Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Open Access

Meningeal Mechanisms and the Migraine Connection

Abstract

Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-neuro-080422-105509
    2023-07-10
    2026-02-15

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/neuro/46/1/annurev-neuro-080422-105509.html?itemId=/content/journals/10.1146/annurev-neuro-080422-105509&mimeType=html&fmt=ahah

    Literature Cited

    1. AfridiSK,MatharuMS,LeeL,KaubeH,FristonKJ et al.2005. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate.Brain128:932–39
      [Google Scholar]
    2. AkermanS,KarsanN,BoseP,HoffmannJR,HollandPR et al.2019. Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity.Brain142:103–19
      [Google Scholar]
    3. Al-KaragholiMA,HansenJM,GuoS,OlesenJ,AshinaM.2019. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine.Brain142:2644–54
      [Google Scholar]
    4. Alves De LimaK,RustenhovenJ,KipnisJ.2020. Meningeal immunity and its function in maintenance of the central nervous system in health and disease.Annu. Rev. Immunol.38:597–620
      [Google Scholar]
    5. AmpieL,McGavernDB.2022. Immunological defense of CNS barriers against infections.Immunity55:781–99
      [Google Scholar]
    6. AndresKH,von DuringM,MuszynskiK,SchmidtRF.1987. Nerve fibres and their terminals of the dura mater encephali of the rat.Anat. Embryol.175:289–301
      [Google Scholar]
    7. AshinaM,DolezilD,BonnerJH,ZhouL,KlattJ et al.2021. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention.Cephalalgia41:33–44
      [Google Scholar]
    8. AshinaM,Møller HansenJ,OladóttirÁ,DungaB,OlesenJ2017. Human models of migraine—short-term pain for long-term gain.Nat. Rev. Neurol.13:713–24
      [Google Scholar]
    9. AshinaM,VasudevaR,JinL,LombardL,GrayE et al.2019. Onset of efficacy following oral treatment with lasmiditan for the acute treatment of migraine: integrated results from 2 randomized double-blind placebo-controlled phase 3 clinical studies.Headache59:1788–801
      [Google Scholar]
    10. AspelundA,AntilaS,ProulxST,KarlsenTV,KaramanS et al.2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.J. Exp. Med.212:991–99
      [Google Scholar]
    11. AvonaA,Burgos-VegaC,BurtonMD,AkopianAN,PriceTJ,DussorG.2019. Dural calcitonin gene-related peptide produces female-specific responses in rodent migraine models.J. Neurosci.39:4323–31
      [Google Scholar]
    12. AvonaA,MasonBN,Burgos-VegaC,HovhannisyanAH,BeluginSN et al.2021. Meningeal CGRP-prolactin interaction evokes female-specific migraine behavior.Ann. Neurol.89:1129–44
      [Google Scholar]
    13. AyataC,JinH,KudoC,DalkaraT,MoskowitzMA.2006. Suppression of cortical spreading depression in migraine prophylaxis.Ann. Neurol.59:652–61
      [Google Scholar]
    14. AzimiE,ReddyVB,PereiraPJS,TalbotS,WoolfCJ,LernerEA.2017. Substance P activates Mas-related G protein-coupled receptors to induce itch.J. Allergy Clin. Immunol.140:447–53.e3
      [Google Scholar]
    15. BigalME,AshinaS,BursteinR,ReedML,BuseD et al.2008. Prevalence and characteristics of allodynia in headache sufferers: a population study.Neurology70:1525–33
      [Google Scholar]
    16. BinshtokAM,WangH,ZimmermannK,AmayaF,VardehD et al.2008. Nociceptors are interleukin-1β sensors.J. Neurosci.28:14062–73
      [Google Scholar]
    17. BlaeserAS,SugdenA,ZhaoJ,Carneiro-NascimentoS,ShipleyFB et al.2022. Trigeminal afferents sense locomotion-related meningeal deformations.Cell Rep.41:111648
      [Google Scholar]
    18. BlauJN,DexterSL.1981. The site of pain origin during migraine attacks.Cephalalgia1:143–47
      [Google Scholar]
    19. BolayH,ReuterU,DunnAK,HuangZ,BoasDA,MoskowitzMA.2002. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model.Nat. Med.8:136–42
      [Google Scholar]
    20. BoucheletI,CohenZ,CaseB,SeguelaP,HamelE1996. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels.Mol. Pharmacol.50:219–23
      [Google Scholar]
    21. BoveGM,MoskowitzMA.1997. Primary afferent neurons innervating guinea pig dura.J. Neurophysiol.77:299–308
      [Google Scholar]
    22. Burgos-VegaCC,QuigleyLD,AvonaA,PriceT,DussorG.2016. Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger.Pain157:2722–30
      [Google Scholar]
    23. BursteinR,YamamuraH,MalickA,StrassmanAM.1998. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons.J. Neurophysiol.79:964–82
      [Google Scholar]
    24. BuzziMG,CarterWB,ShimizuT,HeathH3rd,MoskowitzMA1991. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion.Neuropharmacology30:1193–200
      [Google Scholar]
    25. BuzziMG,MoskowitzMA.1990. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater.Br. J. Pharmacol.99:202–6
      [Google Scholar]
    26. CaiR,PanC,GhasemigharagozA,TodorovMI,ForsteraB et al.2019. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections.Nat. Neurosci.22:317–27
      [Google Scholar]
    27. Carneiro-NascimentoS,LevyD2022. Cortical spreading depression and meningeal nociception.Neurobiol. Pain11:100091
      [Google Scholar]
    28. ChizhB,PalmerJ,LaiR,GuillardF,BullmanJ et al.2009. A randomised, two-period cross-over study to investigate the efficacy of the Trpv1 antagonist SB-705498 in acute migraine.Eur. J. Pain13:S202a
      [Google Scholar]
    29. ChuC,ArtisD,ChiuIM.2020. Neuro-immune interactions in the tissues.Immunity52:464–74
      [Google Scholar]
    30. ColesJA,MyburghE,BrewerJM,McMenaminPG.2017. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain.Prog. Neurobiol.156:107–48
      [Google Scholar]
    31. ConnorKM,ShapiroRE,DienerHC,LucasS,KostJ et al.2009. Randomized, controlled trial of telcagepant for the acute treatment of migraine.Neurology73:970–77
      [Google Scholar]
    32. CowanRP,GrossNB,SweeneyMD,SagareAP,MontagneA et al.2021. Evidence that blood-CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen.Headache61:536–45
      [Google Scholar]
    33. CsibaL,PaschenW,MiesG.1985. Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain.Brain Res.336:167–70
      [Google Scholar]
    34. De LoguF,NassiniR,HegronA,LandiniL,JensenDD et al.2022. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice.Nat. Commun.13:646
      [Google Scholar]
    35. DodickDW,GoadsbyPJ,SilbersteinSD,LiptonRB,OlesenJ et al.2014. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial.Lancet Neurol.13:1100–7
      [Google Scholar]
    36. DreierJP.2011. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease.Nat. Med.17:439–47
      [Google Scholar]
    37. DuxM,SanthaP,JancsoG.2003. Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat.J. Physiol.552:859–67
      [Google Scholar]
    38. DuxM,WillC,VoglerB,FilipovicMR,MesslingerK.2016. Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway.Br. J. Pharmacol.173:431–45
      [Google Scholar]
    39. EdelmayerRM,LeLN,YanJ,WeiX,NassiniR et al.2012. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain.Pain153:1949–58
      [Google Scholar]
    40. EdelmayerRM,VanderahTW,MajutaL,ZhangET,FioravantiB et al.2009. Medullary pain facilitating neurons mediate allodynia in headache-related pain.Ann. Neurol.65:184–93
      [Google Scholar]
    41. EngerR,TangW,VindedalGF,JensenV,HelmPJ et al.2015. Dynamics of ionic shifts in cortical spreading depression.Cereb. Cortex25:4469–76
      [Google Scholar]
    42. FerrariMD,GoadsbyPJ,BursteinR,KurthT,AyataC et al.2022. Migraine.Nat. Rev. Dis. Primers8:2
      [Google Scholar]
    43. FontaineD,AlmairacF,SantucciS,FernandezC,DallelR et al.2018. Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies.Brain141:1040–48
      [Google Scholar]
    44. FrickeB,von DüringM,AndresKH.1997. Topography and immunocytochemical characterization of nerve fibers in the leptomeningeal compartments of the rat. A light- and electron-microscopical study.Cell Tissue Res.287:11–22
      [Google Scholar]
    45. GaoX,ZhangD,XuC,LiH,CaronKM,FrenettePS.2021. Nociceptive nerves regulate haematopoietic stem cell mobilization.Nature589:591–96
      [Google Scholar]
    46. GaoYR,DrewPJ.2016. Effects of voluntary locomotion and calcitonin gene-related peptide on the dynamics of single dural vessels in awake mice.J. Neurosci.36:2503–16
      [Google Scholar]
    47. GariepyH,ZhaoJ,LevyD.2017. Differential contribution of COX-1 and COX-2 derived prostanoids to cortical spreading depression—evoked cerebral oligemia.J. Cereb. Blood Flow. Metab.37:1060–68
      [Google Scholar]
    48. GBD 2019 Dis. Inj. Collab.2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet396:1204–22
      [Google Scholar]
    49. GhanizadaH,Al-KaragholiMA,WalkerCS,ArngrimN,ReesT et al.2021. Amylin analog pramlintide induces migraine-like attacks in patients.Ann. Neurol.89:1157–71
      [Google Scholar]
    50. GreenDP,LimjunyawongN,GourN,PundirP,DongX.2019. A mast-cell-specific receptor mediates neurogenic inflammation and pain.Neuron101:412–20.e3
      [Google Scholar]
    51. GuoZ,QiuCS,JiangX,ZhangJ,LiF et al.2019. TRESK K+ channel activity regulates trigeminal nociception and headache.eNeuro6:ENEURO.0236–19.2019
      [Google Scholar]
    52. HadjikhaniN,AlbrechtDS,MaineroC,IchijoE,WardN et al.2020. Extra-axial inflammatory signal in parameninges in migraine with visual aura.Ann. Neurol.87:939–49
      [Google Scholar]
    53. HadjikhaniN,Sanchez del RioM,WuO,SchwartzD,BakkerD et al.2001. Mechanisms of migraine aura revealed by functional MRI in human visual cortex.PNAS98:4687–92
      [Google Scholar]
    54. HansenJM,HaugeAW,OlesenJ,AshinaM.2010. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura.Cephalalgia30:1179–86
      [Google Scholar]
    55. HanstedAK,JensenLJ,OlesenJ,Jansen-OlesenI.2020. Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na2S.Cephalalgia40:1310–20
      [Google Scholar]
    56. HarriottAM,GoldMS.2009. Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators.J. Neurophysiol.101:3126–34
      [Google Scholar]
    57. HasslerSN,AhmadFB,Burgos-VegaCC,BoitanoS,VagnerJ et al.2019. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice.Cephalalgia39:111–22
      [Google Scholar]
    58. HerissonF,FrodermannV,CourtiesG,RohdeD,SunY et al.2018. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration.Nat. Neurosci.21:1209–17
      [Google Scholar]
    59. JensenDD,LieuT,HallsML,VeldhuisNA,ImlachWL et al.2017. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief.Sci. Transl. Med.9:eaal3447
      [Google Scholar]
    60. KaratasH,ErdenerSE,Gursoy-OzdemirY,LuleS,Eren-KocakE et al.2013. Spreading depression triggers headache by activating neuronal Panx1 channels.Science339:1092–95
      [Google Scholar]
    61. KarsanN,BosePR,ThompsonC,NewmanJ,GoadsbyPJ.2020. Headache and non-headache symptoms provoked by nitroglycerin in migraineurs: a human pharmacological triggering study.Cephalalgia40:828–41
      [Google Scholar]
    62. KosarasB,JakubowskiM,KainzV,BursteinR.2009. Sensory innervation of the calvarial bones of the mouse.J. Comp. Neurol.515:331–48
      [Google Scholar]
    63. Labastida-RamirezA,Rubio-BeltranE,HaanesKA,ChanKY,GarreldsIM et al.2020. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system.Pain161:1092–99
      [Google Scholar]
    64. LafreniereRG,CaderMZ,PoulinJF,Andres-EnguixI,SimoneauM et al.2010. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura.Nat. Med.16:1157–60
      [Google Scholar]
    65. LambertGA,DavisJB,ApplebyJM,ChizhBA,HoskinKL,ZagamiAS.2009. The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission.Naunyn-Schmiedeberg's Arch. Pharmacol.380:311–25
      [Google Scholar]
    66. LashleyKS.1941. Patterns of cerebral integration indicated by the scotoma of migraine.Arch. Neurol. Psychiatry46:331–39
      [Google Scholar]
    67. LauritzenM,HansenAJ,KronborgD,WielochT.1990. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge.J. Cereb. Blood Flow Metab.10:115–22
      [Google Scholar]
    68. LeeWS,MoussaouiSM,MoskowitzMA.1994. Blockade by oral or parenteral RPR 100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation within guinea-pig dura mater and conjunctiva.Br. J. Pharmacol.112:920–24
      [Google Scholar]
    69. LennerzJK,RuhleV,CeppaEP,NeuhuberWL,BunnettNW et al.2008. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution.J. Comp. Neurol.507:1277–99
      [Google Scholar]
    70. LevyD,BursteinR,KainzV,JakubowskiM,StrassmanAM.2007. Mast cell degranulation activates a pain pathway underlying migraine headache.Pain130:166–76
      [Google Scholar]
    71. LevyD,BursteinR,StrassmanAM.2005. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine.Ann. Neurol.58:698–705
      [Google Scholar]
    72. LevyD,JakubowskiM,BursteinR.2004. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT1B/1D receptor agonists.PNAS101:4274–79
      [Google Scholar]
    73. LevyD,KainzV,BursteinR,StrassmanAM.2012. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity.Brain Behav. Immun.26:311–17
      [Google Scholar]
    74. LevyD,StrassmanAM.2002a. Distinct sensitizing effects of the cAMP-PKA second messenger cascade on rat dural mechanonociceptors.J. Physiol.538:483–93
      [Google Scholar]
    75. LevyD,StrassmanAM.2002b. Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura.J. Neurophysiol.88:3021–31
      [Google Scholar]
    76. LevyD,StrassmanAM.2004. Modulation of dural nociceptor mechanosensitivity by the nitric oxide-cyclic GMP signaling cascade.J. Neurophysiol.92:766–72
      [Google Scholar]
    77. Liu-ChenLY,MaybergMR,MoskowitzMA.1983. Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats.Brain Res.268:162–66
      [Google Scholar]
    78. LouveauA,HerzJ,AlmeMN,SalvadorAF,DongMQ et al.2018. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature.Nat. Neurosci.21:1380–91
      [Google Scholar]
    79. LouveauA,SmirnovI,KeyesTJ,EcclesJD,RouhaniSJ et al.2015. Structural and functional features of central nervous system lymphatic vessels.Nature523:337–41
      [Google Scholar]
    80. MarkowitzS,SaitoK,MoskowitzMA.1987. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain.J. Neurosci.7:4129–36
      [Google Scholar]
    81. MayA,GoadsbyPJ.2001. Substance P receptor antagonists in the therapy of migraine.Expert Opin. Investig. Drugs10:673–78
      [Google Scholar]
    82. MaybergM,LangerRS,ZervasNT,MoskowitzMA.1981. Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man.Science213:228–30
      [Google Scholar]
    83. MaybergM,ZervasNT,MoskowitzMA.1984. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.J. Comp. Neurol.223:46–56
      [Google Scholar]
    84. MazzitelliJA,SmythLCD,CrossKA,DykstraT,SunJ et al.2022. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels.Nat. Neurosci.25:555–60
      [Google Scholar]
    85. MeentsJE,HoffmannJ,ChaplanSR,NeebL,Schuh-HoferS et al.2015. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine.J. Headache Pain16:57
      [Google Scholar]
    86. Melo-CarrilloA,StrassmanAM,NirRR,SchainAJ,NosedaR et al.2017. Fremanezumab—a humanized monoclonal anti-CGRP antibody—inhibits thinly myelinated (Aδ) but not unmyelinated (C) meningeal nociceptors.J. Neurosci.37:10587–96
      [Google Scholar]
    87. MillerS,LiuH,WarfvingeK,ShiL,DovlatyanM et al.2016. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.Neuroscience328:165–83
      [Google Scholar]
    88. MitsikostasDD,Sanchez del RioM,MoskowitzMA,WaeberC1999. Both 5-HT1B and 5-HT1F receptors modulatec-fos expression within rat trigeminal nucleus caudalis.Eur. J. Pharmacol.369:271–77
      [Google Scholar]
    89. MollgardK,BeinlichFRM,KuskP,MiyakoshiLM,DelleC et al.2023. A mesothelium divides the subarachnoid space into functional compartments.Science379:84–88
      [Google Scholar]
    90. MoskowitzMA.1984. The neurobiology of vascular head pain.Ann. Neurol.16:157–68
      [Google Scholar]
    91. MoskowitzMA.1993. Neurogenic inflammation in the pathophysiology and treatment of migraine.Neurology43:S16–20
      [Google Scholar]
    92. MoskowitzMA,CutrerFM.1993. SUMATRIPTAN: a receptor-targeted treatment for migraine.Annu. Rev. Med.44:145–54
      [Google Scholar]
    93. MoskowitzMA,ReinhardJFJr.,RomeroJ,MelamedE,PettiboneDJ.1979. Neurotransmitters and the fifth cranial nerve: Is there a relation to the headache phase of migraine?.Lancet2:883–85
      [Google Scholar]
    94. MurthySE,LoudMC,DaouI,MarshallKL,SchwallerF et al.2018. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice.Sci. Transl. Med.10:eaat9897
      [Google Scholar]
    95. NassiniR,MaterazziS,VriensJ,PrenenJ,BenemeiS et al.2012. The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system.Brain135:376–90
      [Google Scholar]
    96. O'ConnorTP,van der KooyD.1986. Pattern of intracranial and extracranial projections of trigeminal ganglion cells.J. Neurosci.6:2200–7
      [Google Scholar]
    97. OshinskyML,GomonchareonsiriS.2007. Episodic dural stimulation in awake rats: a model for recurrent headache.Headache47:1026–36
      [Google Scholar]
    98. PatapoutianA,PeierAM,StoryGM,ViswanathV.2003. ThermoTRP channels and beyond: mechanisms of temperature sensation.Nat. Rev. Neurosci.4:529–39
      [Google Scholar]
    99. PetersenKA,BirkS,DoodsH,EdvinssonL,OlesenJ.2004. Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat.Br. J. Pharmacol.143:697–704
      [Google Scholar]
    100. PhebusLA,JohnsonKW,ZgombickJM,GilbertPJ,Van BelleK et al.1997. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine.Life Sci.61:2117–26
      [Google Scholar]
    101. PietrobonD,BrennanKC.2019. Genetic mouse models of migraine.J. Headache Pain20:79
      [Google Scholar]
    102. PietrobonD,MoskowitzMA.2014. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations.Nat. Rev. Neurosci.15:379–93
      [Google Scholar]
    103. PulousFE,Cruz-HernandezJC,YangC,KayaZ,PaccaletA et al.2022. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis.Nat. Neurosci.25:567–76
      [Google Scholar]
    104. RayBS,WolffHG.1940. Experimental studies on headache: pain sensitive structures of the head and their significance in headache.Arch. Surg.41:813–56
      [Google Scholar]
    105. ReehPW,PethoG.2000. Nociceptor excitation by thermal sensitization—a hypothesis.Prog. Brain Res.129:39–50
      [Google Scholar]
    106. ReuterU,BolayH,Jansen-OlesenI,ChiarugiA,Sanchez del RioM et al.2001. Delayed inflammation in rat meninges: implications for migraine pathophysiology.Brain124:2490–502
      [Google Scholar]
    107. ReuterU,ChiarugiA,BolayH,MoskowitzMA.2002. Nuclear factor-κB as a molecular target for migraine therapy.Ann. Neurol.51:507–16
      [Google Scholar]
    108. RingstadG,EidePK.2020. Cerebrospinal fluid tracer efflux to parasagittal dura in humans.Nat. Commun.11:354
      [Google Scholar]
    109. RosicB,DukefossDB,AbjorsbratenKS,TangW,JensenV et al.2019. Aquaporin-4-independent volume dynamics of astroglial endfeet during cortical spreading depression.Glia67:1113–21
      [Google Scholar]
    110. RothTL,NayakD,AtanasijevicT,KoretskyAP,LatourLL,McGavernDB.2014. Transcranial amelioration of inflammation and cell death after brain injury.Nature505:223–28
      [Google Scholar]
    111. RustenhovenJ,DrieuA,MamuladzeT,de LimaKA,DykstraT et al.2021. Functional characterization of the dural sinuses as a neuroimmune interface.Cell184:1000–16.e27
      [Google Scholar]
    112. SchainAJ,Melo-CarrilloA,BorsookD,GrutzendlerJ,StrassmanAM,BursteinR.2018. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression.Ann. Neurol.83:508–21
      [Google Scholar]
    113. SchainAJ,Melo-CarrilloA,StrassmanAM,BursteinR.2017. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache.J. Neurosci.37:2904–15
      [Google Scholar]
    114. SchainAJ,Melo-CarrilloA,StrattonJ,StrassmanAM,BursteinR.2019. CSD-induced arterial dilatation and plasma protein extravasation are unaffected by fremanezumab: implications for CGRP's role in migraine with aura.J. Neurosci.39:6001–11
      [Google Scholar]
    115. SchockSC,MunyaoN,YakubchykY,SabourinLA,HakimAM et al.2007. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance.Brain Res.1168:129–38
      [Google Scholar]
    116. SchoonmanGG,van der GrondJ,KortmannC,van der GeestRJ,TerwindtGM,FerrariMD.2008. Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study.Brain131:2192–200
      [Google Scholar]
    117. SchuelerM,MesslingerK,DuxM,NeuhuberWL,De ColR.2013. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache.Pain154:1622–31
      [Google Scholar]
    118. StorerRJ,AkermanS,GoadsbyPJ.2004. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat.Br. J. Pharmacol.142:1171–81
      [Google Scholar]
    119. StorerRJ,GoadsbyPJ.1997. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat.Brain120:2171–77
      [Google Scholar]
    120. StrassmanAM,LevyD.2006. Response properties of dural nociceptors in relation to headache.J. Neurophysiol.95:1298–306
      [Google Scholar]
    121. StrassmanAM,Melo-CarrilloA,HouleTT,AdamsA,BrinMF,BursteinR.2022. Atogepant—an orally-administered CGRP antagonist—attenuates activation of meningeal nociceptors by CSD.Cephalalgia42:933–43
      [Google Scholar]
    122. StrassmanAM,RaymondSA.1999. Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers.J. Neurophysiol.81:413–24
      [Google Scholar]
    123. StrassmanAM,RaymondSA,BursteinR.1996. Sensitization of meningeal sensory neurons and the origin of headaches.Nature384:560–64
      [Google Scholar]
    124. StrassmanAM,WeissnerW,WilliamsM,AliS,LevyD2004. Axon diameters and intradural trajectories of the dural innervation in the rat.J. Comp. Neurol.473:364–76
      [Google Scholar]
    125. TakizawaT,QinT,Lopes de MoraisA,SugimotoK,ChungJY et al.2020. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex.J. Cereb. Blood Flow Metab.40:1117–31
      [Google Scholar]
    126. TvedskovJF,Tfelt-HansenP,PetersenKA,JensenLT,OlesenJ.2010. CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine.Cephalalgia30:1346–53
      [Google Scholar]
    127. Van HoveH,MartensL,ScheyltjensI,De VlaminckK,Pombo AntunesAR et al.2019. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.Nat. Neurosci.22:1021–35
      [Google Scholar]
    128. VaughnAH,GoldMS.2010. Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents.J. Neurosci.30:7878–88
      [Google Scholar]
    129. VianaM,LindeM,SancesG,GhiottoN,GuaschinoE et al.2016. Migraine aura symptoms: duration, succession and temporal relationship to headache.Cephalalgia36:413–21
      [Google Scholar]
    130. von BuchholtzLJ,LamRM,EmrickJJ,CheslerAT,RybaNJP.2020. Assigning transcriptomic class in the trigeminal ganglion using multiplex in situ hybridization and machine learning.Pain161:2212–24
      [Google Scholar]
    131. WaeberC,MoskowitzMA.1995. [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study.Naunyn-Schmiedeberg's Arch. Pharmacol.352:263–75
      [Google Scholar]
    132. WeiX,EdelmayerRM,YanJ,DussorG2011. Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model.Cephalalgia31:1595–600
      [Google Scholar]
    133. YanJ,EdelmayerRM,WeiX,De FeliceM,PorrecaF,DussorG.2011. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.Pain152:106–13
      [Google Scholar]
    134. YanJ,MelemedjianOK,PriceTJ,DussorG.2012. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6).Mol. Pain8:6
      [Google Scholar]
    135. YangL,XuM,BhuiyanSA,LiJ,ZhaoJ et al.2022. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine.Neuron110:1806–21.e8
      [Google Scholar]
    136. ZellerJ,PoulsenKT,SuttonJE,AbdicheYN,CollierS et al.2008. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat.Br. J. Pharmacol.155:1093–103
      [Google Scholar]
    137. ZhangX,BursteinR,LevyD.2012. Local action of the proinflammatory cytokines IL-1β and IL-6 on intracranial meningeal nociceptors.Cephalalgia32:66–72
      [Google Scholar]
    138. ZhangX,KainzV,BursteinR,LevyD.2011. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions.Pain152:140–49
      [Google Scholar]
    139. ZhangX,KainzV,ZhaoJ,StrassmanAM,LevyD.2013. Vascular extracellular signal-regulated kinase mediates migraine-related sensitization of meningeal nociceptors.Ann. Neurol.73:741–50
      [Google Scholar]
    140. ZhangX,LevyD.2008. Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells.Cephalalgia28:276–84
      [Google Scholar]
    141. ZhangX,LevyD,NosedaR,KainzV,JakubowskiM,BursteinR.2010. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura.J. Neurosci.30:8807–14
      [Google Scholar]
    142. ZhangX,StrassmanAM,BursteinR,LevyD.2007. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators.J. Pharmacol. Exp. Ther.322:806–12
      [Google Scholar]
    143. ZhaoJ,BlaeserAS,LevyD.2021. Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity.Pain162:2386–96
      [Google Scholar]
    144. ZhaoJ,BreeD,HarringtonMG,StrassmanAM,LevyD.2017. Cranial dural permeability of inflammatory nociceptive mediators: potential implications for animal models of migraine.Cephalalgia37:1017–25
      [Google Scholar]
    145. ZhaoJ,LevyD.2014. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior.Pain155:1392–400
      [Google Scholar]
    146. ZhaoJ,LevyD.2015. Modulation of intracranial meningeal nociceptor activity by cortical spreading depression: a reassessment.J. Neurophysiol.113:2778–85
      [Google Scholar]
    147. ZhaoJ,LevyD.2016. Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: implications for the intracranial mechanosensitivity of migraine.eNeuro3:ENEURO.0287–16.2016
      [Google Scholar]
    148. ZhaoJ,LevyD.2018a. The CGRP receptor antagonist BIBN4096 inhibits prolonged meningeal afferent activation evoked by brief local K+ stimulation but not cortical spreading depression-induced afferent sensitization.Pain Rep.3:e632
      [Google Scholar]
    149. ZhaoJ,LevyD.2018b. Dissociation between CSD-evoked metabolic perturbations and meningeal afferent activation and sensitization: implications for mechanisms of migraine headache onset.J. Neurosci.38:5053–66
      [Google Scholar]
    150. ZhouN,RungtaRL,MalikA,HanH,WuDC,MacVicarBA.2013. Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression.J. Cereb. Blood Flow Metab.33:1582–94
      [Google Scholar]
    /content/journals/10.1146/annurev-neuro-080422-105509
    Loading
    Meningeal Mechanisms and the Migraine Connection
    Annual Review of Neuroscience46, 39 (2023);https://doi.org/10.1146/annurev-neuro-080422-105509
    /content/journals/10.1146/annurev-neuro-080422-105509
    /content/journals/10.1146/annurev-neuro-080422-105509
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/neuro
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-neuro-080422-105509
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AfridiSK,MatharuMS,LeeL,KaubeH,FristonKJ et al.2005. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate.Brain128:932–39
      [Google Scholar]
    2. AkermanS,KarsanN,BoseP,HoffmannJR,HollandPR et al.2019. Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity.Brain142:103–19
      [Google Scholar]
    3. Al-KaragholiMA,HansenJM,GuoS,OlesenJ,AshinaM.2019. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine.Brain142:2644–54
      [Google Scholar]
    4. Alves De LimaK,RustenhovenJ,KipnisJ.2020. Meningeal immunity and its function in maintenance of the central nervous system in health and disease.Annu. Rev. Immunol.38:597–620
      [Google Scholar]
    5. AmpieL,McGavernDB.2022. Immunological defense of CNS barriers against infections.Immunity55:781–99
      [Google Scholar]
    6. AndresKH,von DuringM,MuszynskiK,SchmidtRF.1987. Nerve fibres and their terminals of the dura mater encephali of the rat.Anat. Embryol.175:289–301
      [Google Scholar]
    7. AshinaM,DolezilD,BonnerJH,ZhouL,KlattJ et al.2021. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention.Cephalalgia41:33–44
      [Google Scholar]
    8. AshinaM,Møller HansenJ,OladóttirÁ,DungaB,OlesenJ2017. Human models of migraine—short-term pain for long-term gain.Nat. Rev. Neurol.13:713–24
      [Google Scholar]
    9. AshinaM,VasudevaR,JinL,LombardL,GrayE et al.2019. Onset of efficacy following oral treatment with lasmiditan for the acute treatment of migraine: integrated results from 2 randomized double-blind placebo-controlled phase 3 clinical studies.Headache59:1788–801
      [Google Scholar]
    10. AspelundA,AntilaS,ProulxST,KarlsenTV,KaramanS et al.2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.J. Exp. Med.212:991–99
      [Google Scholar]
    11. AvonaA,Burgos-VegaC,BurtonMD,AkopianAN,PriceTJ,DussorG.2019. Dural calcitonin gene-related peptide produces female-specific responses in rodent migraine models.J. Neurosci.39:4323–31
      [Google Scholar]
    12. AvonaA,MasonBN,Burgos-VegaC,HovhannisyanAH,BeluginSN et al.2021. Meningeal CGRP-prolactin interaction evokes female-specific migraine behavior.Ann. Neurol.89:1129–44
      [Google Scholar]
    13. AyataC,JinH,KudoC,DalkaraT,MoskowitzMA.2006. Suppression of cortical spreading depression in migraine prophylaxis.Ann. Neurol.59:652–61
      [Google Scholar]
    14. AzimiE,ReddyVB,PereiraPJS,TalbotS,WoolfCJ,LernerEA.2017. Substance P activates Mas-related G protein-coupled receptors to induce itch.J. Allergy Clin. Immunol.140:447–53.e3
      [Google Scholar]
    15. BigalME,AshinaS,BursteinR,ReedML,BuseD et al.2008. Prevalence and characteristics of allodynia in headache sufferers: a population study.Neurology70:1525–33
      [Google Scholar]
    16. BinshtokAM,WangH,ZimmermannK,AmayaF,VardehD et al.2008. Nociceptors are interleukin-1β sensors.J. Neurosci.28:14062–73
      [Google Scholar]
    17. BlaeserAS,SugdenA,ZhaoJ,Carneiro-NascimentoS,ShipleyFB et al.2022. Trigeminal afferents sense locomotion-related meningeal deformations.Cell Rep.41:111648
      [Google Scholar]
    18. BlauJN,DexterSL.1981. The site of pain origin during migraine attacks.Cephalalgia1:143–47
      [Google Scholar]
    19. BolayH,ReuterU,DunnAK,HuangZ,BoasDA,MoskowitzMA.2002. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model.Nat. Med.8:136–42
      [Google Scholar]
    20. BoucheletI,CohenZ,CaseB,SeguelaP,HamelE1996. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels.Mol. Pharmacol.50:219–23
      [Google Scholar]
    21. BoveGM,MoskowitzMA.1997. Primary afferent neurons innervating guinea pig dura.J. Neurophysiol.77:299–308
      [Google Scholar]
    22. Burgos-VegaCC,QuigleyLD,AvonaA,PriceT,DussorG.2016. Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger.Pain157:2722–30
      [Google Scholar]
    23. BursteinR,YamamuraH,MalickA,StrassmanAM.1998. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons.J. Neurophysiol.79:964–82
      [Google Scholar]
    24. BuzziMG,CarterWB,ShimizuT,HeathH3rd,MoskowitzMA1991. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion.Neuropharmacology30:1193–200
      [Google Scholar]
    25. BuzziMG,MoskowitzMA.1990. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater.Br. J. Pharmacol.99:202–6
      [Google Scholar]
    26. CaiR,PanC,GhasemigharagozA,TodorovMI,ForsteraB et al.2019. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections.Nat. Neurosci.22:317–27
      [Google Scholar]
    27. Carneiro-NascimentoS,LevyD2022. Cortical spreading depression and meningeal nociception.Neurobiol. Pain11:100091
      [Google Scholar]
    28. ChizhB,PalmerJ,LaiR,GuillardF,BullmanJ et al.2009. A randomised, two-period cross-over study to investigate the efficacy of the Trpv1 antagonist SB-705498 in acute migraine.Eur. J. Pain13:S202a
      [Google Scholar]
    29. ChuC,ArtisD,ChiuIM.2020. Neuro-immune interactions in the tissues.Immunity52:464–74
      [Google Scholar]
    30. ColesJA,MyburghE,BrewerJM,McMenaminPG.2017. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain.Prog. Neurobiol.156:107–48
      [Google Scholar]
    31. ConnorKM,ShapiroRE,DienerHC,LucasS,KostJ et al.2009. Randomized, controlled trial of telcagepant for the acute treatment of migraine.Neurology73:970–77
      [Google Scholar]
    32. CowanRP,GrossNB,SweeneyMD,SagareAP,MontagneA et al.2021. Evidence that blood-CSF barrier transport, but not inflammatory biomarkers, change in migraine, while CSF sVCAM1 associates with migraine frequency and CSF fibrinogen.Headache61:536–45
      [Google Scholar]
    33. CsibaL,PaschenW,MiesG.1985. Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain.Brain Res.336:167–70
      [Google Scholar]
    34. De LoguF,NassiniR,HegronA,LandiniL,JensenDD et al.2022. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice.Nat. Commun.13:646
      [Google Scholar]
    35. DodickDW,GoadsbyPJ,SilbersteinSD,LiptonRB,OlesenJ et al.2014. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial.Lancet Neurol.13:1100–7
      [Google Scholar]
    36. DreierJP.2011. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease.Nat. Med.17:439–47
      [Google Scholar]
    37. DuxM,SanthaP,JancsoG.2003. Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat.J. Physiol.552:859–67
      [Google Scholar]
    38. DuxM,WillC,VoglerB,FilipovicMR,MesslingerK.2016. Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway.Br. J. Pharmacol.173:431–45
      [Google Scholar]
    39. EdelmayerRM,LeLN,YanJ,WeiX,NassiniR et al.2012. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain.Pain153:1949–58
      [Google Scholar]
    40. EdelmayerRM,VanderahTW,MajutaL,ZhangET,FioravantiB et al.2009. Medullary pain facilitating neurons mediate allodynia in headache-related pain.Ann. Neurol.65:184–93
      [Google Scholar]
    41. EngerR,TangW,VindedalGF,JensenV,HelmPJ et al.2015. Dynamics of ionic shifts in cortical spreading depression.Cereb. Cortex25:4469–76
      [Google Scholar]
    42. FerrariMD,GoadsbyPJ,BursteinR,KurthT,AyataC et al.2022. Migraine.Nat. Rev. Dis. Primers8:2
      [Google Scholar]
    43. FontaineD,AlmairacF,SantucciS,FernandezC,DallelR et al.2018. Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies.Brain141:1040–48
      [Google Scholar]
    44. FrickeB,von DüringM,AndresKH.1997. Topography and immunocytochemical characterization of nerve fibers in the leptomeningeal compartments of the rat. A light- and electron-microscopical study.Cell Tissue Res.287:11–22
      [Google Scholar]
    45. GaoX,ZhangD,XuC,LiH,CaronKM,FrenettePS.2021. Nociceptive nerves regulate haematopoietic stem cell mobilization.Nature589:591–96
      [Google Scholar]
    46. GaoYR,DrewPJ.2016. Effects of voluntary locomotion and calcitonin gene-related peptide on the dynamics of single dural vessels in awake mice.J. Neurosci.36:2503–16
      [Google Scholar]
    47. GariepyH,ZhaoJ,LevyD.2017. Differential contribution of COX-1 and COX-2 derived prostanoids to cortical spreading depression—evoked cerebral oligemia.J. Cereb. Blood Flow. Metab.37:1060–68
      [Google Scholar]
    48. GBD 2019 Dis. Inj. Collab.2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet396:1204–22
      [Google Scholar]
    49. GhanizadaH,Al-KaragholiMA,WalkerCS,ArngrimN,ReesT et al.2021. Amylin analog pramlintide induces migraine-like attacks in patients.Ann. Neurol.89:1157–71
      [Google Scholar]
    50. GreenDP,LimjunyawongN,GourN,PundirP,DongX.2019. A mast-cell-specific receptor mediates neurogenic inflammation and pain.Neuron101:412–20.e3
      [Google Scholar]
    51. GuoZ,QiuCS,JiangX,ZhangJ,LiF et al.2019. TRESK K+ channel activity regulates trigeminal nociception and headache.eNeuro6:ENEURO.0236–19.2019
      [Google Scholar]
    52. HadjikhaniN,AlbrechtDS,MaineroC,IchijoE,WardN et al.2020. Extra-axial inflammatory signal in parameninges in migraine with visual aura.Ann. Neurol.87:939–49
      [Google Scholar]
    53. HadjikhaniN,Sanchez del RioM,WuO,SchwartzD,BakkerD et al.2001. Mechanisms of migraine aura revealed by functional MRI in human visual cortex.PNAS98:4687–92
      [Google Scholar]
    54. HansenJM,HaugeAW,OlesenJ,AshinaM.2010. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura.Cephalalgia30:1179–86
      [Google Scholar]
    55. HanstedAK,JensenLJ,OlesenJ,Jansen-OlesenI.2020. Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na2S.Cephalalgia40:1310–20
      [Google Scholar]
    56. HarriottAM,GoldMS.2009. Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators.J. Neurophysiol.101:3126–34
      [Google Scholar]
    57. HasslerSN,AhmadFB,Burgos-VegaCC,BoitanoS,VagnerJ et al.2019. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice.Cephalalgia39:111–22
      [Google Scholar]
    58. HerissonF,FrodermannV,CourtiesG,RohdeD,SunY et al.2018. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration.Nat. Neurosci.21:1209–17
      [Google Scholar]
    59. JensenDD,LieuT,HallsML,VeldhuisNA,ImlachWL et al.2017. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief.Sci. Transl. Med.9:eaal3447
      [Google Scholar]
    60. KaratasH,ErdenerSE,Gursoy-OzdemirY,LuleS,Eren-KocakE et al.2013. Spreading depression triggers headache by activating neuronal Panx1 channels.Science339:1092–95
      [Google Scholar]
    61. KarsanN,BosePR,ThompsonC,NewmanJ,GoadsbyPJ.2020. Headache and non-headache symptoms provoked by nitroglycerin in migraineurs: a human pharmacological triggering study.Cephalalgia40:828–41
      [Google Scholar]
    62. KosarasB,JakubowskiM,KainzV,BursteinR.2009. Sensory innervation of the calvarial bones of the mouse.J. Comp. Neurol.515:331–48
      [Google Scholar]
    63. Labastida-RamirezA,Rubio-BeltranE,HaanesKA,ChanKY,GarreldsIM et al.2020. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system.Pain161:1092–99
      [Google Scholar]
    64. LafreniereRG,CaderMZ,PoulinJF,Andres-EnguixI,SimoneauM et al.2010. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura.Nat. Med.16:1157–60
      [Google Scholar]
    65. LambertGA,DavisJB,ApplebyJM,ChizhBA,HoskinKL,ZagamiAS.2009. The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission.Naunyn-Schmiedeberg's Arch. Pharmacol.380:311–25
      [Google Scholar]
    66. LashleyKS.1941. Patterns of cerebral integration indicated by the scotoma of migraine.Arch. Neurol. Psychiatry46:331–39
      [Google Scholar]
    67. LauritzenM,HansenAJ,KronborgD,WielochT.1990. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge.J. Cereb. Blood Flow Metab.10:115–22
      [Google Scholar]
    68. LeeWS,MoussaouiSM,MoskowitzMA.1994. Blockade by oral or parenteral RPR 100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation within guinea-pig dura mater and conjunctiva.Br. J. Pharmacol.112:920–24
      [Google Scholar]
    69. LennerzJK,RuhleV,CeppaEP,NeuhuberWL,BunnettNW et al.2008. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution.J. Comp. Neurol.507:1277–99
      [Google Scholar]
    70. LevyD,BursteinR,KainzV,JakubowskiM,StrassmanAM.2007. Mast cell degranulation activates a pain pathway underlying migraine headache.Pain130:166–76
      [Google Scholar]
    71. LevyD,BursteinR,StrassmanAM.2005. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine.Ann. Neurol.58:698–705
      [Google Scholar]
    72. LevyD,JakubowskiM,BursteinR.2004. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT1B/1D receptor agonists.PNAS101:4274–79
      [Google Scholar]
    73. LevyD,KainzV,BursteinR,StrassmanAM.2012. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity.Brain Behav. Immun.26:311–17
      [Google Scholar]
    74. LevyD,StrassmanAM.2002a. Distinct sensitizing effects of the cAMP-PKA second messenger cascade on rat dural mechanonociceptors.J. Physiol.538:483–93
      [Google Scholar]
    75. LevyD,StrassmanAM.2002b. Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura.J. Neurophysiol.88:3021–31
      [Google Scholar]
    76. LevyD,StrassmanAM.2004. Modulation of dural nociceptor mechanosensitivity by the nitric oxide-cyclic GMP signaling cascade.J. Neurophysiol.92:766–72
      [Google Scholar]
    77. Liu-ChenLY,MaybergMR,MoskowitzMA.1983. Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats.Brain Res.268:162–66
      [Google Scholar]
    78. LouveauA,HerzJ,AlmeMN,SalvadorAF,DongMQ et al.2018. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature.Nat. Neurosci.21:1380–91
      [Google Scholar]
    79. LouveauA,SmirnovI,KeyesTJ,EcclesJD,RouhaniSJ et al.2015. Structural and functional features of central nervous system lymphatic vessels.Nature523:337–41
      [Google Scholar]
    80. MarkowitzS,SaitoK,MoskowitzMA.1987. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain.J. Neurosci.7:4129–36
      [Google Scholar]
    81. MayA,GoadsbyPJ.2001. Substance P receptor antagonists in the therapy of migraine.Expert Opin. Investig. Drugs10:673–78
      [Google Scholar]
    82. MaybergM,LangerRS,ZervasNT,MoskowitzMA.1981. Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man.Science213:228–30
      [Google Scholar]
    83. MaybergM,ZervasNT,MoskowitzMA.1984. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.J. Comp. Neurol.223:46–56
      [Google Scholar]
    84. MazzitelliJA,SmythLCD,CrossKA,DykstraT,SunJ et al.2022. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels.Nat. Neurosci.25:555–60
      [Google Scholar]
    85. MeentsJE,HoffmannJ,ChaplanSR,NeebL,Schuh-HoferS et al.2015. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine.J. Headache Pain16:57
      [Google Scholar]
    86. Melo-CarrilloA,StrassmanAM,NirRR,SchainAJ,NosedaR et al.2017. Fremanezumab—a humanized monoclonal anti-CGRP antibody—inhibits thinly myelinated (Aδ) but not unmyelinated (C) meningeal nociceptors.J. Neurosci.37:10587–96
      [Google Scholar]
    87. MillerS,LiuH,WarfvingeK,ShiL,DovlatyanM et al.2016. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.Neuroscience328:165–83
      [Google Scholar]
    88. MitsikostasDD,Sanchez del RioM,MoskowitzMA,WaeberC1999. Both 5-HT1B and 5-HT1F receptors modulatec-fos expression within rat trigeminal nucleus caudalis.Eur. J. Pharmacol.369:271–77
      [Google Scholar]
    89. MollgardK,BeinlichFRM,KuskP,MiyakoshiLM,DelleC et al.2023. A mesothelium divides the subarachnoid space into functional compartments.Science379:84–88
      [Google Scholar]
    90. MoskowitzMA.1984. The neurobiology of vascular head pain.Ann. Neurol.16:157–68
      [Google Scholar]
    91. MoskowitzMA.1993. Neurogenic inflammation in the pathophysiology and treatment of migraine.Neurology43:S16–20
      [Google Scholar]
    92. MoskowitzMA,CutrerFM.1993. SUMATRIPTAN: a receptor-targeted treatment for migraine.Annu. Rev. Med.44:145–54
      [Google Scholar]
    93. MoskowitzMA,ReinhardJFJr.,RomeroJ,MelamedE,PettiboneDJ.1979. Neurotransmitters and the fifth cranial nerve: Is there a relation to the headache phase of migraine?.Lancet2:883–85
      [Google Scholar]
    94. MurthySE,LoudMC,DaouI,MarshallKL,SchwallerF et al.2018. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice.Sci. Transl. Med.10:eaat9897
      [Google Scholar]
    95. NassiniR,MaterazziS,VriensJ,PrenenJ,BenemeiS et al.2012. The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system.Brain135:376–90
      [Google Scholar]
    96. O'ConnorTP,van der KooyD.1986. Pattern of intracranial and extracranial projections of trigeminal ganglion cells.J. Neurosci.6:2200–7
      [Google Scholar]
    97. OshinskyML,GomonchareonsiriS.2007. Episodic dural stimulation in awake rats: a model for recurrent headache.Headache47:1026–36
      [Google Scholar]
    98. PatapoutianA,PeierAM,StoryGM,ViswanathV.2003. ThermoTRP channels and beyond: mechanisms of temperature sensation.Nat. Rev. Neurosci.4:529–39
      [Google Scholar]
    99. PetersenKA,BirkS,DoodsH,EdvinssonL,OlesenJ.2004. Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat.Br. J. Pharmacol.143:697–704
      [Google Scholar]
    100. PhebusLA,JohnsonKW,ZgombickJM,GilbertPJ,Van BelleK et al.1997. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine.Life Sci.61:2117–26
      [Google Scholar]
    101. PietrobonD,BrennanKC.2019. Genetic mouse models of migraine.J. Headache Pain20:79
      [Google Scholar]
    102. PietrobonD,MoskowitzMA.2014. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations.Nat. Rev. Neurosci.15:379–93
      [Google Scholar]
    103. PulousFE,Cruz-HernandezJC,YangC,KayaZ,PaccaletA et al.2022. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis.Nat. Neurosci.25:567–76
      [Google Scholar]
    104. RayBS,WolffHG.1940. Experimental studies on headache: pain sensitive structures of the head and their significance in headache.Arch. Surg.41:813–56
      [Google Scholar]
    105. ReehPW,PethoG.2000. Nociceptor excitation by thermal sensitization—a hypothesis.Prog. Brain Res.129:39–50
      [Google Scholar]
    106. ReuterU,BolayH,Jansen-OlesenI,ChiarugiA,Sanchez del RioM et al.2001. Delayed inflammation in rat meninges: implications for migraine pathophysiology.Brain124:2490–502
      [Google Scholar]
    107. ReuterU,ChiarugiA,BolayH,MoskowitzMA.2002. Nuclear factor-κB as a molecular target for migraine therapy.Ann. Neurol.51:507–16
      [Google Scholar]
    108. RingstadG,EidePK.2020. Cerebrospinal fluid tracer efflux to parasagittal dura in humans.Nat. Commun.11:354
      [Google Scholar]
    109. RosicB,DukefossDB,AbjorsbratenKS,TangW,JensenV et al.2019. Aquaporin-4-independent volume dynamics of astroglial endfeet during cortical spreading depression.Glia67:1113–21
      [Google Scholar]
    110. RothTL,NayakD,AtanasijevicT,KoretskyAP,LatourLL,McGavernDB.2014. Transcranial amelioration of inflammation and cell death after brain injury.Nature505:223–28
      [Google Scholar]
    111. RustenhovenJ,DrieuA,MamuladzeT,de LimaKA,DykstraT et al.2021. Functional characterization of the dural sinuses as a neuroimmune interface.Cell184:1000–16.e27
      [Google Scholar]
    112. SchainAJ,Melo-CarrilloA,BorsookD,GrutzendlerJ,StrassmanAM,BursteinR.2018. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression.Ann. Neurol.83:508–21
      [Google Scholar]
    113. SchainAJ,Melo-CarrilloA,StrassmanAM,BursteinR.2017. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache.J. Neurosci.37:2904–15
      [Google Scholar]
    114. SchainAJ,Melo-CarrilloA,StrattonJ,StrassmanAM,BursteinR.2019. CSD-induced arterial dilatation and plasma protein extravasation are unaffected by fremanezumab: implications for CGRP's role in migraine with aura.J. Neurosci.39:6001–11
      [Google Scholar]
    115. SchockSC,MunyaoN,YakubchykY,SabourinLA,HakimAM et al.2007. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance.Brain Res.1168:129–38
      [Google Scholar]
    116. SchoonmanGG,van der GrondJ,KortmannC,van der GeestRJ,TerwindtGM,FerrariMD.2008. Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study.Brain131:2192–200
      [Google Scholar]
    117. SchuelerM,MesslingerK,DuxM,NeuhuberWL,De ColR.2013. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache.Pain154:1622–31
      [Google Scholar]
    118. StorerRJ,AkermanS,GoadsbyPJ.2004. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat.Br. J. Pharmacol.142:1171–81
      [Google Scholar]
    119. StorerRJ,GoadsbyPJ.1997. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat.Brain120:2171–77
      [Google Scholar]
    120. StrassmanAM,LevyD.2006. Response properties of dural nociceptors in relation to headache.J. Neurophysiol.95:1298–306
      [Google Scholar]
    121. StrassmanAM,Melo-CarrilloA,HouleTT,AdamsA,BrinMF,BursteinR.2022. Atogepant—an orally-administered CGRP antagonist—attenuates activation of meningeal nociceptors by CSD.Cephalalgia42:933–43
      [Google Scholar]
    122. StrassmanAM,RaymondSA.1999. Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers.J. Neurophysiol.81:413–24
      [Google Scholar]
    123. StrassmanAM,RaymondSA,BursteinR.1996. Sensitization of meningeal sensory neurons and the origin of headaches.Nature384:560–64
      [Google Scholar]
    124. StrassmanAM,WeissnerW,WilliamsM,AliS,LevyD2004. Axon diameters and intradural trajectories of the dural innervation in the rat.J. Comp. Neurol.473:364–76
      [Google Scholar]
    125. TakizawaT,QinT,Lopes de MoraisA,SugimotoK,ChungJY et al.2020. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex.J. Cereb. Blood Flow Metab.40:1117–31
      [Google Scholar]
    126. TvedskovJF,Tfelt-HansenP,PetersenKA,JensenLT,OlesenJ.2010. CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine.Cephalalgia30:1346–53
      [Google Scholar]
    127. Van HoveH,MartensL,ScheyltjensI,De VlaminckK,Pombo AntunesAR et al.2019. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.Nat. Neurosci.22:1021–35
      [Google Scholar]
    128. VaughnAH,GoldMS.2010. Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents.J. Neurosci.30:7878–88
      [Google Scholar]
    129. VianaM,LindeM,SancesG,GhiottoN,GuaschinoE et al.2016. Migraine aura symptoms: duration, succession and temporal relationship to headache.Cephalalgia36:413–21
      [Google Scholar]
    130. von BuchholtzLJ,LamRM,EmrickJJ,CheslerAT,RybaNJP.2020. Assigning transcriptomic class in the trigeminal ganglion using multiplex in situ hybridization and machine learning.Pain161:2212–24
      [Google Scholar]
    131. WaeberC,MoskowitzMA.1995. [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study.Naunyn-Schmiedeberg's Arch. Pharmacol.352:263–75
      [Google Scholar]
    132. WeiX,EdelmayerRM,YanJ,DussorG2011. Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model.Cephalalgia31:1595–600
      [Google Scholar]
    133. YanJ,EdelmayerRM,WeiX,De FeliceM,PorrecaF,DussorG.2011. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.Pain152:106–13
      [Google Scholar]
    134. YanJ,MelemedjianOK,PriceTJ,DussorG.2012. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6).Mol. Pain8:6
      [Google Scholar]
    135. YangL,XuM,BhuiyanSA,LiJ,ZhaoJ et al.2022. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine.Neuron110:1806–21.e8
      [Google Scholar]
    136. ZellerJ,PoulsenKT,SuttonJE,AbdicheYN,CollierS et al.2008. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat.Br. J. Pharmacol.155:1093–103
      [Google Scholar]
    137. ZhangX,BursteinR,LevyD.2012. Local action of the proinflammatory cytokines IL-1β and IL-6 on intracranial meningeal nociceptors.Cephalalgia32:66–72
      [Google Scholar]
    138. ZhangX,KainzV,BursteinR,LevyD.2011. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions.Pain152:140–49
      [Google Scholar]
    139. ZhangX,KainzV,ZhaoJ,StrassmanAM,LevyD.2013. Vascular extracellular signal-regulated kinase mediates migraine-related sensitization of meningeal nociceptors.Ann. Neurol.73:741–50
      [Google Scholar]
    140. ZhangX,LevyD.2008. Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells.Cephalalgia28:276–84
      [Google Scholar]
    141. ZhangX,LevyD,NosedaR,KainzV,JakubowskiM,BursteinR.2010. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura.J. Neurosci.30:8807–14
      [Google Scholar]
    142. ZhangX,StrassmanAM,BursteinR,LevyD.2007. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators.J. Pharmacol. Exp. Ther.322:806–12
      [Google Scholar]
    143. ZhaoJ,BlaeserAS,LevyD.2021. Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity.Pain162:2386–96
      [Google Scholar]
    144. ZhaoJ,BreeD,HarringtonMG,StrassmanAM,LevyD.2017. Cranial dural permeability of inflammatory nociceptive mediators: potential implications for animal models of migraine.Cephalalgia37:1017–25
      [Google Scholar]
    145. ZhaoJ,LevyD.2014. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior.Pain155:1392–400
      [Google Scholar]
    146. ZhaoJ,LevyD.2015. Modulation of intracranial meningeal nociceptor activity by cortical spreading depression: a reassessment.J. Neurophysiol.113:2778–85
      [Google Scholar]
    147. ZhaoJ,LevyD.2016. Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: implications for the intracranial mechanosensitivity of migraine.eNeuro3:ENEURO.0287–16.2016
      [Google Scholar]
    148. ZhaoJ,LevyD.2018a. The CGRP receptor antagonist BIBN4096 inhibits prolonged meningeal afferent activation evoked by brief local K+ stimulation but not cortical spreading depression-induced afferent sensitization.Pain Rep.3:e632
      [Google Scholar]
    149. ZhaoJ,LevyD.2018b. Dissociation between CSD-evoked metabolic perturbations and meningeal afferent activation and sensitization: implications for mechanisms of migraine headache onset.J. Neurosci.38:5053–66
      [Google Scholar]
    150. ZhouN,RungtaRL,MalikA,HanH,WuDC,MacVicarBA.2013. Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression.J. Cereb. Blood Flow Metab.33:1582–94
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-neuro-080422-105509
    10.1146/annurev-neuro-080422-105509
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp