Movatterモバイル変換


[0]ホーム

URL:


Skip to Main Content

Advertisement

MIT Press Direct, home
header search
    Neural Computation
    Skip Nav Destination
    Article navigation
    January 01 2020

    A Robust Model of Gated Working Memory

    In Special Collection:CogNet
    Anthony Strock,
    Anthony Strock
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]
    Search for other works by this author on:
    Xavier Hinaut,
    Xavier Hinaut
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]
    Search for other works by this author on:
    Nicolas P. Rougier
    Nicolas P. Rougier
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]
    Search for other works by this author on:
    Crossmark: Check for Updates
    Anthony Strock
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]
    Xavier Hinaut
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]
    Nicolas P. Rougier
    Inria Bordeaux Sud-Ouest, 33405 Talence Cedex, France; LaBRI, Université de Bordeaux, Institut Polytechnique de Bordeaux, Centre National de la Recherche Scientifique, 33405 Talence Cedex, France; and Institut des Maladies Neurodégénératives, Université de Bordeaux, Centre National de la Recherche Scientifique, 33076 Cedex, Bordeaux, France[email protected]

    X.H. and N.R. contributed equally.

    Received:May 14 2019
    Accepted:August 31 2019
    Online ISSN: 1530-888X
    Print ISSN: 0899-7667
    © 2019 Massachusetts Institute of Technology
    2019
    Massachusetts Institute of Technology
    Neural Computation (2020) 32 (1): 153–181.
    Article history
    Received:
    May 14 2019
    Accepted:
    August 31 2019
    Citation

    Anthony Strock,Xavier Hinaut,Nicolas P. Rougier; A Robust Model of Gated Working Memory.Neural Comput 2020; 32 (1): 153–181. doi:https://doi.org/10.1162/neco_a_01249

    Download citation file:

    toolbar search
    toolbar search

      Abstract

      Gated working memory is defined as the capacity of holding arbitrary information at any time in order to be used at a later time. Based on electrophysiological recordings, several computational models have tackled the problem using dedicated and explicit mechanisms. We propose instead to consider an implicit mechanism based on a random recurrent neural network. We introduce a robust yet simple reservoir model of gated working memory with instantaneous updates. The model is able to store an arbitrary real value at random time over an extended period of time. The dynamics of the model is a line attractor that learns to exploit reentry and a nonlinearity during the training phase using only a few representative values. A deeper study of the model shows that there is actually a large range of hyperparameters for which the results hold (e.g., number of neurons, sparsity, global weight scaling) such that any large enough population, mixing excitatory and inhibitory neurons, can quickly learn to realize such gated working memory. In a nutshell, with a minimal set of hypotheses, we show that we can have a robust model of working memory. This suggests this property could be an implicit property of any random population, that can be acquired through learning. Furthermore, considering working memory to be a physically open but functionally closed system, we give account on some counterintuitive electrophysiological recordings.

      © 2019 Massachusetts Institute of Technology
      2019
      Massachusetts Institute of Technology

      Supplementary data

      You do not currently have access to this content.

      Sign in

      Don't already have an account?Register

      Client Account

      You could not be signed in. Please check your email address / username and password and try again.
      Could not validate captcha. Please try again.

      Sign in via your Institution

      Sign in via your Institution
      721Views
      6Web of Science
      5Crossref

      Advertisement

      Related Book Chapters

      VIBRATION OF A REENTRY VEHICLE
      Statistical Energy Analysis of Dynamical Systems: Theory and Applications
      In a Nutshell
      Impossible Persons
      In a Nutshell
      Foundations of Cognitive Psychology: Core Readings
      Flying Reentry: The X-15
      Digital Apollo: Human and Machine in Spaceflight

      Advertisement

      Neural Computation
      • Online ISSN 1530-888X
      • Print ISSN 0899-7667
      Close Modal
      Close Modal
      This Feature Is Available To Subscribers Only

      Sign In orCreate an Account

      Close Modal
      Close Modal
      This site uses cookies. By continuing to use our website, you are agreeing toour privacy policy. No content on this site may be used to train artificial intelligence systems without permission in writing from the MIT Press.
      Accept

      [8]ページ先頭

      ©2009-2025 Movatter.jp