by D. van Meyel,dALK8 andjebweli by R. Palmer,cnkXE-385 andcnkE-2083 by M. Therrien, andcarΔ146 by H. Kramer,ppl06913 by M. Pankratz,hs-Ilp2 transgenic line by E. Rulifson andUAS-Rab9 DN by R. Hiesinger. Flies were maintained on agar-oatmeal-molasses medium at 25°C, unless otherwise indicated.
To assess feeding, larvae at various stages of development were placed on blue food dye-stained yeast paste, removed after 20 min, washed and photographed. To analyze wandering behavior, 100 larvae (age 40–44 hr after egg deposition (AED)) were placed on an agar plate with a central blob of yeast paste, and their position after 24 hr was documented. To assess the expression of starvation-sensitive genes, larvae at 72 h AED were placed in vials with water for 16 hr, after which RNA was prepared and subjected to blot analysis. To determine developmental timing, L1 larvae were collected 24 hr AED using a 2 hr egg collection and reared at 140 animals per vial. The number of larvae that pupariated was scored at hourly intervals. To determine the larval weight, L1 larvae were collected 24 hr AED using a 2 hr egg collection. Larvae were reared at 140 larvae per vial and groups of 10 larvae were weighed at 8 hr intervals. Longevity was assessed by maintaining adult flies under standard conditions and counting the number of dead flies at regular intervals. In each of these assays, genotypes were tested in duplicate. To inducehs-Ilp2 transgene expression, culture vials were placed in a circulating water bath at 37°C for 10 min once or twice a day with an 8 hr interval.
Insulin-Like Protein mRNA Quantification
The 7500 Fast Real-Time PCR System from Applied Biosystems was used to determineIlp mRNA levels in RNA prepared from dissected larval brains or from whole wandering stage 3rd instar larvae. Results were normalized toRpL32. The following primers were used:IIp2-Forward,GGCCAGCTCCACAGTGAAGT,Ilp2-Reverse,TCGCTGTCGGCACCGGGCAT,Ilp3-Forward,CCAGGCCACCATGAAGTTGT.Ilp3-Reverse,TTGAAGTTCACGGGGTCCAA,Ilp5-Forward,TCCGCCCAGGCCGCAAACTC,Ilp5-Reverse,TAATCGAATAGGCCCAAGGT,Ilp6-Forward,CGATGTATTTCCCAACAGTTTCG,Ilp6-Reverse,AAATCGGTTACGTTCTGCAAGTC,Ilp7-Forward,CAAAAAGAGGACGGGCAATG,Ilp7-Reverse,GCCATCAGGTTCCGTGGTT. Expression of the distantly relatedIlp8 and the midgut-expressedIlp4 genes[21] was not analyzed.
Genetic Screening, Validation, and Statistical Analysis
The crossing schemes inFigure 2 were used to generatedNf1E2 mutants carrying 1st and 2nd chromosome deficiencies. To avoid crowding, cultures were maintained at 100–200 pupae per culture vial. Initial scoring used calipers set at the length ofdNf1 female pupae, ignoringdNf1 heterozygotes recognizable by the presence of theTM6B balancer. Next, the length of individual pupae carrying candidate modifying deficiencies was measured by determining their head-to-tail length using a microscope fitted with NIS-Elements AR 3.0 imaging software. Measured pupae were then placed in 96-well plates (Falcon) to determine their gender and, if necessary, the genotype of eclosed flies. At least 40 pupae were measured for each genotype, and only measurements of female pupae were used to calculate mean values and standard deviations. Statistical significance was assessed with a two-tailed Student'st-test. Throughout this report, single or double asterisks denotep-values<0.05 or <0.01 respectively.
To identify responsible modifiers we used specific alleles orUAS-RNAi knockdown. Alleles andUAS-RNAi lines on the 1st and 2nd chromosomes were crossed into thedNf1E2 background.UAS-RNAi lines on the 3rd chromosome were recombined withdNf1E2.UAS-RNAi lines in thedNf1E2 background were crossed to Gal4 drivers in the same background. The few deficiencies that gave rise to synthetic lethal interactions were backcrossed withdNf1E1 flies to produce Df/+;dNf1E2/dNf1E1 progeny.
To test whether genetic suppression reflected the inadvertent introduction of a wild-typedNf1 allele, we used fly DNA prepared using DNAzol (Molecular Research Inc.) in a PCR assay withAGTCACATTAATTGATCCTG andGAGATCGTTGATAAAGAAGT primers. The second primer introduces a penultimate single nucleotide change, which together with the E2 mutation results in the introduction of an RsaI restriction site. RsaI digestion of the PCR product gives rise to 370 and 61 bp fragments for the wild-type allele, and 348, 61 and 22 bp fragments forthe dNf1E2 allele. Digests were run on 8% acrylamide gels using both wild-type (w1118) anddNf1E2 controls.
Construction ofAkh-Gal4 and AttenuatedUAS-PKA* Transgenes
TheAkh promoter region was amplified withAkh-FORWARD (AGATCTAATCTCCTGAATGCCGCAGCG) andAkh-REVERSE (AGATCTATGCTGGTCCACTTCGATTC) primers. The resulting PCR fragment was subcloned into the BamHI site of a GAL4 coding region containing pCaSpeR derivative. The final construct was sequenced to ensure correct orientation of the Akh promoter before being used generate transgenic flies by standard protocols.
To reduce the toxicity associated with high-level PKA expression, we generated modified pUAS-T vectors containing 1, 2, 3 or 4, rather than 5 Gal4-binding sites. The primers used to generate these vectors were: 1×UAS-FOR:AACTGCAGAGCGGAGTACTGTCCTCCGAGCGGAGACTCTAG; 2×UAS-FOR:AACTGCAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCG; 3×UAS-FOR:AACTGCAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCG, and UAS-REV:CTAGAGGTACCCTCGAGCGCGGCCGCAAGAT. An initial PCR was performed using the 1×UAS-FOR and UAS-REV primers with the standard pUAS-T vector as a template. The resulting amplified fragment was TA subcloned into pCR2.1 to make pCR2.1-1×UAS. The 2×UAS-FOR and UAS-REV primers were then used with pCR2.1-UAS(1×) as a template to generate a UAS(2×) clone, which was subcloned to produce pCR2.1-UAS(2×). Similarly, 3×UAS-FOR and UAS-REV primers in a PCR reaction with pCR2.1-UAS(2×) as template generated pCR2.1-UAS(3×) and pCR2.1-UAS(4×)). The pCR2.1-UAS clones were sequenced, their inserts excised with PstI and subcloned into PstI-digested p-UAST. Correct insert orientation was verified by sequence analysis, after which the mutationally activated murine PKA* coding region[100] was subcloned into the modified vectors using XbaI and NotI.
Immunofluorescence and Analysis of NMJ Morphology
Wandering third instar larvae were dissected in Ca2+-free saline and fixed in 4% paraformaldehyde for 25 min at room temperature. Following fixation, larval pelts were washed three times in phosphate-buffered saline (PBS) and then blocked for one hour in PBT (PBS+0.1% Triton-X 100)+5% normal goat serum. Larvae were incubated in primary antibody solution for three hours at room temperature. Anti-HRP 568 (1∶1000, Invitrogen) was used to visualize neurons and Alexa Fluor 488 phalloidin (1∶500, Invitrogen) was used to visualize F-actin in the musculature. Images were collected using a Yokogawa CSU-X1 spinning-disk confocal microscope with the Spectral Applied Research (Richmond Hill, ON, Canada) Borealis modification on a Nikon (Melville, NY) Ti-E inverted microscope using a 60× Plan Apo (1.4 NA) objective. The microscope was equipped with a Prior (Rockland, MA) Proscan II motorized stage. Larval samples were excited with 488-nm (for phalloidin) and 561-nm (for HRP) 100-mW solid-state lasers from a Spectral Applied Research LMM-5 laser merge module and was selected and controlled with an acousto-optical tunable filter. Emission was collected with a Semrock (Rochester, NY) quad pass (405/491/561/642 nm) dichroic mirror and 525/50 nm (for phalloidin) and 620/60 nm (for HRP) Chroma (Bellows Falls, VT) emission filters. Images were acquired using a Hamamatsu ORCA-ER-cooled CCD camera. Hardware was controlled with MetaMorph (version 7.7.9) software (Molecular Devices, Sunnyvale, CA.). Five individual animals were imaged for subsequent morphological analysis. Motor nerve terminals of muscles 6 and 7 were imaged in abdominal segments A2 and A3 and Z-stacks (0.25 µM between images) and were captured from the top to bottom of each NMJ. Morphological analysis of the NMJ was performed using NIH Image J and was assessed by quantifying the number of synaptic boutons per square micron. The number of synaptic boutons was counted as previously described[16],[101] and muscle area covered by the NMJ was quantified by tracing a polygon connecting each terminal branch point[102].
Human NF1 Experiments
The retroviral RNAi vectors targeting humanNF1 and expression constructs of active alleles of RAS effectors were as described previously[94]. Crizotinib (S1068) and NVP-TAE648 (S1108) were purchased from Selleck Chemicals. Antibody against NF1 was from Bethyl Laboratories (A300-140A); antibodies against pAKT(S473) and ATK1/2 were from Cell Signalling; antibodies against p-ERK (E-4), ERK1 (C-16), ERK2 (C-14) and CDK4 (C-22) were from Santa Cruz Biotechnology; A mixture of ERK1 and ERK2 antibodies was used for detection of total ERK from human cell lines. Antibody against mouse PKAα-cat (A-2) SC-28315 was from Santa Cruz Biotechnology, β-Tubulin E7 from Developmental Studies Hybridoma Bank.
SH-SY5Y, Kelly and Phoenix cells were cultured in DMEM with 8% heat-inactivated fetal bovine serum, penicillin and streptomycin at 5% CO2. Subclones of each cell line expressing the murine ecotropic receptor were generated and used for all experiments shown. Phoenix cells were used to produce retroviral supernatants as described athttp://www.stanford.edu/group/nolan/retroviral_systems/phx.html.
To measure cell proliferation, single cell suspensions were seeded into 6-well plates (1–2×104 cells/well) and cultured both in the absence and presence of ALK inhibitors. At the indicated endpoints, cells were fixed, stained with crystal violet and photographed. All knockdown and overexpression experiments were done by retroviral infection as described previously[103].
The 7500 Fast Real-Time PCR System from Applied Biosystems was used to determine mRNA levels.NF1 mRNA expression levels were normalized to expression ofGAPDH. The following primers sequences were used in the SYBR Green master mix (Roche):GAPDH-Forward,AAGGTGAAGGTCGGAGTCAA;GAPDH-Reverse,AATGAAGGGGTCATTGATGG;NF1-Forward,TGTCAGTGCATAACCTCTTGC;NF1-Reverse,AGTGCCATCACTCTTTTCTGAAG.ALK mRNA levels in neurofibroma-derivedNF1−/− Schwann cells andNF1+/− fibroblasts were analyzed using the following two primer sets:ALK-N-Forward,GGAGTGCAGCTTTGACTTCC;ALK-N-Reverse,TGGAGTCAGCTGAGGTGTTG;ALK-C-Forward,GCAACATCAGCCTGAAGACA;ALK-C-Reverse,GCCTGTTGAGAGACCAGGAG.
Supporting Information
Figure S1.
Loss ofdNf1 does not alter developmental timing but reduces larval growth rate. (A) Wild-type,dNf1E1, anddNF1E1/E2 mutants show no altered developmental timing, as judged by their rate of pupariation (also shown inFigure 1D). By contrast, larvae withphm-Gal4 drivingUAS-Ras1V12 undergo accelerated development resulting in miniature pupae[104], whereasphm-Gal4 driving a dominant negativeUAS-PI3KD954A transgene delayed development and produced giant pupae[71]. (B) Mouth hook length measurements (in µm) show thatdNf1 larvae grow at a reduced rate. The marker represents the mean length; the upper box represents the median to Q3 value, the lower box median to Q1 value and the error bars identify the outliers.
https://doi.org/10.1371/journal.pgen.1003958.s001
(PDF)
Figure S2.
PCR/RFLP assay fordNf1E2 mutation. (A) To make sure that stocks with putative suppressing deficiencies preserved thedNf1E2 C->T nonsense transition, we used a PCR/Restriction Fragment Length Polymorphism assay. The E2 mutation does not create or destroy a restriction site. Rather, we used a reverse primer with a penultimate A->C transversion to amplify a 431 genomic fragment as indicated. The mutant primer creates a GTAC RsaI restriction site when E2 genomic DNA is used as a template. (B) RsaI digestion of PCR products gives rise to 370 and 61 bp fragments for the wild-type allele, and 348, 61 and 22 bp fragments fordNf1E2. An example of the assay is shown with both wild-type (w1118) and dNf1E2 controls (lanes 2, 3 and 4) and various deficiencies (Df) either in wild-type (Df/CyO; +; lanes 5 and 15),dNf1 homozygous (Df/CyO; dNf1E2; lanes 6–13) or heterozygous (Df/CyO; dNf1E2/+; lanes 14 and 16) backgrounds.
https://doi.org/10.1371/journal.pgen.1003958.s002
(PDF)
Figure S3.
Systematic identification fordNf1 modifiers. For deficiencies that did not uncover obvious candidate modifier genes, a systematic RNAi approach was used. UAS-RNAi lines targeting genes uncovered by a modifying deficiency were driven byRas2-Gal4 in thedNf1E2 background and the effect on pupal size determined. (A) Identification ofcarnation as adNf1 modifier uncovered by suppressingDf(1)BSC275. (B) Identification ofNAAT1 as the responsible gene uncovered by suppressing deficienciesDf(1)BSC533 andDf(1)Exel6290. RNAi-induced lethality is denoted by †. Error bars show standard deviations and * indicates ap-value of <0.05. As part of the systematic identification of modifiers 385 RNAi lines were tested.
https://doi.org/10.1371/journal.pgen.1003958.s003
(PDF)
Figure S4.
TheRet tyrosine kinase is not involved indNf1 growth control. (A) Reagents generated to analyze the involvement of Ret includeRet-Gal4 transgenic lines made by inserting a 957-bp genomic segment representing theRet promoter region into the pChs-Gal4 vector. Other reagents includeUAS-Ret transgenes harboring kinase-dead (K805A) and constitutively active (C695R) mutations made by site-directed mutagenesis. (B)Ret-Gal4 drivenUAS-GFP expression recapitulates the endogenous larval brainRet expression pattern[60]. (C)GMR-Gal4 drivenUAS-Ret with a constitutively active C695R mutation produces a rough eye phenotype as previously reported[60]. (D)Ret-Gal4 drivenUAS-dNf1 re-expression, RNAi-mediatedRet inhibition or expression of aUAS-Ret kinase dead transgene, all failed to modifydNf1 pupal size. Moreover,Ret-Gal4 driven expression ofUAS-Ret with constitutively active C695R mutation failed to phenocopy thedNf1 size defect. By contrast, a small pupal size phenocopy was observed when Ret C695R was driven ectopically withRas2- andelav-Gal4, likely reflecting Ret-mediated activation of Ras/ERK signaling.
https://doi.org/10.1371/journal.pgen.1003958.s004
(PDF)
Figure S5.
Expression pattern of ring gland drivers. Ring gland driversP0206-Gal4,Feb36-Gal4,Aug21-Gal4 andAkh-Gal4 were crossed toUAS-GFP. The CNS and ring glands were dissected from third instar larvae, stained with DAPI and imaged using confocal microscopy. The prothoracic gland (PG), corpora allatum (CA) and corpora cardiaca (CC) are indicated. Specimens are orientated such that the base of the brain hemispheres is at the top, indicated by a dotted line. Scale bar = 50 µm.
https://doi.org/10.1371/journal.pgen.1003958.s005
(PDF)
Figure S6.
ALK mRNA expression in neurofibroma-derived Schwann cells. Reverse transcription/PCR was used to analyze ALK expression in neurofibroma-derivedNF1−/− Schwann cells andNF1+/− fibroblasts. Two primer sets, (A) ALK-N and (B) ALK-C, designed to amplify N-terminal and C-terminalALK mRNA segments, detectedALK expression inNF1−/− Schwann cells, but not inNF1+/− fibroblasts.GAPDH primers were used as a control. To guard against positive signals due to contaminating genomic DNA, each PCR reaction was set up either with (+RT) or without (−RT) reverse transcriptase.
https://doi.org/10.1371/journal.pgen.1003958.s006
(PDF)
Figure S7.
NF1 suppression confers resistance to ALK inhibitors in human neuroblastoma cells. (A) Kelly cells expressing pRS and shGFP controls or shNF1 vectors were grown in the absence or presence 200 nM NVP-TAE684 or 500 nM crizotinib. Cells were fixed, stained and photographed after 14 (untreated) or 17 (NVP-TAE684 or crizotinib-treated) days. (B) Level ofNF1 knockdown assayed by qRT-PCR. Error bars denote standard deviation.
https://doi.org/10.1371/journal.pgen.1003958.s007
(PDF)
Figure S8.
Activation of RAS-RAF-MEK cascade confers resistance to ALK inhibitors in neuroblastoma cells. (A) Constitutively activeKRASV12,BRAFV600E orMEK1S218D,S222D mutants confer resistance to ALK inhibitors. SH-SY5Y neuroblastoma cells expressing pBabe vector control or the indicated active RAS effector mutants were grown in the absence or presence 50 nM NVP-TAE684 or 350 nM crizotinib. The cells were fixed, stained and photographed after 12 (untreated) or 19 (NVP-TAE684 and crizotinib-treated) days. (B) Level of phosphorylated ERK and AKT in the SH-SY5Y cells described above.
https://doi.org/10.1371/journal.pgen.1003958.s008
(PDF)
Table S1.
Excluded deficiencies. Listed deficiencies were excluded for the reasons indicated. Deficiencies that failed to produce screening stocks are labeled ‘Impossible’. Unhealthy (sick) deficiencies or those that uncoveredMinute mutations were also excluded.
https://doi.org/10.1371/journal.pgen.1003958.s009
(PDF)
Table S2.
dNf1 modifier deficiency screen results. All deficiencies analyzed are listed according to their relative chromosomal position. The cytological location, molecular coordinates and the dominant effect ondNf1 pupal size (NO – no interaction, SUP - suppressor, ENH - enhancer) of each deficiency is given. Female pupal length measurements for deficiencies in thedNf1 mutant background are provided, together with standard deviations andp-values. Modifying deficiencies that were subsequently found to have an effect on wild-type pupal size are indicated (Yes – indicates that a deficiency has a non-specific effect; No – no observed effect on wild-type size; No* - has an effect on wild-type size, but in the opposite direction from the effect ondNf1 mutants). Where determined, the responsible gene identified under each modifying deficiency is shown. The final column contains notes such as deficiencies that result in altered developmental timing.
https://doi.org/10.1371/journal.pgen.1003958.s010
(PDF)
Table S3.
Growth related genes uncovered by screened deficiencies. 18 cell, tissue, or systemic growth implicated genes uncovered by analyzed 1st and 2nd chromosome deficiencies. Among the deficiencies listed, only those that uncovereddAlk orjeb modifieddNf1 pupal size.
https://doi.org/10.1371/journal.pgen.1003958.s011
(PDF)
Table S4.
Larval tissue expression patterns of Gal4 drivers. List of Gal4 driver lines used in this study and their expression patterns in third instar larvae as determined by crossing Gal4 drivers toUAS-GFP, or from published data. Abbreviations: Ring gland (RG), central nervous system (CNS), mushroom body (MB), prothoracic gland (PG), corpora allata (CA), corpora cardiaca (CC), neurosecretory neurons (NSNs), pars intercerebralis neurons (PI), corpora cardiaca innervating neurosecretory neuron of the medial subesophageal ganglion 2 (CC-MS 2), proventriculus (PV), fat body (FB), salivary glands (SG), imaginal discs (IDs), first instar (L1).
https://doi.org/10.1371/journal.pgen.1003958.s012
(PDF)
Table S5.
Identification of tissues that requiredNf1 or cAMP/PKA signaling for growth regulation. Various Gal4 drivers in thedNf1 background were crossed todNf1 mutants bearing attenuatedUAS-PKA* transgenes ordnc RNAi lines. Rescue was assessed by measuring pupae, followed by genotyping adult flies upon eclosion. All crosses produced viable adults unless otherwise stated. † denotes lethality; NR non-rescue; NR* denotes non-rescue with adult eclosers with unfurled wings; n/a not applicable; n/d not determined.
https://doi.org/10.1371/journal.pgen.1003958.s013
(PDF)
Acknowledgments
We thank the Bloomington Drosophila Stock and Vienna Drosophila Resource Centers for deficiency and transgenic RNAi fly stocks. We are also grateful to R. Hiesinger, H. Kramer, D. van Meyel, R. Palmer and M. Therrien for additional fly stocks, to Spyros Artavanis-Tsakonas and Doug Dimlich for Exelixis deficiency stocks, and to Eline Beert and Eric Legius for NF1 tumor cell RNAs. We are grateful to the Nikon Imaging Center at Harvard Medical School for technical support for microscopy performed in this study. Transgenic flies were generated by Genetic Services Inc., Cambridge MA. We thank Iswar Hariharan, Susanne Brill and Glenn Cowley for their efforts during the early stages of this project, and our colleagues at the MGH Center for Cancer Research for valuable discussions.
Author Contributions
Conceived and designed the experiments: JAW JYG SH JBL DVV RB AB. Performed the experiments: JAW JYG JBL SH RCM HX KK AR. Analyzed the data: JAW JYG JBL SH RCM RB AB. Contributed reagents/materials/analysis tools: JAW JYG SH. Wrote the paper: JAW JYG JBL SH AB DVV.
References
- 1.Zenker M (2011) Clinical manifestations of mutations in RAS and related intracellular signal transduction factors. Current opinion in pediatrics 23: 443–451.
- 2.Evans DG, Howard E, Giblin C, Clancy T, Spencer H, et al. (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. American journal of medical genetics Part A 152A: 327–332.
- 3.Allanson JE (2007) Noonan syndrome. American journal of medical genetics Part C, Seminars in medical genetics 145C: 274–279.
- 4.The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, et al. (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276: 791–794.
- 5.Walker JA, Tchoudakova AV, McKenney PT, Brill S, Wu D, et al. (2006) Reduced growth of Drosophila neurofibromatosis 1 mutants reflects a non-cell-autonomous requirement for GTPase-Activating Protein activity in larval neurons. Genes & development 20: 3311–3323.
- 6.Guo HF, The I, Hannan F, Bernards A, Zhong Y (1997) Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276: 795–798.
- 7.Hyman SL, Shores A, North KN (2005) The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 65: 1037–1044.
- 8.Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, et al. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature genetics 15: 281–284.
- 9.Guo HF, Tong J, Hannan F, Luo L, Zhong Y (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403: 895–898.
- 10.Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, et al. (2006) Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Human molecular genetics 15: 1087–1098.
- 11.Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y (2002) Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nature neuroscience 5: 95–96.
- 12.Brown JA, Gianino SM, Gutmann DH (2010) Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. The Journal of neuroscience: the official journal of the Society for Neuroscience 30: 5579–5589.
- 13.Dasgupta B, Dugan LL, Gutmann DH (2003) The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. The Journal of neuroscience: the official journal of the Society for Neuroscience 23: 8949–8954.
- 14.Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y (2007) Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. The Journal of neuroscience: the official journal of the Society for Neuroscience 27: 6852–6857.
- 15.Gouzi JY, Moressis A, Walker JA, Apostolopoulou AA, Palmer RH, et al. (2011) The receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. PLoS genetics 7: e1002281.
- 16.Tsai PI, Wang M, Kao HH, Cheng YJ, Walker JA, et al. (2012) Neurofibromin Mediates FAK Signaling in Confining Synapse Growth at Drosophila Neuromuscular Junctions. The Journal of neuroscience: the official journal of the Society for Neuroscience 32: 16971–16981.
- 17.Ashburner M, Thompson JN (1978) The laboratory culture of Drosophila. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila. London: Academic Press. pp. 1–109.
- 18.Zinke I, Kirchner C, Chao LC, Tetzlaff MT, Pankratz MJ (1999) Suppression of food intake and growth by amino acids in Drosophila: the role of pumpless, a fat body expressed gene with homology to vertebrate glycine cleavage system. Development 126: 5275–5284.
- 19.Mirth CK, Shingleton AW (2012) Integrating body and organ size in Drosophila: recent advances and outstanding problems. Frontiers in endocrinology 3: 49.
- 20.Andersen DS, Colombani J, Leopold P (2013) Coordination of organ growth: principles and outstanding questions from the world of insects. Trends in cell biology 23 (7) 336–44.
- 21.Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, et al. (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current biology: CB 11: 213–221.
- 22.Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current biology: CB 12: 1293–1300.
- 23.Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296: 1118–1120.
- 24.Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429: 562–566.
- 25.Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, et al. (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292: 104–106.
- 26.Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, et al. (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110.
- 27.Tong JJ, Schriner SE, McCleary D, Day BJ, Wallace DC (2007) Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nature genetics 39: 476–485.
- 28.Artavanis-Tsakonas S (2004) Accessing the Exelixis collection. Nature genetics 36: 207.
- 29.Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, et al. (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177: 615–629.
- 30.Schultz J (1929) The Minute Reaction in the Development of DROSOPHILA MELANOGASTER. Genetics 14: 366–419.
- 31.Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, et al. (2007) The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome biology 8: R216.
- 32.Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156.
- 33.Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445: 275–280.
- 34.Tennessen JM, Thummel CS (2011) Coordinating growth and maturation - insights from Drosophila. Current biology: CB 21: R750–757.
- 35.Williams JA, Su HS, Bernards A, Field J, Sehgal A (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293: 2251–2256.
- 36.Chen X, Ganetzky B (2012) A neuropeptide signaling pathway regulates synaptic growth in Drosophila. The Journal of cell biology 196: 529–543.
- 37.Gorokhova S, Bibert S, Geering K, Heintz N (2007) A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase. Human molecular genetics 16: 2394–2410.
- 38.Miller MM, Popova LB, Meleshkevitch EA, Tran PV, Boudko DY (2008) The invertebrate B(0) system transporter, D. melanogaster NAT1, has unique d-amino acid affinity and mediates gut and brain functions. Insect biochemistry and molecular biology 38: 923–931.
- 39.Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, et al. (2004) Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase. The Journal of cell biology 166: 1069–1079.
- 40.Loren CE, Scully A, Grabbe C, Edeen PT, Thomas J, et al. (2001) Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes to cells: devoted to molecular & cellular mechanisms 6: 531–544.
- 41.Cheng LY, Bailey AP, Leevers SJ, Ragan TJ, Driscoll PC, et al. (2011) Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146: 435–447.
- 42.Stute C, Schimmelpfeng K, Renkawitz-Pohl R, Palmer RH, Holz A (2004) Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling. Development 131: 743–754.
- 43.Lu X, Melnick MB, Hsu JC, Perrimon N (1994) Genetic and molecular analyses of mutations involved in Drosophila raf signal transduction. The EMBO journal 13: 2592–2599.
- 44.Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67: 701–716.
- 45.Dickson BJ, van der Straten A, Dominguez M, Hafen E (1996) Mutations Modulating Raf signaling in Drosophila eye development. Genetics 142: 163–171.
- 46.Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, et al. (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143: 315–329.
- 47.Maixner A, Hecker TP, Phan QN, Wassarman DA (1998) A screen for mutations that prevent lethality caused by expression of activated sevenless and Ras1 in the Drosophila embryo. Developmental genetics 23: 347–361.
- 48.Huang AM, Rubin GM (2000) A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Genetics 156: 1219–1230.
- 49.Rebay I, Chen F, Hsiao F, Kolodziej PA, Kuang BH, et al. (2000) A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics 154: 695–712.
- 50.Zhu MY, Wilson R, Leptin M (2005) A screen for genes that influence fibroblast growth factor signal transduction in Drosophila. Genetics 170: 767–777.
- 51.Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444: 230–234.
- 52.Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, et al. (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Science signaling 4: rs10.
- 53.Therrien M, Wong AM, Rubin GM (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95: 343–353.
- 54.Douziech M, Roy F, Laberge G, Lefrancois M, Armengod AV, et al. (2003) Bimodal regulation of RAF by CNK in Drosophila. The EMBO journal 22: 5068–5078.
- 55.Roos J, Kelly RB (1998) Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. The Journal of biological chemistry 273: 19108–19119.
- 56.Koh TW, Verstreken P, Bellen HJ (2004) Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43: 193–205.
- 57.Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, et al. (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43: 207–219.
- 58.Chabu C, Doe CQ (2008) Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression. Development 135: 2739–2746.
- 59.Opocher G, Conton P, Schiavi F, Macino B, Mantero F (2005) Pheochromocytoma in von Hippel-Lindau disease and neurofibromatosis type 1. Familial cancer 4: 13–16.
- 60.Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, et al. (2005) A Drosophila model of multiple endocrine neoplasia type 2. Genetics 171: 1057–1081.
- 61.Chan CC, Scoggin S, Wang D, Cherry S, Dembo T, et al. (2011) Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Current biology: CB 21: 1704–1715.
- 62.Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, et al. (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nature cell biology 12: 80–86 sup pp 81–12.
- 63.Sevrioukov EA, He JP, Moghrabi N, Sunio A, Kramer H (1999) A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Molecular cell 4: 479–486.
- 64.Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, et al. (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. Journal of cell science 118: 3663–3673.
- 65.Wittwer F, Jaquenoud M, Brogiolo W, Zarske M, Wustemann P, et al. (2005) Susi, a negative regulator of Drosophila PI3-kinase. Developmental cell 8: 817–827.
- 66.Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, et al. (2009) A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Developmental cell 17: 885–891.
- 67.Slaidina M, Delanoue R, Gronke S, Partridge L, Leopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Developmental cell 17: 874–884.
- 68.Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, et al. (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97: 865–875.
- 69.Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes & development 13: 3244–3258.
- 70.King-Jones K, Charles JP, Lam G, Thummel CS (2005) The ecdysone-induced DHR4 orphan nuclear receptor coordinates growth and maturation in Drosophila. Cell 121: 773–784.
- 71.Mirth C, Truman JW, Riddiford LM (2005) The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current biology: CB 15: 1796–1807.
- 72.McBrayer Z, Ono H, Shimell M, Parvy JP, Beckstead RB, et al. (2007) Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Developmental cell 13: 857–871.
- 73.Kiger JA Jr, Eklund JL, Younger SH, O'Kane CJ (1999) Transgenic inhibitors identify two roles for protein kinase A in Drosophila development. Genetics 152: 281–290.
- 74.Walker JA, Gouzi JY, Huang S, Maher R, Xia H, et al. (2013) A Genetic Screen For Genes Involved In The Drosophila Neurofibromatosis-1 Growth Defect Implicates ALK And Other Potential Therapeutic Targets. PLoS genetics In Press.
- 75.Keshishian H, Broadie K, Chiba A, Bate M (1996) The drosophila neuromuscular junction: a model system for studying synaptic development and function. Annual review of neuroscience 19: 545–575.
- 76.Rohrbough J, Broadie K (2010) Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap. Development 137: 3523–3533.
- 77.Daston MM, Ratner N (1992) Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Developmental dynamics: an official publication of the American Association of Anatomists 195: 216–226.
- 78.Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, et al. (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14: 439–449.
- 79.Serra E, Rosenbaum T, Winner U, Aledo R, Ars E, et al. (2000) Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Human molecular genetics 9: 3055–3064.
- 80.McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, et al. (2008) Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer research 68: 3389–3395.
- 81.Easton DF, Ponder MA, Huson SM, Ponder BA (1993) An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. American journal of human genetics 53: 305–313.
- 82.Soucy EA, Van Oppen D, Nejedly NL, Gao F, Gutmann DH, et al. (2012) Height Assessments in Children With Neurofibromatosis Type 1. Journal of child neurology 28 (3) 303–7.
- 83.Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, et al. (2012) A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes & development 26: 1421–1426.
- 84.Grewal SS (2012) Controlling animal growth and body size - does fruit fly physiology point the way? F1000 biology reports 4: 12.
- 85.Lane ME, Kalderon D (1993) Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes & development 7: 1229–1243.
- 86.Belvin MP, Zhou H, Yin JC (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22: 777–787.
- 87.Liao EH, Hung W, Abrams B, Zhen M (2004) An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430: 345–350.
- 88.Rohrbough J, Kent KS, Broadie K, Weiss JB (2012) Jelly belly trans-synaptic signaling to anaplastic lymphoma kinase regulates neurotransmission strength and synapse architecture. Developmental neurobiology 73 (3) 189–208.
- 89.The I, Murthy AE, Hannigan GE, Jacoby LB, Menon AG, et al. (1993) Neurofibromatosis type 1 gene mutations in neuroblastoma. Nature genetics 3: 62–66.
- 90.George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, et al. (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455: 975–978.
- 91.Chen Y, Takita J, Choi YL, Kato M, Ohira M, et al. (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455: 971–974.
- 92.Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, et al. (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455: 967–970.
- 93.Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, et al. (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455: 930–935.
- 94.Holzel M, Huang S, Koster J, Ora I, Lakeman A, et al. (2010) NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142: 218–229.
- 95.Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, et al. (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. The Journal of biological chemistry 277: 35990–35998.
- 96.Mashour GA, Wang HL, Cabal-Manzano R, Wellstein A, Martuza RL, et al. (1999) Aberrant cutaneous expression of the angiogenic factor midkine is associated with neurofibromatosis type-1. The Journal of investigative dermatology 113: 398–402.
- 97.Mashour GA, Ratner N, Khan GA, Wang HL, Martuza RL, et al. (2001) The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene 20: 97–105.
- 98.Mashour GA, Driever PH, Hartmann M, Drissel SN, Zhang T, et al. (2004) Circulating growth factor levels are associated with tumorigenesis in neurofibromatosis type 1. Clinical cancer research: an official journal of the American Association for Cancer Research 10: 5677–5683.
- 99.Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, et al. (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Science translational medicine 4: 120ra117.
- 100.Li W, Ohlmeyer JT, Lane ME, Kalderon D (1995) Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80: 553–562.
- 101.Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, et al. (2006) The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49: 517–531.
- 102.Loya CM, Lu CS, Van Vactor D, Fulga TA (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature methods 6: 897–903.
- 103.Huang S, Laoukili J, Epping MT, Koster J, Holzel M, et al. (2009) ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer cell 15: 328–340.
- 104.Rewitz KF, Yamanaka N, Gilbert LI, O'Connor MB (2009) The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326: 1403–1405.
Subject Areas?For more information about PLOS Subject Areas, clickhere.
We want your feedback. Do these Subject Areas make sense for this article? Click the target next to the incorrect Subject Area and let us know. Thanks for your help!
For more information about PLOS Subject Areas, clickhere.
We want your feedback. Do these Subject Areas make sense for this article? Click the target next to the incorrect Subject Area and let us know. Thanks for your help!- Larvae
Is the Subject Area"Larvae" applicable to this article?
Thanks for your feedback.
- Neurofibromatosis type 1
Is the Subject Area"Neurofibromatosis type 1" applicable to this article?
Thanks for your feedback.
- RNA interference
Is the Subject Area"RNA interference" applicable to this article?
Thanks for your feedback.
- Drosophila melanogaster
Is the Subject Area"Drosophila melanogaster" applicable to this article?
Thanks for your feedback.
- Genetic screens
Is the Subject Area"Genetic screens" applicable to this article?
Thanks for your feedback.
- Suppressor genes
Is the Subject Area"Suppressor genes" applicable to this article?
Thanks for your feedback.
- Neurons
Is the Subject Area"Neurons" applicable to this article?
Thanks for your feedback.
- Ras signaling
Is the Subject Area"Ras signaling" applicable to this article?
Thanks for your feedback.