Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content
  1. Home
  2. A-Z Publications
  3. Annual Review of Analytical Chemistry
  4. Volume 4, 2011
  5. Article

Review Article

Free

A Century of Progress in Molecular Mass Spectrometry

Abstract

The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography–MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-anchem-061010-114018
    2011-07-19
    2025-05-17
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/anchem/4/1/annurev-anchem-061010-114018.html?itemId=/content/journals/10.1146/annurev-anchem-061010-114018&mimeType=html&fmt=ahah

    Literature Cited

    1. ThomsonGP.1. 1965.J.J. Thomson and the Cavendish Laboratory in His Day Garden City, NY: Doubleday186[Google Scholar]
    2. DavisEA,FalconerIJ.2. 1997.J.J. Thomson and the Discovery of the Electron London: Taylor & Francis243[Google Scholar]
    3. ThomasJM.3. 2006. J.J. Thomson: winner of the Nobel Prize for Physics, 1906.Angew. Chem. Int. Ed.45:6797–800[Google Scholar]
    4. ThomsonJJ.4. 1913.Rays of Positive Electricity and Their Application to Chemical Analysis London: Longmans Green277[Google Scholar]
    5. AstonFW.5. 1922.Isotopes London: Edward Arnold.252[Google Scholar]
    6. ThomsonJJ.6. 1907.The Corpuscular Theory of Matter London: Constable239[Google Scholar]
    7. LinderEG.7. 1932. Mass-spectrograph study of the ionization and dissociation by electron impact of benzene and carbon disulfide.Phys. Rev.41:149–53[Google Scholar]
    8. WashburnHW,WileyHF,RockSM.8. 1943. The mass spectrometer as an analytical tool.Ind. Eng. Chem.15:541–47[Google Scholar]
    9. ThomsonJJ.9. 1939. Electronic waves.Philos. Mag.27:1–32[Google Scholar]
    10. FriedelRA,SharkeyAJ.10. 1952.Correlation of the mass spectra of alcohols through C11 Presented at Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Pittsburgh, March 5–7[Google Scholar]
    11. RockSM.11. 1951. Qualitative analysis from mass spectra.Anal. Chem.23:261–68[Google Scholar]
    12. BeynonJH.12. 1954. Qualitative analysis of organic compounds by mass spectrometry.Nature174:735–37[Google Scholar]
    13. BeynonJH.13. 1960.Mass Spectrometry and Its Application to Organic Chemistry Amsterdam: Elsevier640[Google Scholar]
    14. AsselineauJ,RyhageR,StenhagenE.14. 1957. Mass spectrometric studies of long chain methyl esters. Determination of the molecular weight and structure of mycocerosic acid.Acta Chem. Scand.11:196–98[Google Scholar]
    15. CollinJ.15. 1952. Mass spectra of aliphatic amines.Bull. Soc. Sci. Liège21:446–56[Google Scholar]
    16. ReedRI.16. 1958. Electron impact and molecular dissociation. I. Some steroids and triterpenoids.J. Chem. Soc.1958:3342–46[Google Scholar]
    17. HanusV.17. 1959. Isomerization to tropylium ion induced by electron ionization and its significance.Nature184:1796–98[Google Scholar]
    18. FriedmanL,LongFA.18. 1953. Mass spectra and appearance potentials of ketene monomer and dimer: relation to structure of dimer.J. Am. Chem. Soc.75:2837–40[Google Scholar]
    19. BiemannK,GappF,SeiblJ.19. 1959. Application of mass spectrometry to structure problems: amino acid sequence in peptides.J. Am. Chem. Soc.81:2274–75[Google Scholar]
    20. BiemannK.20. 1962.Mass Spectrometry: Organic Chemical Applications New York: McGraw-Hill370[Google Scholar]
    21. RosenstockHM,WallensteinMB,WahrhaftigAL,EyringH.21. 1952. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules.Proc. Natl. Acad. Sci. USA38:667–78[Google Scholar]
    22. Tal'rozeVL,LyubimovaAK.22. 1952. Secondary processes in the ion source of the mass spectrograph.J. Mass Spectrom.33:502–4[Google Scholar]
    23. RylanderPN,MeyersonS,GrubbHM.23. 1957. Organic ions in the gas phase. II. The tropylium ion.J. Am. Chem. Soc.79:842–46[Google Scholar]
    24. DoeringWvE,KnoxLH.24. 1954. The cycloheptatrienylium (tropylium) ion.J. Am. Chem. Soc.76:3203–6[Google Scholar]
    25. HappGP,StewartDW.25. 1952. Rearrangement peaks in the mass spectra of certain aliphatic acids.J. Am. Chem. Soc.74:4404–8[Google Scholar]
    26. NicholsonAJC.26. 1954. The photochemical decomposition of the aliphatic methyl ketones.Trans. Faraday Soc.50:1067–73[Google Scholar]
    27. McLaffertyFW.27. 1956. Mass spectrometric analysis. Broad applicability to chemical research.Anal. Chem.28:306–16[Google Scholar]
    28. McLaffertyFW.28. 1959. Mass spectrometric analysis: molecular rearrangements.Anal. Chem.31:82–87[Google Scholar]
    29. SpitellerG,Spitteller-FriedmannM.29. 1964. Rearrangements of aliphatic compounds in the mass spectrometer.Monatshefte Chem.95:257–64[Google Scholar]
    30. BudzikiewiczH,DjerassiC,WilliamsDH.30. 1964.Structural Elucidation of Natural Products by Mass Spectrometry.IIAlkaloids San Francisco: Holden-Day306[Google Scholar]
    31. ShannonJS.31. 1964. New ion charge symbolism in mass spectrometry.Proc. R. Aust. Chem. Inst.31:323–28[Google Scholar]
    32. McLaffertyFW,GohlkeRS.32. 1959. Mass spectrometric analysis. Spectral data file utilizing machine filing and manual searching.Anal. Chem.31:1160–63[Google Scholar]
    33. GohlkeRS.33. 1963.Uncertified Dow Mass Spectral Data Midland, MI: Dow Chem. Co.539[Google Scholar]
    34. McLaffertyFW.34. 1963.Mass Spectral Correlations Washington, DC: Am. Chem. Soc.117[Google Scholar]
    35. McLaffertyFW.35. 1966.Interpretation of Mass Spectra New York: Benjamin229[Google Scholar]
    36. WileyWC.36. 1956. Bendix time-of-flight mass spectrometer.Science124:817–20[Google Scholar]
    37. GohlkeRS.37. 1959. Time-of-flight mass spectrometry and gas-liquid partition chromatography.Anal. Chem.31:535–41[Google Scholar]
    38. GohlkeRS,McLaffertyFW.38. 1993. Early gas chromatography/mass spectrometry.J. Am. Soc. Mass Spectrom.4:367–71[Google Scholar]
    39. RyhageR.39. 1964. Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns.Anal. Chem.36:759–64[Google Scholar]
    40. BaldwinMA,McLaffertyFW.40. 1973. Liquid chromatography–mass spectrometry interface. I. The direct introduction of liquid solutions into a chemical ionization mass spectrometer.Org. Mass Spectrom.7:1111–12[Google Scholar]
    41. FennJB,MannM,MengCK,WongSF,WhitehouseCM.41. 1989. Electrospray ionization for mass spectrometry of large biomolecules.Science246:64–71[Google Scholar]
    42. McLaffertyFW.42. 1983.Tandem Mass Spectrometry New York: Wiley506[Google Scholar]
    43. AbrahamssonS,StenhagenE,McLaffertyFW.43. 1969.Atlas of Mass Spectral Data New York: Wiley2,354[Google Scholar]
    44. VenkataraghavanR,McLaffertyFW,Van LearGE.44. 1969. Computer-aided interpretation of mass spectra.Org. Mass Spectrom.2:1–15[Google Scholar]
    45. McLaffertyFW,StaufferDB.45. 1989.Wiley/NBS Registry of Mass Spectral Data New York: Wiley7,872[Google Scholar]
    46. McLaffertyFW.46. 2009.Registry of Mass Spectral Data and Registry Combined with NIST Hoboken, NJ: Wiley-Blackwell, 9th.[Google Scholar]
    47. McLaffertyFW,TurecekF.47. 1993. Computer identification of unknown mass spectra.Interpretation of Mass Spectra283–91 Mill Valley, CA: Univ. Sci. Books, 4th.[Google Scholar]
    48. McLaffertyFW,HertelRH,VillwockRD.48. 1974. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures.Org. Mass Spectrom.9:690–93[Google Scholar]
    49. PesynaGM,VenkataraghavanR,DayringerHE,McLaffertyFW.49. 1976. A probability based matching system using a large collection of reference mass spectra.Anal. Chem.48:1362–68[Google Scholar]
    50. McLaffertyFW,ZhangMY,StaufferDB,LohSY.50. 1998. Comparison of algorithms and databases for matching unknown mass spectra.J. Am. Soc. Mass Spectrom.9:92–95[Google Scholar]
    51. McLaffertyFW,StaufferDA,LohSY,WesdemiotisC.51. 1999. Unknown identification using reference mass spectra. Quality evaluation of databases.J. Am. Soc. Mass Spectrom.10:1229–40[Google Scholar]
    52. BudzikiewiczH,DjerassiC,WilliamsDH.52. 1967.Mass Spectrometry of Organic Compounds San Francisco: Holden-Day690[Google Scholar]
    53. KwokKS,VenkataraghavanR,McLaffertyFW.53. 1973. Computer-aided interpretation of mass spectra. III. A self-training interpretive and retrieval system.J. Am. Chem. Soc.95:4185–94[Google Scholar]
    54. HarakiKS,VenkataraghavanR,McLaffertyFW.54. 1981. Prediction of substructures of unknown mass spectra by the self-training interpretive and retrieval system.Anal. Chem.53:386–92[Google Scholar]
    55. McLaffertyFW.55. 1963.Mass Spectrometry of Organic Ions New York: Academic730[Google Scholar]
    56. BudzikiewiczH,DjerassiC,WilliamsDH.56. 1964.Structural Elucidation of Natural Products by Mass Spectrometry.IAlkaloids San Francisco: Holden-Day233[Google Scholar]
    57. DjerassiC,BrewerHW,BudzikiewiczH,OraziOO,CorralRA.57. 1962. Mass spectrometry in structural and stereochemical problems. Spegazzinine and spegazzinidine.Experientia18:113–15[Google Scholar]
    58. RollerH,DahmKH,SweeleyCC,TrostBM.58. 1967. Structure of the juvenile hormone.Angew. Chem. Int. Ed.6:179–80[Google Scholar]
    59. BarberM,JollesP,VilkasE,LedererE.59. 1965. Determination of amino acid sequences in oligopeptides by mass spectrometry. I. The structure of fortuitine, an acylnonapeptide methyl ester.Biochem. Biophys. Res. Commun.18:469–73[Google Scholar]
    60. McLaffertyFW,WachsT,LifshitzC,InnortaG,IrvingP.60. 1970. Substituent effects in unimolecular ion decompositions. XV. Mechanistic interpretations and the quasi-equilibrium theory.J. Am. Chem. Soc.92:6867–80[Google Scholar]
    61. YatesBF,BoumaWJ,RadomL.61. 1986. Distonic radical cations. Guidelines for the assessment of their stability.Tetrahedron42:6225–34[Google Scholar]
    62. GrossML,McLaffertyFW.62. 1971. Identification of C3H6+ structural isomers by ion cyclotron resonance spectroscopy.J. Am. Chem. Soc.93:1267–68[Google Scholar]
    63. VenkataraghavanR,KlimowskiRJ,McLaffertyFW.63. 1970. On-line computers in research: high-resolution mass spectrometry.Acc. Chem. Res.3:158–65[Google Scholar]
    64. HippleJA.64. 1947. Peak contour and half-life of metastable ions appearing in mass spectra.Phys. Rev.71:594–99[Google Scholar]
    65. ShannonTW,McLaffertyFW.65. 1966. Identification of gaseous organic ions by the use of “metastable peaks.”.J. Am. Chem. Soc.88:5021–22[Google Scholar]
    66. McLaffertyFW,BryceTA.66. 1967. Metastable ion characteristics: characterization of isomeric molecules.Chem. Commun.1967:1215–17[Google Scholar]
    67. GrossML,McLaffertyFW.67. 1968. Substituent effects in unimolecular ion decompositions. Formation of C6H5CO+ ions with varying internal energies.Chem. Commun.1968:254–55[Google Scholar]
    68. McLaffertyFW,FairweatherRB.68. 1968. Metastable ion characteristics. VIII. Characterization of ion decomposition mechanisms by metastable ion abundances.J. Am. Chem. Soc.90:5915–17[Google Scholar]
    69. McLaffertyFW,PikeWT.69. 1967. Metastable ion characteristics. III. Structures of C3H6O+ ions in the mass spectra of aliphatic ketones.J. Am. Chem. Soc.89:5953–54[Google Scholar]
    70. DickmanJ,MacLeodJK,DjerassiC,BaldeschwielerJD.70. 1969. Mass spectrometry in structural and stereochemical problems. CLXIX. Determination of the structures of the ions produced in the single and double McLafferty rearrangements by ion cyclotron resonance spectroscopy.J. Am. Chem. Soc.91:2069–84[Google Scholar]
    71. McLaffertyFW,SchuddemageHDR.71. 1969. Minimization of rearrangement reactions in mass spectra by use of collisional activation.J. Am. Chem. Soc.91:1866–68[Google Scholar]
    72. HaddonWF,McLaffertyFW.72. 1968. Metastable ion characteristics. VII. Collision induced metastables.J. Am. Chem. Soc.90:4745–46[Google Scholar]
    73. HaddonWF,McLaffertyFW.73. 1969. Metastable ion characteristics. Measurements with a modified time-of-flight mass spectrometer.Anal. Chem.41:31–36[Google Scholar]
    74. McLaffertyFW,BentePFIII,KornfeldR,TsaiS-C,HoweI.74. 1973. Collisional activation spectra of organic ions.J. Am. Chem. Soc.95:2120–29[Google Scholar]
    75. McLaffertyFW,KornfeldR,HaddonWF,LevsenK,SakaiI.75.  et al.1973. Application of collisional activation spectra to the elucidation of organic ion structures.J. Am. Chem. Soc.95:3886–92[Google Scholar]
    76. ChengMT,KruppaGH,McLaffertyFW,CooperDA.76.  Structural information from tandem mass spectrometry for china white and related fentanyl derivatives.Anal. Chem.54:2204–7[Google Scholar]
    77. KrugerTL,LittonJF,KondratRW,CooksRG.77. 1976. Mixture analysis by mass-analyzed ion kinetic energy spectrometry.Anal. Chem.48:2113–19[Google Scholar]
    78. KondratRW,CooksRG.78. 1978. Direct analysis of mixtures by mass spectrometry.Anal. Chem.50:81–92A[Google Scholar]
    79. McLaffertyFW,BockhoffFM.79. 1978. A separation/identification system for complex mixtures utilizing mass separation and mass spectral characterization.Anal. Chem.50:69–76[Google Scholar]
    80. McLaffertyFW.80. 1980. Tandem mass spectrometry (MS/MS): a promising new analytical technique for specific component determination in complex mixtures.Acc. Chem. Res.13:33–39[Google Scholar]
    81. YostRA,EnkeCG.81. 1979. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation.Anal. Chem.51:1251–62A[Google Scholar]
    82. YostRA,EnkeCG,McGilveryDC,SmithD,MorrisonJD.82. 1979. High efficiency collision-induced dissociation in an RF-only quadrupole.Int. J. Mass Spectrom. Ion Phys.30:127–36[Google Scholar]
    83. McLaffertyFW,VenkataraghavanR,IrvingP.83. 1970. Determination of amino acid sequences in peptide mixtures by mass spectrometry.Biochem. Biophys. Res. Commun.39:274–78[Google Scholar]
    84. WipfH-K,IrvingP,McCamishM,VenkataraghavanR,McLaffertyFW.84.  Mass spectrometric studies of peptides. V. Determination of amino acid sequences in peptide mixtures by mass spectrometry.J. Am. Chem. Soc.95:3369–75[Google Scholar]
    85. McLaffertyFW,ToddPJ,McGilveryDC,BaldwinMA.85. 1980. High-resolution tandem mass spectrometry (MS/MS) of increased sensitivity and mass range.J. Am. Chem. Soc.102:3360–63[Google Scholar]
    86. AmsterIJ,BaldwinMA,ChengMT,ProctorCJ,McLaffertyFW.86. 1983. Tandem mass spectrometry of higher molecular weight compounds.J. Am. Chem. Soc.105:1654–55[Google Scholar]
    87. ChengMT,BarbalasMP,PeguesRF,McLaffertyFW.87. 1983. Tandem mass spectrometry: structural and stereochemical information from steroids.J. Am. Chem. Soc.105:1510–13[Google Scholar]
    88. AmsterIJ,McLaffertyFW.88. 1985. Tandem mass spectrometry with fast atom bombardment ionization of cobalamins.Anal. Chem.57:1208–10[Google Scholar]
    89. GelleneGI,PorterRF.89. 1983. Neutralized ion-beam spectroscopy.Acc. Chem. Res.16:200–7[Google Scholar]
    90. DanisPO,WesdemiotisC,McLaffertyFW.90. 1983. Neutralization-reionization mass spectrometry (NRMS).J. Am. Chem. Soc.105:7454–56[Google Scholar]
    91. BurgersPC,HolmesJL,MommersAA,TerlouwJK.91. 1983. Neutral products of ion fragmentations: hydrogen cyanide and hydrogen isocyanide (HNC) identified by collisionally induced dissociative ionization.Chem. Phys. Lett.102:1–3[Google Scholar]
    92. FengR,WesdemiotisC,BaldwinMA,McLaffertyFW.92. 1988. An improved tandem double-focusing mass spectrometer for neutralization-reionization and collisional activation studies.Int. J. Mass Spectrom. Ion Processes86:95–107[Google Scholar]
    93. McLaffertyFW.93. 1990. Studies of unusual simple molecules by neutralization-reionization mass spectrometry.Science247:925–29[Google Scholar]
    94. HolmesJL.94. 1989. The neutralization of organic cations.Mass Spectrom. Rev.8:513–39[Google Scholar]
    95. SchwarzH.95. 1989. Generation of elusive neutrals and dications by neutralization. Charge stripping of monocations in beam experiments.Pure Appl. Chem.61:685–92[Google Scholar]
    96. ZhangM-Y,WesdemiotisC,MarchettiM,DanisPO,RayJCJr.96.  et al.1989. Characterization of four C4H4 molecules and cations by neutralization-reionization mass spectrometry.J. Am. Chem. Soc.111:8341–46[Google Scholar]
    97. DrinkwaterDE,McLaffertyFW.97. 1993. Reduced isotope scrambling in neutralization-reionization mass spectra.Org. Mass Spectrom.28:378–81[Google Scholar]
    98. ComisarowMB,MarshallAG.98. 1974. Fourier transform ion cyclotron resonance spectroscopy.Chem. Phys. Lett.25:282–83[Google Scholar]
    99. CodyRBJr,AmsterIJ,McLaffertyFW.99. 1985. Peptide mixture sequencing by tandem Fourier-transform mass spectrometry.Proc. Natl. Acad. Sci. USA82:6367–70[Google Scholar]
    100. AmsterIJ,McLaffertyFW,CastroME,RussellDH,CodyRBJr,GhaderiS.100. 1986. Detection of mass 16241 ions by Fourier-transform mass spectrometry.Anal. Chem.58:483–85[Google Scholar]
    101. McLaffertyFW,AmsterIJ.101. 1986. Tandem Fourier-transform mass spectrometry.Int. J. Mass Spectrom. Ion Processes72:85–91[Google Scholar]
    102. LooJA,WilliamsER,AmsterIJ,FurlongJJP,WangBH.102.  et al.1987.252Cf plasma desorption with Fourier-transform mass spectrometry.Anal. Chem.59:1880–82[Google Scholar]
    103. AmsterIJ,LooJA,FurlongJJP,McLaffertyFW.103. 1987. Cesium ion desorption ionization with Fourier-transform mass spectrometry.Anal. Chem.59:313–17[Google Scholar]
    104. HuntDF,ShabanowitzJ,YatesJRIII,ZhuN-Z,RussellDH,CastroME.104. 1987. Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins.Proc. Natl. Acad. Sci. USA84:620–23[Google Scholar]
    105. HenryKD,WilliamsER,WangB-H,McLaffertyFW,ShabanowitzJ,HuntDF.105. 1989. Fourier-transform mass spectrometry of large molecules by electrospray ionization.Proc. Natl. Acad. Sci. USA86:9075–78[Google Scholar]
    106. MannM,KelleherNL.106. 2008. Precision proteomics: the case for high resolution and high mass accuracy.Proc. Natl. Acad. Sci. USA105:18132–38[Google Scholar]
    107. KelleherNL,LinHY,ValaskovicGA,AaserudDJ,FridrikssonEK,McLaffertyFW.107. 1999. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry.J. Am. Chem. Soc.121:806–12[Google Scholar]
    108. PesaventoJJ,BullockCR,LeDucRD,MizzenCA,KelleherNL.108. 2008. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.J. Biol. Chem.283:14927–37[Google Scholar]
    109. McLaffertyFW.109. 1994. High-resolution tandem FT mass spectrometry above 10 kDa.Acc. Chem. Res.27:379–86[Google Scholar]
    110. ValaskovicGA,KelleherNL,McLaffertyFW.110. 1996. Attomole protein characterization by capillary electrophoresis/mass spectrometry.Science273:1199–202[Google Scholar]
    111. BelovME,GoshkovME,UdsethHR,AndersonGA,SmithRD.111. 2000. Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins.Anal. Chem.72:2271–79[Google Scholar]
    112. LittleDP,SpeirJP,SenkoMW,O'ConnorPB,McLaffertyFW.112. 1994. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing.Anal. Chem.66:2809–15[Google Scholar]
    113. GuanZ,KelleherNL,O'ConnorPB,AaserudDJ,LittleDP,McLaffertyFW.113. 1996. 193 nm photodissociation of larger multiply-charged biomolecules.Int. J. Mass Spectrom. Ion Processes157/158:357–64[Google Scholar]
    114. WilliamsER,HenryKD,McLaffertyFW,ShabanowitzJ,HuntDF.114. 1990. Surface-induced dissociation of large peptide ions in Fourier-transform mass spectrometry.J. Am. Soc. Mass Spectrom.1:413–16[Google Scholar]
    115. McLaffertyFW,AmsterIJ,FurlongJJP,LooJA,WangBH,WilliamsER.115. 1987. Tandem Fourier-transform mass spectrometry of large molecules.Tandem Fourier-Transform Mass Spectrometry MV Buchanan116–26 Washington, DC: Am. Chem. Soc.[Google Scholar]
    116. ZubarevRA,KelleherNL,McLaffertyFW.116. 1998. Electron capture dissociation of multiply charged protein cations. A nonergodic process.J. Am. Chem. Soc.120:3265–66[Google Scholar]
    117. SzeSK,GeY,OhHB,McLaffertyFW.117. 2003. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry.Anal. Chem.75:1599–603[Google Scholar]
    118. SzeSK,GeY,OhHB,McLaffertyFW.118. 2002. Top down mass spectrometry of a 29 kDa protein for characterization of any posttranslational modification to within one residue.Proc. Natl. Acad. Sci. USA99:1774–49[Google Scholar]
    119. MirgorodskayaE,RoepstorffP,ZubarevR.119. 1999. Localization ofO-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer.Anal. Chem.71:4431–36[Google Scholar]
    120. ShiSD-H,HemlingME,CarrSA,HornDM,LindhI,McLaffertyFW.120. 2001. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry.Anal. Chem.73:19–22[Google Scholar]
    121. SykaJE,CoonJJ,SchroederMJ,ShabanowitzJ,HuntDF.121. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry.Proc. Natl. Acad. Sci. USA101:9528–33[Google Scholar]
    122. HofstadlerSA,Sannes-LoweryKA.122. 2006. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes.Nat. Rev. Drug Discov.5:585–95[Google Scholar]
    123. BeneschJL,AquilinaJA,RuotoloBT,SobottF,RobinsonCV.123. 2006. Tandem mass spectrometry reveals the quaternary structure of macromolecular assemblies.Chem. Biol.13:597–609[Google Scholar]
    124. SuckauD,ShiY,BeuSC,SenkoMW,QuinnJP.124.  et al.1993. Coexisting stable conformations of gaseous protein ions.Proc. Natl. Acad. Sci. USA90:790–93[Google Scholar]
    125. BohrerBC,MerenbloomSI,KoenigerSL,HilderbrandAE,ClemmerDE.125. 2008. Biomolecule analysis by ion mobility spectrometry.Annu. Rev. Anal. Chem.1:293–327[Google Scholar]
    126. BreukerK,OhHB,HornDM,CerdaBA,McLaffertyFW.126. 2002. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation.J. Am. Chem. Soc.124:6407–20[Google Scholar]
    127. OhHB,BreukerK,SzeSK,GeY,CarpenterBK,McLaffertyFW.127. 2002. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy.Proc. Natl. Acad. Sci. USA99:15863–68[Google Scholar]
    128. BreukerK,McLaffertyFW.128. 2008. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12–102 s.Proc. Natl. Acad. Sci. USA105:18145–52[Google Scholar]
    129. HanX,JinM,BreukerK,McLaffertyFW.129. 2006. Extending top-down mass spectrometry to proteins with masses >200 kDa.Science314:109–12[Google Scholar]
    130. McLaffertyFW.130. 1984. Trends in analytical instrumentation.Science226:251–53[Google Scholar]
    /content/journals/10.1146/annurev-anchem-061010-114018
    Loading
    A Century of Progress in Molecular Mass Spectrometry
    Annual Review of Analytical Chemistry4, 1 (2011);https://doi.org/10.1146/annurev-anchem-061010-114018
    /content/journals/10.1146/annurev-anchem-061010-114018
    /content/journals/10.1146/annurev-anchem-061010-114018
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/anchem
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-anchem-061010-114018
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. ThomsonGP.1. 1965.J.J. Thomson and the Cavendish Laboratory in His Day Garden City, NY: Doubleday186[Google Scholar]
    2. DavisEA,FalconerIJ.2. 1997.J.J. Thomson and the Discovery of the Electron London: Taylor & Francis243[Google Scholar]
    3. ThomasJM.3. 2006. J.J. Thomson: winner of the Nobel Prize for Physics, 1906.Angew. Chem. Int. Ed.45:6797–800[Google Scholar]
    4. ThomsonJJ.4. 1913.Rays of Positive Electricity and Their Application to Chemical Analysis London: Longmans Green277[Google Scholar]
    5. AstonFW.5. 1922.Isotopes London: Edward Arnold.252[Google Scholar]
    6. ThomsonJJ.6. 1907.The Corpuscular Theory of Matter London: Constable239[Google Scholar]
    7. LinderEG.7. 1932. Mass-spectrograph study of the ionization and dissociation by electron impact of benzene and carbon disulfide.Phys. Rev.41:149–53[Google Scholar]
    8. WashburnHW,WileyHF,RockSM.8. 1943. The mass spectrometer as an analytical tool.Ind. Eng. Chem.15:541–47[Google Scholar]
    9. ThomsonJJ.9. 1939. Electronic waves.Philos. Mag.27:1–32[Google Scholar]
    10. FriedelRA,SharkeyAJ.10. 1952.Correlation of the mass spectra of alcohols through C11 Presented at Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Pittsburgh, March 5–7[Google Scholar]
    11. RockSM.11. 1951. Qualitative analysis from mass spectra.Anal. Chem.23:261–68[Google Scholar]
    12. BeynonJH.12. 1954. Qualitative analysis of organic compounds by mass spectrometry.Nature174:735–37[Google Scholar]
    13. BeynonJH.13. 1960.Mass Spectrometry and Its Application to Organic Chemistry Amsterdam: Elsevier640[Google Scholar]
    14. AsselineauJ,RyhageR,StenhagenE.14. 1957. Mass spectrometric studies of long chain methyl esters. Determination of the molecular weight and structure of mycocerosic acid.Acta Chem. Scand.11:196–98[Google Scholar]
    15. CollinJ.15. 1952. Mass spectra of aliphatic amines.Bull. Soc. Sci. Liège21:446–56[Google Scholar]
    16. ReedRI.16. 1958. Electron impact and molecular dissociation. I. Some steroids and triterpenoids.J. Chem. Soc.1958:3342–46[Google Scholar]
    17. HanusV.17. 1959. Isomerization to tropylium ion induced by electron ionization and its significance.Nature184:1796–98[Google Scholar]
    18. FriedmanL,LongFA.18. 1953. Mass spectra and appearance potentials of ketene monomer and dimer: relation to structure of dimer.J. Am. Chem. Soc.75:2837–40[Google Scholar]
    19. BiemannK,GappF,SeiblJ.19. 1959. Application of mass spectrometry to structure problems: amino acid sequence in peptides.J. Am. Chem. Soc.81:2274–75[Google Scholar]
    20. BiemannK.20. 1962.Mass Spectrometry: Organic Chemical Applications New York: McGraw-Hill370[Google Scholar]
    21. RosenstockHM,WallensteinMB,WahrhaftigAL,EyringH.21. 1952. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules.Proc. Natl. Acad. Sci. USA38:667–78[Google Scholar]
    22. Tal'rozeVL,LyubimovaAK.22. 1952. Secondary processes in the ion source of the mass spectrograph.J. Mass Spectrom.33:502–4[Google Scholar]
    23. RylanderPN,MeyersonS,GrubbHM.23. 1957. Organic ions in the gas phase. II. The tropylium ion.J. Am. Chem. Soc.79:842–46[Google Scholar]
    24. DoeringWvE,KnoxLH.24. 1954. The cycloheptatrienylium (tropylium) ion.J. Am. Chem. Soc.76:3203–6[Google Scholar]
    25. HappGP,StewartDW.25. 1952. Rearrangement peaks in the mass spectra of certain aliphatic acids.J. Am. Chem. Soc.74:4404–8[Google Scholar]
    26. NicholsonAJC.26. 1954. The photochemical decomposition of the aliphatic methyl ketones.Trans. Faraday Soc.50:1067–73[Google Scholar]
    27. McLaffertyFW.27. 1956. Mass spectrometric analysis. Broad applicability to chemical research.Anal. Chem.28:306–16[Google Scholar]
    28. McLaffertyFW.28. 1959. Mass spectrometric analysis: molecular rearrangements.Anal. Chem.31:82–87[Google Scholar]
    29. SpitellerG,Spitteller-FriedmannM.29. 1964. Rearrangements of aliphatic compounds in the mass spectrometer.Monatshefte Chem.95:257–64[Google Scholar]
    30. BudzikiewiczH,DjerassiC,WilliamsDH.30. 1964.Structural Elucidation of Natural Products by Mass Spectrometry.IIAlkaloids San Francisco: Holden-Day306[Google Scholar]
    31. ShannonJS.31. 1964. New ion charge symbolism in mass spectrometry.Proc. R. Aust. Chem. Inst.31:323–28[Google Scholar]
    32. McLaffertyFW,GohlkeRS.32. 1959. Mass spectrometric analysis. Spectral data file utilizing machine filing and manual searching.Anal. Chem.31:1160–63[Google Scholar]
    33. GohlkeRS.33. 1963.Uncertified Dow Mass Spectral Data Midland, MI: Dow Chem. Co.539[Google Scholar]
    34. McLaffertyFW.34. 1963.Mass Spectral Correlations Washington, DC: Am. Chem. Soc.117[Google Scholar]
    35. McLaffertyFW.35. 1966.Interpretation of Mass Spectra New York: Benjamin229[Google Scholar]
    36. WileyWC.36. 1956. Bendix time-of-flight mass spectrometer.Science124:817–20[Google Scholar]
    37. GohlkeRS.37. 1959. Time-of-flight mass spectrometry and gas-liquid partition chromatography.Anal. Chem.31:535–41[Google Scholar]
    38. GohlkeRS,McLaffertyFW.38. 1993. Early gas chromatography/mass spectrometry.J. Am. Soc. Mass Spectrom.4:367–71[Google Scholar]
    39. RyhageR.39. 1964. Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns.Anal. Chem.36:759–64[Google Scholar]
    40. BaldwinMA,McLaffertyFW.40. 1973. Liquid chromatography–mass spectrometry interface. I. The direct introduction of liquid solutions into a chemical ionization mass spectrometer.Org. Mass Spectrom.7:1111–12[Google Scholar]
    41. FennJB,MannM,MengCK,WongSF,WhitehouseCM.41. 1989. Electrospray ionization for mass spectrometry of large biomolecules.Science246:64–71[Google Scholar]
    42. McLaffertyFW.42. 1983.Tandem Mass Spectrometry New York: Wiley506[Google Scholar]
    43. AbrahamssonS,StenhagenE,McLaffertyFW.43. 1969.Atlas of Mass Spectral Data New York: Wiley2,354[Google Scholar]
    44. VenkataraghavanR,McLaffertyFW,Van LearGE.44. 1969. Computer-aided interpretation of mass spectra.Org. Mass Spectrom.2:1–15[Google Scholar]
    45. McLaffertyFW,StaufferDB.45. 1989.Wiley/NBS Registry of Mass Spectral Data New York: Wiley7,872[Google Scholar]
    46. McLaffertyFW.46. 2009.Registry of Mass Spectral Data and Registry Combined with NIST Hoboken, NJ: Wiley-Blackwell, 9th.[Google Scholar]
    47. McLaffertyFW,TurecekF.47. 1993. Computer identification of unknown mass spectra.Interpretation of Mass Spectra283–91 Mill Valley, CA: Univ. Sci. Books, 4th.[Google Scholar]
    48. McLaffertyFW,HertelRH,VillwockRD.48. 1974. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures.Org. Mass Spectrom.9:690–93[Google Scholar]
    49. PesynaGM,VenkataraghavanR,DayringerHE,McLaffertyFW.49. 1976. A probability based matching system using a large collection of reference mass spectra.Anal. Chem.48:1362–68[Google Scholar]
    50. McLaffertyFW,ZhangMY,StaufferDB,LohSY.50. 1998. Comparison of algorithms and databases for matching unknown mass spectra.J. Am. Soc. Mass Spectrom.9:92–95[Google Scholar]
    51. McLaffertyFW,StaufferDA,LohSY,WesdemiotisC.51. 1999. Unknown identification using reference mass spectra. Quality evaluation of databases.J. Am. Soc. Mass Spectrom.10:1229–40[Google Scholar]
    52. BudzikiewiczH,DjerassiC,WilliamsDH.52. 1967.Mass Spectrometry of Organic Compounds San Francisco: Holden-Day690[Google Scholar]
    53. KwokKS,VenkataraghavanR,McLaffertyFW.53. 1973. Computer-aided interpretation of mass spectra. III. A self-training interpretive and retrieval system.J. Am. Chem. Soc.95:4185–94[Google Scholar]
    54. HarakiKS,VenkataraghavanR,McLaffertyFW.54. 1981. Prediction of substructures of unknown mass spectra by the self-training interpretive and retrieval system.Anal. Chem.53:386–92[Google Scholar]
    55. McLaffertyFW.55. 1963.Mass Spectrometry of Organic Ions New York: Academic730[Google Scholar]
    56. BudzikiewiczH,DjerassiC,WilliamsDH.56. 1964.Structural Elucidation of Natural Products by Mass Spectrometry.IAlkaloids San Francisco: Holden-Day233[Google Scholar]
    57. DjerassiC,BrewerHW,BudzikiewiczH,OraziOO,CorralRA.57. 1962. Mass spectrometry in structural and stereochemical problems. Spegazzinine and spegazzinidine.Experientia18:113–15[Google Scholar]
    58. RollerH,DahmKH,SweeleyCC,TrostBM.58. 1967. Structure of the juvenile hormone.Angew. Chem. Int. Ed.6:179–80[Google Scholar]
    59. BarberM,JollesP,VilkasE,LedererE.59. 1965. Determination of amino acid sequences in oligopeptides by mass spectrometry. I. The structure of fortuitine, an acylnonapeptide methyl ester.Biochem. Biophys. Res. Commun.18:469–73[Google Scholar]
    60. McLaffertyFW,WachsT,LifshitzC,InnortaG,IrvingP.60. 1970. Substituent effects in unimolecular ion decompositions. XV. Mechanistic interpretations and the quasi-equilibrium theory.J. Am. Chem. Soc.92:6867–80[Google Scholar]
    61. YatesBF,BoumaWJ,RadomL.61. 1986. Distonic radical cations. Guidelines for the assessment of their stability.Tetrahedron42:6225–34[Google Scholar]
    62. GrossML,McLaffertyFW.62. 1971. Identification of C3H6+ structural isomers by ion cyclotron resonance spectroscopy.J. Am. Chem. Soc.93:1267–68[Google Scholar]
    63. VenkataraghavanR,KlimowskiRJ,McLaffertyFW.63. 1970. On-line computers in research: high-resolution mass spectrometry.Acc. Chem. Res.3:158–65[Google Scholar]
    64. HippleJA.64. 1947. Peak contour and half-life of metastable ions appearing in mass spectra.Phys. Rev.71:594–99[Google Scholar]
    65. ShannonTW,McLaffertyFW.65. 1966. Identification of gaseous organic ions by the use of “metastable peaks.”.J. Am. Chem. Soc.88:5021–22[Google Scholar]
    66. McLaffertyFW,BryceTA.66. 1967. Metastable ion characteristics: characterization of isomeric molecules.Chem. Commun.1967:1215–17[Google Scholar]
    67. GrossML,McLaffertyFW.67. 1968. Substituent effects in unimolecular ion decompositions. Formation of C6H5CO+ ions with varying internal energies.Chem. Commun.1968:254–55[Google Scholar]
    68. McLaffertyFW,FairweatherRB.68. 1968. Metastable ion characteristics. VIII. Characterization of ion decomposition mechanisms by metastable ion abundances.J. Am. Chem. Soc.90:5915–17[Google Scholar]
    69. McLaffertyFW,PikeWT.69. 1967. Metastable ion characteristics. III. Structures of C3H6O+ ions in the mass spectra of aliphatic ketones.J. Am. Chem. Soc.89:5953–54[Google Scholar]
    70. DickmanJ,MacLeodJK,DjerassiC,BaldeschwielerJD.70. 1969. Mass spectrometry in structural and stereochemical problems. CLXIX. Determination of the structures of the ions produced in the single and double McLafferty rearrangements by ion cyclotron resonance spectroscopy.J. Am. Chem. Soc.91:2069–84[Google Scholar]
    71. McLaffertyFW,SchuddemageHDR.71. 1969. Minimization of rearrangement reactions in mass spectra by use of collisional activation.J. Am. Chem. Soc.91:1866–68[Google Scholar]
    72. HaddonWF,McLaffertyFW.72. 1968. Metastable ion characteristics. VII. Collision induced metastables.J. Am. Chem. Soc.90:4745–46[Google Scholar]
    73. HaddonWF,McLaffertyFW.73. 1969. Metastable ion characteristics. Measurements with a modified time-of-flight mass spectrometer.Anal. Chem.41:31–36[Google Scholar]
    74. McLaffertyFW,BentePFIII,KornfeldR,TsaiS-C,HoweI.74. 1973. Collisional activation spectra of organic ions.J. Am. Chem. Soc.95:2120–29[Google Scholar]
    75. McLaffertyFW,KornfeldR,HaddonWF,LevsenK,SakaiI.75.  et al.1973. Application of collisional activation spectra to the elucidation of organic ion structures.J. Am. Chem. Soc.95:3886–92[Google Scholar]
    76. ChengMT,KruppaGH,McLaffertyFW,CooperDA.76.  Structural information from tandem mass spectrometry for china white and related fentanyl derivatives.Anal. Chem.54:2204–7[Google Scholar]
    77. KrugerTL,LittonJF,KondratRW,CooksRG.77. 1976. Mixture analysis by mass-analyzed ion kinetic energy spectrometry.Anal. Chem.48:2113–19[Google Scholar]
    78. KondratRW,CooksRG.78. 1978. Direct analysis of mixtures by mass spectrometry.Anal. Chem.50:81–92A[Google Scholar]
    79. McLaffertyFW,BockhoffFM.79. 1978. A separation/identification system for complex mixtures utilizing mass separation and mass spectral characterization.Anal. Chem.50:69–76[Google Scholar]
    80. McLaffertyFW.80. 1980. Tandem mass spectrometry (MS/MS): a promising new analytical technique for specific component determination in complex mixtures.Acc. Chem. Res.13:33–39[Google Scholar]
    81. YostRA,EnkeCG.81. 1979. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation.Anal. Chem.51:1251–62A[Google Scholar]
    82. YostRA,EnkeCG,McGilveryDC,SmithD,MorrisonJD.82. 1979. High efficiency collision-induced dissociation in an RF-only quadrupole.Int. J. Mass Spectrom. Ion Phys.30:127–36[Google Scholar]
    83. McLaffertyFW,VenkataraghavanR,IrvingP.83. 1970. Determination of amino acid sequences in peptide mixtures by mass spectrometry.Biochem. Biophys. Res. Commun.39:274–78[Google Scholar]
    84. WipfH-K,IrvingP,McCamishM,VenkataraghavanR,McLaffertyFW.84.  Mass spectrometric studies of peptides. V. Determination of amino acid sequences in peptide mixtures by mass spectrometry.J. Am. Chem. Soc.95:3369–75[Google Scholar]
    85. McLaffertyFW,ToddPJ,McGilveryDC,BaldwinMA.85. 1980. High-resolution tandem mass spectrometry (MS/MS) of increased sensitivity and mass range.J. Am. Chem. Soc.102:3360–63[Google Scholar]
    86. AmsterIJ,BaldwinMA,ChengMT,ProctorCJ,McLaffertyFW.86. 1983. Tandem mass spectrometry of higher molecular weight compounds.J. Am. Chem. Soc.105:1654–55[Google Scholar]
    87. ChengMT,BarbalasMP,PeguesRF,McLaffertyFW.87. 1983. Tandem mass spectrometry: structural and stereochemical information from steroids.J. Am. Chem. Soc.105:1510–13[Google Scholar]
    88. AmsterIJ,McLaffertyFW.88. 1985. Tandem mass spectrometry with fast atom bombardment ionization of cobalamins.Anal. Chem.57:1208–10[Google Scholar]
    89. GelleneGI,PorterRF.89. 1983. Neutralized ion-beam spectroscopy.Acc. Chem. Res.16:200–7[Google Scholar]
    90. DanisPO,WesdemiotisC,McLaffertyFW.90. 1983. Neutralization-reionization mass spectrometry (NRMS).J. Am. Chem. Soc.105:7454–56[Google Scholar]
    91. BurgersPC,HolmesJL,MommersAA,TerlouwJK.91. 1983. Neutral products of ion fragmentations: hydrogen cyanide and hydrogen isocyanide (HNC) identified by collisionally induced dissociative ionization.Chem. Phys. Lett.102:1–3[Google Scholar]
    92. FengR,WesdemiotisC,BaldwinMA,McLaffertyFW.92. 1988. An improved tandem double-focusing mass spectrometer for neutralization-reionization and collisional activation studies.Int. J. Mass Spectrom. Ion Processes86:95–107[Google Scholar]
    93. McLaffertyFW.93. 1990. Studies of unusual simple molecules by neutralization-reionization mass spectrometry.Science247:925–29[Google Scholar]
    94. HolmesJL.94. 1989. The neutralization of organic cations.Mass Spectrom. Rev.8:513–39[Google Scholar]
    95. SchwarzH.95. 1989. Generation of elusive neutrals and dications by neutralization. Charge stripping of monocations in beam experiments.Pure Appl. Chem.61:685–92[Google Scholar]
    96. ZhangM-Y,WesdemiotisC,MarchettiM,DanisPO,RayJCJr.96.  et al.1989. Characterization of four C4H4 molecules and cations by neutralization-reionization mass spectrometry.J. Am. Chem. Soc.111:8341–46[Google Scholar]
    97. DrinkwaterDE,McLaffertyFW.97. 1993. Reduced isotope scrambling in neutralization-reionization mass spectra.Org. Mass Spectrom.28:378–81[Google Scholar]
    98. ComisarowMB,MarshallAG.98. 1974. Fourier transform ion cyclotron resonance spectroscopy.Chem. Phys. Lett.25:282–83[Google Scholar]
    99. CodyRBJr,AmsterIJ,McLaffertyFW.99. 1985. Peptide mixture sequencing by tandem Fourier-transform mass spectrometry.Proc. Natl. Acad. Sci. USA82:6367–70[Google Scholar]
    100. AmsterIJ,McLaffertyFW,CastroME,RussellDH,CodyRBJr,GhaderiS.100. 1986. Detection of mass 16241 ions by Fourier-transform mass spectrometry.Anal. Chem.58:483–85[Google Scholar]
    101. McLaffertyFW,AmsterIJ.101. 1986. Tandem Fourier-transform mass spectrometry.Int. J. Mass Spectrom. Ion Processes72:85–91[Google Scholar]
    102. LooJA,WilliamsER,AmsterIJ,FurlongJJP,WangBH.102.  et al.1987.252Cf plasma desorption with Fourier-transform mass spectrometry.Anal. Chem.59:1880–82[Google Scholar]
    103. AmsterIJ,LooJA,FurlongJJP,McLaffertyFW.103. 1987. Cesium ion desorption ionization with Fourier-transform mass spectrometry.Anal. Chem.59:313–17[Google Scholar]
    104. HuntDF,ShabanowitzJ,YatesJRIII,ZhuN-Z,RussellDH,CastroME.104. 1987. Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins.Proc. Natl. Acad. Sci. USA84:620–23[Google Scholar]
    105. HenryKD,WilliamsER,WangB-H,McLaffertyFW,ShabanowitzJ,HuntDF.105. 1989. Fourier-transform mass spectrometry of large molecules by electrospray ionization.Proc. Natl. Acad. Sci. USA86:9075–78[Google Scholar]
    106. MannM,KelleherNL.106. 2008. Precision proteomics: the case for high resolution and high mass accuracy.Proc. Natl. Acad. Sci. USA105:18132–38[Google Scholar]
    107. KelleherNL,LinHY,ValaskovicGA,AaserudDJ,FridrikssonEK,McLaffertyFW.107. 1999. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry.J. Am. Chem. Soc.121:806–12[Google Scholar]
    108. PesaventoJJ,BullockCR,LeDucRD,MizzenCA,KelleherNL.108. 2008. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.J. Biol. Chem.283:14927–37[Google Scholar]
    109. McLaffertyFW.109. 1994. High-resolution tandem FT mass spectrometry above 10 kDa.Acc. Chem. Res.27:379–86[Google Scholar]
    110. ValaskovicGA,KelleherNL,McLaffertyFW.110. 1996. Attomole protein characterization by capillary electrophoresis/mass spectrometry.Science273:1199–202[Google Scholar]
    111. BelovME,GoshkovME,UdsethHR,AndersonGA,SmithRD.111. 2000. Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins.Anal. Chem.72:2271–79[Google Scholar]
    112. LittleDP,SpeirJP,SenkoMW,O'ConnorPB,McLaffertyFW.112. 1994. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing.Anal. Chem.66:2809–15[Google Scholar]
    113. GuanZ,KelleherNL,O'ConnorPB,AaserudDJ,LittleDP,McLaffertyFW.113. 1996. 193 nm photodissociation of larger multiply-charged biomolecules.Int. J. Mass Spectrom. Ion Processes157/158:357–64[Google Scholar]
    114. WilliamsER,HenryKD,McLaffertyFW,ShabanowitzJ,HuntDF.114. 1990. Surface-induced dissociation of large peptide ions in Fourier-transform mass spectrometry.J. Am. Soc. Mass Spectrom.1:413–16[Google Scholar]
    115. McLaffertyFW,AmsterIJ,FurlongJJP,LooJA,WangBH,WilliamsER.115. 1987. Tandem Fourier-transform mass spectrometry of large molecules.Tandem Fourier-Transform Mass Spectrometry MV Buchanan116–26 Washington, DC: Am. Chem. Soc.[Google Scholar]
    116. ZubarevRA,KelleherNL,McLaffertyFW.116. 1998. Electron capture dissociation of multiply charged protein cations. A nonergodic process.J. Am. Chem. Soc.120:3265–66[Google Scholar]
    117. SzeSK,GeY,OhHB,McLaffertyFW.117. 2003. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry.Anal. Chem.75:1599–603[Google Scholar]
    118. SzeSK,GeY,OhHB,McLaffertyFW.118. 2002. Top down mass spectrometry of a 29 kDa protein for characterization of any posttranslational modification to within one residue.Proc. Natl. Acad. Sci. USA99:1774–49[Google Scholar]
    119. MirgorodskayaE,RoepstorffP,ZubarevR.119. 1999. Localization ofO-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer.Anal. Chem.71:4431–36[Google Scholar]
    120. ShiSD-H,HemlingME,CarrSA,HornDM,LindhI,McLaffertyFW.120. 2001. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry.Anal. Chem.73:19–22[Google Scholar]
    121. SykaJE,CoonJJ,SchroederMJ,ShabanowitzJ,HuntDF.121. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry.Proc. Natl. Acad. Sci. USA101:9528–33[Google Scholar]
    122. HofstadlerSA,Sannes-LoweryKA.122. 2006. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes.Nat. Rev. Drug Discov.5:585–95[Google Scholar]
    123. BeneschJL,AquilinaJA,RuotoloBT,SobottF,RobinsonCV.123. 2006. Tandem mass spectrometry reveals the quaternary structure of macromolecular assemblies.Chem. Biol.13:597–609[Google Scholar]
    124. SuckauD,ShiY,BeuSC,SenkoMW,QuinnJP.124.  et al.1993. Coexisting stable conformations of gaseous protein ions.Proc. Natl. Acad. Sci. USA90:790–93[Google Scholar]
    125. BohrerBC,MerenbloomSI,KoenigerSL,HilderbrandAE,ClemmerDE.125. 2008. Biomolecule analysis by ion mobility spectrometry.Annu. Rev. Anal. Chem.1:293–327[Google Scholar]
    126. BreukerK,OhHB,HornDM,CerdaBA,McLaffertyFW.126. 2002. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation.J. Am. Chem. Soc.124:6407–20[Google Scholar]
    127. OhHB,BreukerK,SzeSK,GeY,CarpenterBK,McLaffertyFW.127. 2002. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy.Proc. Natl. Acad. Sci. USA99:15863–68[Google Scholar]
    128. BreukerK,McLaffertyFW.128. 2008. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12–102 s.Proc. Natl. Acad. Sci. USA105:18145–52[Google Scholar]
    129. HanX,JinM,BreukerK,McLaffertyFW.129. 2006. Extending top-down mass spectrometry to proteins with masses >200 kDa.Science314:109–12[Google Scholar]
    130. McLaffertyFW.130. 1984. Trends in analytical instrumentation.Science226:251–53[Google Scholar]

    Read the latest from
    Knowable Magazine

    knowable magazine from Annual Reviews

    Climate Resource Center, Article Collection from Annual Reviews


    Political Science Perspectives on Climate Change, Article Collection from Annual Reviews


    Journal News


    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-anchem-061010-114018
    10.1146/annurev-anchem-061010-114018
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp