Movatterモバイル変換


[0]ホーム

URL:


计算机科学

计算机科学 ››2015,Vol. 42 ››Issue (9): 303-308.doi:10.11896/j.issn.1002-137X.2015.09.060

• 图形图像与模式识别 • 上一篇    下一篇

基于几何信息先验分布的似物性推荐方法

刘质彬,赵启阳   

  1. 北京航空航天大学计算机学院 北京100191,北京航空航天大学计算机学院 北京100191
  • 出版日期:2018-11-14发布日期:2018-11-14

Objectness Proposal Based on Prior Distribution of Geometric Characteristics of Object Regions

LIU Zhi-bin and ZHAO Qi-yang  

    • Online:2018-11-14Published:2018-11-14

    摘要:似物性推荐是计算机视觉研究中的热门问题,其目的是用尽可能少的推荐窗口涵盖可能的兴趣目标,以显著地提升目标检测任务的计算效率。从组合几何学角度对该问题进行了分析,一种“完全窗口覆盖”的方法被提出,用少量窗口即可覆盖所有可能目标区域。对于尺寸不大于512×512的图像,约19000个窗口即可覆盖所有尺寸不小于16×16的目标区域。基于目标矩形的位置、尺寸的先验分布,可以使用贪心策略进一步地缩减窗口数量。为了适应不同图像集在小概率样本上的差异,提出了一种融合了贪心和随机方法的混合机制,其所需的计算量非常小,而且具有很好的泛化能力。在VOC2007测试集上,该混合机制可以在1000个推荐窗口上取得94.52%的召回率,其中在前10个热点推荐窗口上的召回率比其他方法平均高出13.99%~40.29%。

    关键词:目标检测,似物性推荐,几何信息,完全覆盖集合,混合机制

    Abstract:Objectness proposal is an emerging problem aiming to improve the efficiency of object detection by reducing candidate windows.The problem was analyzed from the perspective of combinatorial geometric ,and a method was proposed to construct full cover sets which cover all possible object rectangles with a rather small amount of windows.For images no larger than 512×512,supposing all object rectangles are not smaller than 16×16,nearly 19000 windows are sufficient to make up a full cover set.By exploiting the prior distribution of locations/sizes of object rectangles,this amount can be reduced further in a greedy mode.In order to address the diversity of low-probability samples of different image sets,a hybrid scheme mixing the greedy and random methods which has good generality was presented.The new scheme recalls 94.52% object rectangles with 1000 proposal windows,and its DRs on the first ten hot proposal windows are 13.99%~40.29% higher than existing methods in average.

    Key words:Object detection,Objectness proposal,Geometric characteristics,Full cover set,Hybrid scheme

    引用本文

    刘质彬,赵启阳.基于几何信息先验分布的似物性推荐方法[J]. 计算机科学, 2015, 42(9): 303-308. https://doi.org/10.11896/j.issn.1002-137X.2015.09.060

    LIU Zhi-bin and ZHAO Qi-yang.Objectness Proposal Based on Prior Distribution of Geometric Characteristics of Object Regions[J]. Computer Science, 2015, 42(9): 303-308. https://doi.org/10.11896/j.issn.1002-137X.2015.09.060

    [1] Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2005 .San Diego,United States:IEEE,2005:886-893
    [2] Felzenszwalb P F,Girshick R B,McAllester D,et al.Object detection with discriminatively trained part-based models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645
    [3] Lampert C H,Blaschko M B,Hofmann T.Beyond sliding windows:Object localization by efficient subwindow search[C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,United States:IEEE,2008:1-8
    [4] 杨扬,李善平.分割位置提示的可变形部件模型快速目标检测[J].自动化学报,2012,38(4):540-548 Yang Yang,Li Shan-ping.Fast object detection based on deformable part-based model cued by segmentation position [J].Acta Automatica Sinica,2012,38(4):540-548
    [5] Alexe B,Deselaers T,Ferrari V.What is an object?[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2010.San Francisco,United States:IEEE,2010:73-80
    [6] Alexe B,Deselaers T,Ferrari V.Measuring the objectness ofimage windows [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2189-2202
    [7] 时健,郭延文,杜振龙,等.一种基于网格参数化的图像适应方法[J].软件学报,2008,19(1):19-30Shi Jian,Guo Yan-wen,Du Zhen-long,et al.A Mesh Parameteri-zation-Based Image Retargeting Method [J].Journal of Software,2008,19(1):19-30
    [8] Endres I,Hoiem D.Category independent object proposals[C]∥European Conference on Computer Vision,2010 .Crete,Greece:Springer Berlin Heidelberg,2010:575-588
    [9] Endres I,Hoiem D.Category-independent object proposals with diverse ranking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(2):222-234
    [10] Uijlings J R R,van de Sande K E A,Gevers T,et al.Selective search for object recognition [J].International Journal of Computer Vision,2013,104(2):154-171
    [11] van de Sande K E A,Uijlings J R R,Gevers T,et al.Segmentation as selective search for object recognition[C]∥ 2011 IEEE International Conference on Computer Vision.Barcelona,Spain:IEEE,2011:1879-1886
    [12] Zhang Z,Warrell J,Torr P H S.Proposal generation for object detection using cascaded ranking SVMs[C]∥2011 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2011:1497-1504
    [13] Cheng M M,Zhang Z M,Lin W Y,et al.BING:Binarizednormed gradients for objectness estimation at 300fps[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2014 .Columbus,United States:IEEE,2014:3286-3293
    [14] Everingham M,Van Gool L,Williams C K I,et al.The pascal visual object classes (voc) challenge [J].International Journal of Computer Vision,2010,88(2):303-338
    [15] Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259
    [16] Gao D,Mahadevan V,Vasconcelos N.On the plausibility of the discriminant center-surround hypothesis for visual saliency [J].Journal of Vision,2008,8(7):1-18
    [17] Liu T,Yuan Z,Sun J,et al.Learning to detect a salient object [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):353-367
    [18] Mahadevan V,Vasconcelos N.Biologically inspired object trac-king using center-surround saliency mechanisms [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):541-554

    No related articles found!
    Viewed
    Full text


    Abstract

    Cited

     Shared  
     Discussed  
    No Suggested Reading articles found!
    回顶部
    渝ICP备16013121号-4
    地址:重庆市渝北区洪湖西路18号    邮编:401121  
    电话:023-63500828(编辑部) 023-67039612(会议/专题) 023-67039623(财务/发票)
    E-mail:jsjkx12@163.com
    本系统由北京玛格泰克科技发展有限公司设计开发

    [8]ページ先頭

    ©2009-2025 Movatter.jp