Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Propagation of Tau Aggregates and Neurodegeneration

Abstract

A pathway from the natively unfolded microtubule-associated protein Tau to a highly structured amyloid fibril underlies human Tauopathies. This ordered assembly causes disease and represents the gain of toxic function. In recent years, evidence has accumulated to suggest that Tau inclusions form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of pathology is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighboring cells. In mice, the intracerebral injection of Tau inclusions induces the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Conformational differences between Tau aggregates from transgenic mouse brain and in vitro assembled recombinant protein account for the greater seeding potency of brain aggregates. Short fibrils constitute the major species of seed-competent Tau in the brains of transgenic mice. The existence of multiple human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-neuro-072116-031153
    2017-07-25
    2025-11-25
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/neuro/40/1/annurev-neuro-072116-031153.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031153&mimeType=html&fmt=ahah

    Literature Cited

    1. AhmedZ,CooperJ,MurrayTK,GarnK,McNaughtonE. et al.2014. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity.Acta Neuropathol127:667–83[Google Scholar]
    2. AizawaH,EmoriY,MurofushiH,KawasakiH,SakaiH,SuzukiK.1990. Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000.J. Biol. Chem.265:13849–55[Google Scholar]
    3. AllenB,IngramE,TakaoM,SmithMJ,JakesR. et al.2002. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein.J. Neurosci.22:9340–51[Google Scholar]
    4. AlzheimerA.1907. Über eine eigenartige Erkrankung der Hirnrinde.Allg. Z. Psychiatr.22:146–48[Google Scholar]
    5. AlzheimerA.1911. Über eigenartige Krankheitsfälle des späteren Alters.Z. Gesamte Neurol. Psychiatr.4:356–85[Google Scholar]
    6. AndorferC,KressY,EspinozaM,de SilvaR,TuckerKL. et al.2003. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms.J. Neurochem.86:582–90[Google Scholar]
    7. AndronesiOC,Von BergenM,BiernatJ,SeidelK,GriesingerC. et al.2008. Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.J. Am. Chem. Soc.130:5922–28[Google Scholar]
    8. ArendtT,StielerJ,HolzerM.2016. Tau and tauopathies.Brain Res. Rev.126:238–92[Google Scholar]
    9. ArendtT,StielerJ,StrijkstraAM,HutRA,RüdigerJ. et al.2003. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.J. Neurosci.23:6972–81[Google Scholar]
    10. AsaiH,IkezuS,TsunodaS,MedallaM,LuebkeJ. et al.2015. Depletion of microglia and inhibition of exosome synthesis halt tau progression.Nat. Neurosci.18:1584–93[Google Scholar]
    11. BakerM,LitvanI,HouldenH,AdamsonJ,DicksonD. et al.1999. Association of an extended haplotype in the tau gene with progressive supranuclear palsy.Hum. Mol. Genet.8:711–15[Google Scholar]
    12. BellucciA,WestwoodAJ,IngramE,CasamentiF,GoedertM,SpillantiniMG.2004. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein.Am. J. Pathol.165:1643–52[Google Scholar]
    13. BergerZ,RoderH,HannaA,CarlsonA,RangachariV. et al.2007. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy.J. Neurosci.27:3650–62[Google Scholar]
    14. BerrimanJ,SerpellLC,ObergKA,FinkAL,GoedertM,CrowtherRA.2003. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-β structure.PNAS100:9034–38[Google Scholar]
    15. BoludaS,IbaM,ZhangB,RaibleKM,LeeVMY. et al.2015. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration.Acta Neuropathol129:221–37[Google Scholar]
    16. BondareffW,HarringtonC,WischikCM,HauserDL,RothM.1994. Immunohistochemical staging of neurofibrillary degeneration in Alzheimer's disease.J. Neuropathol. Exp. Neurol.53:158–64[Google Scholar]
    17. BraakH,BraakE.1991. Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol82:239–59[Google Scholar]
    18. BraakH,Del TrediciK.2011. The pathological process underlying Alzheimer's disease in individuals under thirty.Acta Neuropathol121:171–81[Google Scholar]
    19. Buée-ScherrerV,BuéeL,LeveugleB,PerlDP,VermerschP. et al.1997. Pathological tau protein in post-encephalitic parkinsonism: comparison with Alzheimer's disease and other neurodegenerative disorders.Ann. Neurol.42:356–59[Google Scholar]
    20. CaffreyTM,JoachimC,Wade-MartinsR.2008. Haplotype-specific expression of the N-terminal exon 2 and 3 at the humanMAPT locus.Neurobiol. Aging29:1923–29[Google Scholar]
    21. CalafateS,BuistA,MiskiewiczK,VijayanV,DaneelsG. et al.2015. Synaptic contacts enhance cell-to-cell tau pathology propagation.Cell Rep11:1176–83[Google Scholar]
    22. ClavagueraF,AkatsuH,FraserG,CrowtherRA,FrankS. et al.2013a. Brain homogenates from human tauopathies induce tau inclusions in mouse brain.PNAS110:9535–40[Google Scholar]
    23. ClavagueraF,BolmontT,CrowtherRA,AbramowskiD,FrankS. et al.2009. Transmission and spreading of tauopathy in transgenic mouse brain.Nat. Cell Biol.11:909–13[Google Scholar]
    24. ClavagueraF,HenchJ,LavenirI,SchweighauserG,FrankS. et al.2014. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice.Acta Neuropathol127:299–301[Google Scholar]
    25. ClavagueraF,LavenirI,FalconB,FrankS,GoedertM,TolnayM.2013b. “Prion-like” templated misfolding in tauopathies.Brain Pathol23:342–49[Google Scholar]
    26. ConradC,AndreadisA,TrojanowskiJQ,DicksonDW,KangD. et al.1997. Genetic evidence for the involvement of tau in progressive supranuclear palsy.Ann. Neurol.41:277–81[Google Scholar]
    27. CoppolaG,ChinnathambiS,LeeJJ,DombroskiBA,BakerMC. et al.2012. Evidence for a role of the rare p.A152T variant inMAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases.Hum. Mol. Genet.21:3500–12[Google Scholar]
    28. CorderEH,SaundersAM,StrittmatterWJ,SchmechelDE,GaskellPC. et al.1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.Science261:921–23[Google Scholar]
    29. CouchieD,MaviliaC,GeorgieffIS,LiemRKH,ShelanskiML,NunezJ.1992. Primary structure of high molecular weight tau present in the peripheral nervous system.PNAS89:4378–81[Google Scholar]
    30. CraryJF,TrojanowskiJQ,SchneiderJA,AbisambraJF,AbnerEL. et al.2014. Primary age-related tauopathy (PART): a common pathology associated with human aging.Acta Neuropathol128:755–66[Google Scholar]
    31. CrowtherRA.1991. Straight and paired helical filaments in Alzheimer disease have a common structural unit.PNAS88:2288–92[Google Scholar]
    32. CrowtherRA,GoedertM.2000. Abnormal tau-containing filaments in neurodegenerative diseases.J. Struct. Biol.130:271–79[Google Scholar]
    33. DaebelV,ChinnathambiS,BiernatJ,SchwalbeM,HabensteinB. et al.2012. β-Sheet core of tau paired helical filaments revealed by solid-state NMR.J. Am. Chem. Soc.134:13982–89[Google Scholar]
    34. de CalignonA,PolydoroN,Suárez-CalvetM,WilliamsC,AdamowiczDH. et al.2012. Propagation of tau pathology in a model of early Alzheimer's disease.Neuron73:685–97[Google Scholar]
    35. DelacourteA,RobitailleY,SergeantN,BuéeL,HofPR. et al.1996. Specific pathological tau protein variants characterize Pick's disease.J. Neuropathol. Exp. Neurol.55:159–68[Google Scholar]
    36. DujardinS,LécolleK,CaillierezR,BégardS,ZommerN. et al.2014. Neuron-to-neuron wild-type tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies.Acta Neuropathol. Commun.2:14[Google Scholar]
    37. DuyckaertsC,BraakH,BrionJP,BuéeL,Del TrediciK. et al.2015. PART is part of Alzheimer disease.Acta Neuropathol129:749–56[Google Scholar]
    38. DuyckaertsC,UchiharaT,SeilheanD,HeY,HauwJJ.1997. Dissociation of Alzheimer type pathology in a disconnected piece of cortex.Acta Neuropathol93:501–7[Google Scholar]
    39. EiseleYS,ObermüllerU,HeilbronnerG,BaumannF,KaeserSA. et al.2010. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis.Science330:980–82[Google Scholar]
    40. EisenbergD,JuckerM.2012. The amyloid state of proteins in human diseases.Cell148:1188–203[Google Scholar]
    41. Elbaum-GarfinkleS,RhoadesE.2012. Identification of an aggregation-prone structure of tau.J. Am. Chem. Soc.134:16607–13[Google Scholar]
    42. FalconB,CavalliniA,AngersR,GloverS,MurrayTK. et al.2015. Conformation determines the seeding potencies of native and recombinant tau aggregates.J. Biol. Chem.290:1049–65[Google Scholar]
    43. FischerO.1907. Miliare Nekrose mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz.Monatsschrift Psychiatr. Neurol.22:361–72[Google Scholar]
    44. FlamentS,DelacourteA,VernyM,HauwJJ,Javoy-AgidF.1991. Abnormal tau proteins in progressive supranuclear palsy.Acta Neuropathol81:591–96[Google Scholar]
    45. FontaineSN,ZhengD,SabbaghJJ,MartinMM,ChaputD. et al.2016. DNAJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins.EMBO J35:1537–49[Google Scholar]
    46. FrostB,JacksRL,DiamondMI.2009. Propagation of tau misfolding from the outside to the inside of a cell.J. Biol. Chem.284:12845–52[Google Scholar]
    47. FuH,HussainiSA,WegmannS,ProfaciC,DanielsJD. et al.2016. 3D visualization of the temporal and spatial spread of tau pathology reveals extensive sites of tau accumulation associated with neuronal loss and recognition memory deficit in aged tau transgenic mice.PLOS ONE11:e0159463[Google Scholar]
    48. GansA.1922. Betrachtungen über Art und Ausbreitung des krankhaften Prozesses in einem Fall von Pickscher Atrophie des Stirnhirns.Z. Gesamte Neurol. Psychiatr.170:311–30[Google Scholar]
    49. GhettiB,OblakAL,BoeveBF,JohnsonKA,DickersonBC,GoedertM.2015. Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging.Neuropathol. Appl. Neurobiol.41:24–46[Google Scholar]
    50. GoedertM.2015. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein.Science349:1255555[Google Scholar]
    51. GoedertM,BaurCP,AhringerJ,JakesR,HasegawaM. et al.1996a. PTL-1, a microtubule-associated protein with tau-like repeats from the nematodeCaenorhabditis elegans.J. Cell Sci.109:2661–72[Google Scholar]
    52. GoedertM,FalconB,ClavagueraF,TolnayM.2014. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies.Curr. Neurol. Neurosci. Rep.14:495[Google Scholar]
    53. GoedertM,JakesR.1990. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.EMBO J9:4225–30[Google Scholar]
    54. GoedertM,JakesR,SpillantiniMG,HasegawaM,SmithMJ. et al.1996b. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans.Nature383:550–53[Google Scholar]
    55. GoedertM,SpillantiniMG,CairnsNJ,CrowtherRA.1992a. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.Neuron8:159–68[Google Scholar]
    56. GoedertM,SpillantiniMG,CrowtherRA.1992b. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system.PNAS89:1983–87[Google Scholar]
    57. GoedertM,SpillantiniMG,JakesR,RutherfordD,CrowtherRA.1989. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease.Neuron3:519–26[Google Scholar]
    58. GoedertM,WischikCM,CrowtherRA,WalkerJE,KlugA.1988. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau.PNAS85:4051–55[Google Scholar]
    59. GötzJ,ProbstA,SpillantiniMG,SchäferT,JakesR. et al.1995. Somatodendritic localisation and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform.EMBO J14:1304–13[Google Scholar]
    60. HardyJ,SelkoeDJ.2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.Science297:353–56[Google Scholar]
    61. HarrisJA,KoyamaA,MaedaS,HoK,DevidzeN. et al.2012. Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits.PLOS ONE7:e45881[Google Scholar]
    62. HeidaryG,FortiniME.2001. Identification and characterization of theDrosophila tau homolog.Mech. Dev.108:171–78[Google Scholar]
    63. HöglingerGU,MelhemNM,DicksonDW,SleimanPM,WangLS. et al.2011. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy.Nat. Genet.43:699–705[Google Scholar]
    64. HolmesBB,De VosSL,KfouryN,LiM,JacksR. et al.2013. Heparan sulphate proteoglycans mediate internalization and propagation of specific proteopathic seeds.PNAS110:E3138–47[Google Scholar]
    65. HouldenH,BakerM,MorrisHR,MacDonaldN,Pickering-BrownS. et al.2001. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype.Neurology56:1702–6[Google Scholar]
    66. HuttonM,LendonCL,RizzuP,BakerM,FroelichS. et al.1998. Association of missense and 5′-splice-site mutations intau with the inherited dementia FTDP-17.Nature393:702–5[Google Scholar]
    67. IbaM,GuoJL,McBrideJD,ZhangB,TrojanowskiJQ. et al.2013. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy.J. Neurosci.33:1024–37[Google Scholar]
    68. IqbalK,LiuF,GongCX.2016. Tau and neurodegenerative disease: the story so far.Nat. Rev. Neurol.12:15–27[Google Scholar]
    69. IrwinDJ,BrettschneiderJ,McMillanCT,CooperF,OlmC. et al.2015. Deep clinical and neuropathological phenotyping of Pick disease.Ann. Neurol.79:272–87[Google Scholar]
    70. JacksonSJ,KerridgeC,CooperJ,CavalliniA,FalconB. et al.2016. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau.J. Neurosci.36:762–72[Google Scholar]
    71. JanningD,IgaevM,SündermannF,BrühmannJ,BeutelO. et al.2014. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons.Mol. Biol. Cell25:3541–51[Google Scholar]
    72. JohnsonKA,SchultzA,BetenskyRA,BeckerJA,SepulcreJ. et al.2016. Tau positron emission tomographic imaging in aging and early Alzheimer disease.Ann. Neurol.79:110–19[Google Scholar]
    73. KadavathH,JaremkoM,JaremkoL,BiernatJ,MandelkowE. et al.2015. Folding of tau protein on microtubules.Angew. Chem. Int. Ed.54:10347–51[Google Scholar]
    74. KaraE,LingH,PittmanAM,ShawK,de SilvaR. et al.2012. TheMAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features.Neurobiol. Aging33:2231.e7–14[Google Scholar]
    75. KiddM.1963. Paired helical filaments in electron microscopy of Alzheimer's disease.Nature197:192–94[Google Scholar]
    76. KouriN,RossOA,DombroskiB,YounkinCS,SerrieDJ. et al.2015. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy.Nat. Commun.6:7247[Google Scholar]
    77. KovacsGG,FerrerI,GrinbergLT,AlazuloffI,AttemsJ. et al.2016. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.Acta Neuropathol131:87–102[Google Scholar]
    78. KovacsGG,MajtenyiK,SpinaS,MurrellJR,GelpiE. et al.2008. White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration.J. Neuropathol. Exp. Neurol.67:963–75[Google Scholar]
    79. KovacsGG,WöhrerA,StröbelT,BotondG,AttemsJ. et al.2011. Unclassifiable tauopathy associated with an A152T variation inMAPT exon 7.Clin. Neuropathol.30:3–10[Google Scholar]
    80. Ksiezak-RedingH,MorganK,MattiaceLA,DaviesP,LiuWK. et al.1994. Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration.Am. J. Pathol.145:1496–508[Google Scholar]
    81. Lasagna-ReevesCA,Castillo-CarranzaDL,SenguptaU,SarmientoJ,TroncosoJ. et al.2012. Identification of oligomers at early stages of tau aggregation in Alzheimer's disease.FASEB J26:1946–59[Google Scholar]
    82. LeeVMY,GoedertM,TrojanowskiJQ.2001. Neurodegenerative tauopathies.Annu. Rev. Neurosci.24:1121–59[Google Scholar]
    83. LewisSA,WangD,CowanNJ.1988. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein.Science242:936–39[Google Scholar]
    84. LewisJ,McGowanE,RockwoodJ,MelroseH,NacharajuP. et al.2000. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein.Nat. Genet.25:402–5[Google Scholar]
    85. LiuL,DrouetV,WuJW,WitterMP,SmallSA. et al.2012. Trans-synaptic spread of tau pathology in vivo.PLOS ONE7:e31302[Google Scholar]
    86. LukKC,KehmVM,ZhangB,O'BrienP,TrojanowskiJQ. et al.2012. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice.J. Exp. Med.209:975–86[Google Scholar]
    87. MaedaS,SaharaN,SaitoY,MurayamaS,IkaiA. et al.2006. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease.Neurosci. Res.54:197–201[Google Scholar]
    88. McEwanWA,FalconB,VaysburdM,CliftD,OblakAL. et al.2017. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.PNAS114:574–79[Google Scholar]
    89. McKeeAC,SternRA,NowinskiCJ,SteinTD,AlvarezVE. et al.2013. The spectrum of disease in chronic traumatic encephalopathy.Brain136:43–64[Google Scholar]
    90. Meyer-LuehmannM,CoomaraswamyJ,BolmontT,KaeserS,SchaeferC. et al.2006. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host.Science313:1781–84[Google Scholar]
    91. MorozovaOA,MarchZM,RobinsonAS,ColbyDW.2013. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein.Biochemistry52:6960–67[Google Scholar]
    92. MorrisM,KnudsenGM,MaedaS,TrinidadJC,IoanoviciuA. et al.2015. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice.Nat. Neurosci.18:1183–89[Google Scholar]
    93. MorschR,SimonW,ColemanPD.1999. Neurons may live for decades with neurofibrillary tangles.J. Neuropathol. Exp. Neurol.58:188–97[Google Scholar]
    94. MurrellJR,SpillantiniMG,ZoloP,GuazzelliM,SmithMJ. et al.1999.Tau gene mutation G389R causes a tauopathy with abundant Pick body-like inclusions and axonal deposits.J. Neuropathol. Exp. Neurol.58:1207–26[Google Scholar]
    95. NeumannM,DiekmannS,BertschU,VanmassenhoveB,BogertsB. et al.2005. Novel G335V mutation in thetau gene associated with early onset familial frontotemporal dementia.Neurogenetics6:91–95[Google Scholar]
    96. NeveRL,HarrisP,KosikKS,KurnitDM,DonlonTA.1986. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2.Brain Res387:271–80[Google Scholar]
    97. NiewidokB,IgaevM,SündermannF,JanningD,BakotaL,BrandtR.2016. Presence of a carboxy-terminal pseudorepeat and disease-like pseudophosphorylation critically influence tau's interaction with microtubules in axon-like processes.Mol. Biol. Cell27:3537–49[Google Scholar]
    98. OnariK,SpatzH.1926. Anatomische Beiträge zur Lehre von der Pickschen umschriebenen Grosshirnrinden-Atrophie (“Picksche Krankheit”).Z. Gesamte Neurol. Psychiatr.101:470–511[Google Scholar]
    99. OzcelikS,SprengerF,SkachokovaZ,FraserG,AbramowskiD. et al.2016. Co-expression of truncated and full-length tau induces severe neurotoxicity.Mol. Psychiatry21:1790–98[Google Scholar]
    100. PalonevaJ,KestiläM,WuJ,SalminenA,BöhlingT. et al.2000. Loss-of-function mutations inTYROBP (DAP12) result in a presenile dementia with bone cysts.Nat. Genet25:357–61[Google Scholar]
    101. PastorP,EzquerraM,MunozE,MartiMJ,BlesaR. et al.2000. Significant association between the tau gene A0/A0 genotype and Parkinson's disease.Ann. Neurol.47:242–45[Google Scholar]
    102. PastorP,MorenoF,ClarimónJ,RuizA,CombarrosO. et al.2015. MAPT H1 haplotype is associated with late-onset Alzheimer's disease risk inAPOEɛ4 noncarriers: results from the dementia genetics Spanish consortium.J. Alzheimer's Dis.49:343–52[Google Scholar]
    103. PérezM,ValpuestaJM,MedinaM,Montejo de GarciniE,AvilaJ.1996. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction.J. Neurochem.67:1183–90[Google Scholar]
    104. Pickering-BrownSM,BakerM,NonakaT,IkedaK,SharmaS. et al.2004. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in thetau gene.Brain127:1415–26[Google Scholar]
    105. PieriL,MadionaK,BoussetL,MelkiR.2012. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to cells.Biophys. J.102:2894–905[Google Scholar]
    106. PoolerAM,PhillipsEC,LauDH,NobleW,HangerDP.2013. Physiological release of endogenous tau is stimulated by neuronal activity.EMBO Rep14:389–94[Google Scholar]
    107. PoorkajP,BirdTD,WijsmanE,NemensE,GarrutoRM. et al.1998. Tau is a candidate gene for chromosome 17 frontotemporal dementia.Ann. Neurol.43:815–25[Google Scholar]
    108. ProbstA,GötzJ,WiederholdKH,TolnayM,MistlC. et al.2000. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein.Acta Neuropathol99:469–81[Google Scholar]
    109. PrusinerSB.1982. Novel proteinaceous infectious particles cause scrapie.Science216:136–44[Google Scholar]
    110. PrusinerSB.2013. Biology and genetics of prions causing neurodegeneration.Annu. Rev. Genet.47:601–23[Google Scholar]
    111. RademakersR,BakerM,NicholsonAM,RutherfordNJ,FinchN. et al.2012. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leucoencephalopathy with spheroids.Nat. Genet.44:200–5[Google Scholar]
    112. RamachandranG,UdgaonkarJB.2011. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein.J. Biol. Chem.286:38948–59[Google Scholar]
    113. RaoMV,McBrayerMK,CampbellJ,KumarA,HashimA. et al.2014. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice.J. Neurosci.34:9222–34[Google Scholar]
    114. RecasensA,DehayB,BovéJ,Carballo-CarbajalI,DoveroS. et al.2014. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys.Ann. Neurol.75:351–62[Google Scholar]
    115. RewcastleNB,BallMJ.1968. Electron microscopic structure of the “inclusion bodies” in Pick's disease.Neurology18:1205–13[Google Scholar]
    116. SacinoAN,BrooksM,ThomasMA,McKinneyAB,LeeS. et al.2014. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice.PNAS111:10732–37[Google Scholar]
    117. SaitoY,RuberuNN,SawabeM,AraiT,TanakaN. et al.2004. Staging of argyrophilic grains: an age-associated tauopathy.J. Neuropathol. Exp. Neurol.63:911–18[Google Scholar]
    118. SandersDW,KaufmanSK,De VosSL,SharmaAM,MirhabaH. et al.2014. Distinct tau prion strains propagate in cells and mice and define different tauopathies.Neuron82:1271–88[Google Scholar]
    119. SankaranarayananS,BartenDM,VanaL,DevidzeN,YangL. et al.2015. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models.PLOS ONE10:e0125614[Google Scholar]
    120. SantaCruzK,LewisJ,SpiresT,PaulsonJ,KotilinekL. et al.2005. Tau suppression in a neurodegenerative mouse model improves memory function.Science309:476–81[Google Scholar]
    121. SatakeW,NakabayashiY,MizutaI,HirotaY,ItoC. et al.2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.Nat. Genet.41:1303–7[Google Scholar]
    122. SawayaMR,SambashivanS,NelsonR,IvanovaMI,SieversSA. et al.2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers.Nature447:453–57[Google Scholar]
    123. SchmidtML,ZhukarevaV,NewellKL,LeeVMY,TrojanowskiJQ.2001. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer's disease.Acta Neuropathol101:518–24[Google Scholar]
    124. SchöllM,LockhartSN,SchonhautDR,O'NeilJP,JanabiM. et al.2016. PET imaging of tau deposition in the aging human brain.Neuron89:971–82[Google Scholar]
    125. SimanR,LinYG,Malthankar-PhatakG,DongY.2013. A rapid gene delivery–based mouse model for early-stage Alzheimer's disease–type tauopathy.J. Neuropathol. Exp. Neurol.72:1062–71[Google Scholar]
    126. Simón-SánchezJ,SchulteC,BrasJM,SharmaM,GibbsJR. et al.2009. Genome-wide association study reveals genetic risk underlying Parkinson's disease.Nat. Genet.41:1308–12[Google Scholar]
    127. SpillantiniMG,CrowtherRA,GoedertM.1996. Comparison of the neurofibrillary pathology in Alzheimer's disease and familial presenile dementia with tangles.Acta Neuropathol92:42–48[Google Scholar]
    128. SpillantiniMG,CrowtherRA,KamphorstW,HeutinkP,van SwietenJC.1998a. Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau.Am. J. Pathol.153:1359–63[Google Scholar]
    129. SpillantiniMG,GoedertM.2013. Tau pathology and neurodegeneration.Lancet Neurol12:609–22[Google Scholar]
    130. SpillantiniMG,GoedertM,CrowtherRA,MurrellJR,FarlowMR,GhettiB.1997. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments.PNAS94:4113–18[Google Scholar]
    131. SpillantiniMG,MurrellJR,GoedertM,FarlowMR,KlugA. et al.1998b. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia.PNAS94:4113–18[Google Scholar]
    132. SpinaS,MurrellJR,YoshidaH,GhettiB,BerminghamN. et al.2007. The novelTau mutation G335S: clinical, neuropathological and molecular characterization.Acta Neuropathol113:461–70[Google Scholar]
    133. SpiresTL,OrneJD,SantaCruzK,PitstickR,CarlsonGA. et al.2006. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy.Am. J. Pathol.168:1598–607[Google Scholar]
    134. StefanssonH,HelgasonA,ThorleifssonG,SteinthorsdottirV,MassonG. et al.2005. A common inversion under selection in Europeans.Nat. Genet.37:129–37[Google Scholar]
    135. StertzG.1926. Über die Picksche Atrophie.Z. Gesamte Neurol. Psychiatr.101:729–49[Google Scholar]
    136. StöhrJ,WattsJC,MensingerZL,OehlerA,GrilloSK. et al.2012. Purified and synthetic Alzheimer's amyloid-beta (Aβ) prions.PNAS109:11025–30[Google Scholar]
    137. SündermannF,FernandezMP,MorganRO.2016. An evolutionary roadmap to the microtubule-associated protein MAP Tau.BMC Genom.17:264[Google Scholar]
    138. TacikP,DeTureM,HinkleKM,LinWL,Sanchez-ContrerasM. et al.2015. A novel tau mutation in exon 12, p.Q336H, causes hereditary Pick disease.J. Neuropathol. Exp. Neurol.74:1042–52[Google Scholar]
    139. TogoT,SaharaN,YenSH,CooksonN,IshizawaT. et al.2002. Argyrophilic grain disease is a sporadic 4-repeat tauopathy.J. Neuropathol. Exp. Neurol.61:547–66[Google Scholar]
    140. UchiharaT,TsuchiyaK,NakamuraA,AkiyamaH.2005. Argyrophilic grains are not always argyrophilic—distinction from neurofibrillary tangles of diffuse neurofibrillary tangles with calcification revealed by comparison between Gallyas and Campbell-Switzer methods.Acta Neuropathol110:158–64[Google Scholar]
    141. UlrichJ.1985. Alzheimer changes in nondemented patients younger than sixty-five: possible early stages of Alzheimer's disease and senile dementia of Alzheimer type.Ann. Neurol.17:273–77[Google Scholar]
    142. UlrichJ,SpillantiniMG,GoedertM,DukasL,StähelinHB.1992. Abundant neurofibrillary tangles without senile plaques in a subset of patients with senile dementia.Neurodegeneration1:257–64[Google Scholar]
    143. UsenovicM,NiroomandS,DroletSE,YaoL,GasparRC. et al.2015. Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells.J. Neurosci.35:14234–50[Google Scholar]
    144. ValencaGT,SrivastavaGP,Oliveiro-FilhoJ,WhiteCC,YuL. et al.2016. The role ofMAPT haplotype H2 and isoform 1N/4R in parkinsonism of older adults.PLOS ONE11:e0157452[Google Scholar]
    145. VerheyenA,DielsA,DijkmansJ,OyelamiT,MeneghelioG. et al.2015. Using human iPSC-derived neurons to model TAU aggregation.PLOS ONE10:e0146127[Google Scholar]
    146. Von BergenM,BarghornS,LiL,MarxA,BiernatJ. et al.2001. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure.J. Biol. Chem.276:48165–74[Google Scholar]
    147. Von BergenM,FriedhoffP,BiernatJ,HeberleJ,MandelkowEM,MandelkowE.2000. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure.PNAS97:5129–34[Google Scholar]
    148. WalshDM,SelkoeDJ.2016. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration.Nat. Rev. Neurosci.17:251–60[Google Scholar]
    149. WegmannS,MauryEA,KirkMJ,SaqranL,RoeA. et al.2015. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity.EMBO J34:3028–41[Google Scholar]
    150. WilhelmsenKC,LynchT,PavlouE,HigginsM,NygaardTG.1994. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22.Am. J. Hum. Genet.55:1159–65[Google Scholar]
    151. WiltziusJJW,LandauM,NelsonR,SawayaMR,ApostolMI. et al.2009. Molecular mechanisms for protein-encoded inheritance.Nat. Struct. Mol. Biol.16:973–78[Google Scholar]
    152. WischikCM,NovakM,EdwardsPC,KlugA,TichelaarW,CrowtherRA.1988a. Structural characterization of the core of the paired helical filament of Alzheimer disease.PNAS85:4884–88[Google Scholar]
    153. WischikCM,NovakM,ThogersenHC,EdwardsPC,RunswickMJ,JakesR. et al.1988b. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease.PNAS85:4506–10[Google Scholar]
    154. WittmannCW,WszolekMF,ShulmanJM,SalvaterraPM,LewisJ. et al.2001. Tauopathy inDrosophila: neurodegeneration without neurofibrillary tangles.Science293:711–14[Google Scholar]
    155. WuJW,HussainiSA,BastilleIM,RodriguezGA,MrejeruA. et al.2016. Neuronal activity enhances tau propagation and tau pathology in vivo.Nat. Neurosci.19:1085–92[Google Scholar]
    156. XieC,SoedaY,ShinzakiY,InY,TomooK. et al.2015. Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau.J. Neurochem.135:19–26[Google Scholar]
    157. YamadaK,CirritoJR,StewartFR,JianH,FinnMB. et al.2011. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice.J. Neurosci.31:13110–17[Google Scholar]
    158. YamadaK,HolthJK,LiaoF,StewartFR,MahanTE. et al.2014. Neuronal activity regulates extracellular tau in vivo.J. Exp. Med.211:387–93[Google Scholar]
    159. YanamandraK,KfouryN,JiangH,MahanTE,MaS. et al.2014. Anti-tau antibodies that block aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.Neuron80:402–14[Google Scholar]
    160. YetmanMJ,LillehaugS,BjaalieJG,LeergaardTB,JankowskyJL.2016. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex.Brain Struct. Funct.221:2231–49[Google Scholar]
    161. YoshidaH,GoedertM.2002. Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats.Biochemistry41:15203–11[Google Scholar]
    162. ZhangB,UneY,FuX,YanJ,GeFX. et al.2008. Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease.PNAS105:7263–68[Google Scholar]
    163. ZhaoY,TsengIC,HeyserCJ,RockensteinE,ManteM. et al.2015. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis.Neuron87:963–75[Google Scholar]
    164. ZhongQ,CondonEE,NagarajaHN,KuretJ.2012. Tau isoform composition influences rate and extent of filament formation.J. Biol. Chem.287:20711–19[Google Scholar]
    165. ZhouJ,GennatasED,KramerJH,MillerBL,SeeleyWW.2012. Predicting regional neurodegeneration from the healthy brain functional connectome.Neuron73:1216–27[Google Scholar]
    /content/journals/10.1146/annurev-neuro-072116-031153
    Loading
    Propagation of Tau Aggregates and Neurodegeneration
    Annual Review of Neuroscience40, 189 (2017);https://doi.org/10.1146/annurev-neuro-072116-031153
    /content/journals/10.1146/annurev-neuro-072116-031153
    /content/journals/10.1146/annurev-neuro-072116-031153
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/neuro
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-neuro-072116-031153
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AhmedZ,CooperJ,MurrayTK,GarnK,McNaughtonE. et al.2014. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity.Acta Neuropathol127:667–83[Google Scholar]
    2. AizawaH,EmoriY,MurofushiH,KawasakiH,SakaiH,SuzukiK.1990. Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000.J. Biol. Chem.265:13849–55[Google Scholar]
    3. AllenB,IngramE,TakaoM,SmithMJ,JakesR. et al.2002. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein.J. Neurosci.22:9340–51[Google Scholar]
    4. AlzheimerA.1907. Über eine eigenartige Erkrankung der Hirnrinde.Allg. Z. Psychiatr.22:146–48[Google Scholar]
    5. AlzheimerA.1911. Über eigenartige Krankheitsfälle des späteren Alters.Z. Gesamte Neurol. Psychiatr.4:356–85[Google Scholar]
    6. AndorferC,KressY,EspinozaM,de SilvaR,TuckerKL. et al.2003. Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms.J. Neurochem.86:582–90[Google Scholar]
    7. AndronesiOC,Von BergenM,BiernatJ,SeidelK,GriesingerC. et al.2008. Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.J. Am. Chem. Soc.130:5922–28[Google Scholar]
    8. ArendtT,StielerJ,HolzerM.2016. Tau and tauopathies.Brain Res. Rev.126:238–92[Google Scholar]
    9. ArendtT,StielerJ,StrijkstraAM,HutRA,RüdigerJ. et al.2003. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.J. Neurosci.23:6972–81[Google Scholar]
    10. AsaiH,IkezuS,TsunodaS,MedallaM,LuebkeJ. et al.2015. Depletion of microglia and inhibition of exosome synthesis halt tau progression.Nat. Neurosci.18:1584–93[Google Scholar]
    11. BakerM,LitvanI,HouldenH,AdamsonJ,DicksonD. et al.1999. Association of an extended haplotype in the tau gene with progressive supranuclear palsy.Hum. Mol. Genet.8:711–15[Google Scholar]
    12. BellucciA,WestwoodAJ,IngramE,CasamentiF,GoedertM,SpillantiniMG.2004. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein.Am. J. Pathol.165:1643–52[Google Scholar]
    13. BergerZ,RoderH,HannaA,CarlsonA,RangachariV. et al.2007. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy.J. Neurosci.27:3650–62[Google Scholar]
    14. BerrimanJ,SerpellLC,ObergKA,FinkAL,GoedertM,CrowtherRA.2003. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-β structure.PNAS100:9034–38[Google Scholar]
    15. BoludaS,IbaM,ZhangB,RaibleKM,LeeVMY. et al.2015. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration.Acta Neuropathol129:221–37[Google Scholar]
    16. BondareffW,HarringtonC,WischikCM,HauserDL,RothM.1994. Immunohistochemical staging of neurofibrillary degeneration in Alzheimer's disease.J. Neuropathol. Exp. Neurol.53:158–64[Google Scholar]
    17. BraakH,BraakE.1991. Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol82:239–59[Google Scholar]
    18. BraakH,Del TrediciK.2011. The pathological process underlying Alzheimer's disease in individuals under thirty.Acta Neuropathol121:171–81[Google Scholar]
    19. Buée-ScherrerV,BuéeL,LeveugleB,PerlDP,VermerschP. et al.1997. Pathological tau protein in post-encephalitic parkinsonism: comparison with Alzheimer's disease and other neurodegenerative disorders.Ann. Neurol.42:356–59[Google Scholar]
    20. CaffreyTM,JoachimC,Wade-MartinsR.2008. Haplotype-specific expression of the N-terminal exon 2 and 3 at the humanMAPT locus.Neurobiol. Aging29:1923–29[Google Scholar]
    21. CalafateS,BuistA,MiskiewiczK,VijayanV,DaneelsG. et al.2015. Synaptic contacts enhance cell-to-cell tau pathology propagation.Cell Rep11:1176–83[Google Scholar]
    22. ClavagueraF,AkatsuH,FraserG,CrowtherRA,FrankS. et al.2013a. Brain homogenates from human tauopathies induce tau inclusions in mouse brain.PNAS110:9535–40[Google Scholar]
    23. ClavagueraF,BolmontT,CrowtherRA,AbramowskiD,FrankS. et al.2009. Transmission and spreading of tauopathy in transgenic mouse brain.Nat. Cell Biol.11:909–13[Google Scholar]
    24. ClavagueraF,HenchJ,LavenirI,SchweighauserG,FrankS. et al.2014. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice.Acta Neuropathol127:299–301[Google Scholar]
    25. ClavagueraF,LavenirI,FalconB,FrankS,GoedertM,TolnayM.2013b. “Prion-like” templated misfolding in tauopathies.Brain Pathol23:342–49[Google Scholar]
    26. ConradC,AndreadisA,TrojanowskiJQ,DicksonDW,KangD. et al.1997. Genetic evidence for the involvement of tau in progressive supranuclear palsy.Ann. Neurol.41:277–81[Google Scholar]
    27. CoppolaG,ChinnathambiS,LeeJJ,DombroskiBA,BakerMC. et al.2012. Evidence for a role of the rare p.A152T variant inMAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases.Hum. Mol. Genet.21:3500–12[Google Scholar]
    28. CorderEH,SaundersAM,StrittmatterWJ,SchmechelDE,GaskellPC. et al.1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.Science261:921–23[Google Scholar]
    29. CouchieD,MaviliaC,GeorgieffIS,LiemRKH,ShelanskiML,NunezJ.1992. Primary structure of high molecular weight tau present in the peripheral nervous system.PNAS89:4378–81[Google Scholar]
    30. CraryJF,TrojanowskiJQ,SchneiderJA,AbisambraJF,AbnerEL. et al.2014. Primary age-related tauopathy (PART): a common pathology associated with human aging.Acta Neuropathol128:755–66[Google Scholar]
    31. CrowtherRA.1991. Straight and paired helical filaments in Alzheimer disease have a common structural unit.PNAS88:2288–92[Google Scholar]
    32. CrowtherRA,GoedertM.2000. Abnormal tau-containing filaments in neurodegenerative diseases.J. Struct. Biol.130:271–79[Google Scholar]
    33. DaebelV,ChinnathambiS,BiernatJ,SchwalbeM,HabensteinB. et al.2012. β-Sheet core of tau paired helical filaments revealed by solid-state NMR.J. Am. Chem. Soc.134:13982–89[Google Scholar]
    34. de CalignonA,PolydoroN,Suárez-CalvetM,WilliamsC,AdamowiczDH. et al.2012. Propagation of tau pathology in a model of early Alzheimer's disease.Neuron73:685–97[Google Scholar]
    35. DelacourteA,RobitailleY,SergeantN,BuéeL,HofPR. et al.1996. Specific pathological tau protein variants characterize Pick's disease.J. Neuropathol. Exp. Neurol.55:159–68[Google Scholar]
    36. DujardinS,LécolleK,CaillierezR,BégardS,ZommerN. et al.2014. Neuron-to-neuron wild-type tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies.Acta Neuropathol. Commun.2:14[Google Scholar]
    37. DuyckaertsC,BraakH,BrionJP,BuéeL,Del TrediciK. et al.2015. PART is part of Alzheimer disease.Acta Neuropathol129:749–56[Google Scholar]
    38. DuyckaertsC,UchiharaT,SeilheanD,HeY,HauwJJ.1997. Dissociation of Alzheimer type pathology in a disconnected piece of cortex.Acta Neuropathol93:501–7[Google Scholar]
    39. EiseleYS,ObermüllerU,HeilbronnerG,BaumannF,KaeserSA. et al.2010. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis.Science330:980–82[Google Scholar]
    40. EisenbergD,JuckerM.2012. The amyloid state of proteins in human diseases.Cell148:1188–203[Google Scholar]
    41. Elbaum-GarfinkleS,RhoadesE.2012. Identification of an aggregation-prone structure of tau.J. Am. Chem. Soc.134:16607–13[Google Scholar]
    42. FalconB,CavalliniA,AngersR,GloverS,MurrayTK. et al.2015. Conformation determines the seeding potencies of native and recombinant tau aggregates.J. Biol. Chem.290:1049–65[Google Scholar]
    43. FischerO.1907. Miliare Nekrose mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz.Monatsschrift Psychiatr. Neurol.22:361–72[Google Scholar]
    44. FlamentS,DelacourteA,VernyM,HauwJJ,Javoy-AgidF.1991. Abnormal tau proteins in progressive supranuclear palsy.Acta Neuropathol81:591–96[Google Scholar]
    45. FontaineSN,ZhengD,SabbaghJJ,MartinMM,ChaputD. et al.2016. DNAJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins.EMBO J35:1537–49[Google Scholar]
    46. FrostB,JacksRL,DiamondMI.2009. Propagation of tau misfolding from the outside to the inside of a cell.J. Biol. Chem.284:12845–52[Google Scholar]
    47. FuH,HussainiSA,WegmannS,ProfaciC,DanielsJD. et al.2016. 3D visualization of the temporal and spatial spread of tau pathology reveals extensive sites of tau accumulation associated with neuronal loss and recognition memory deficit in aged tau transgenic mice.PLOS ONE11:e0159463[Google Scholar]
    48. GansA.1922. Betrachtungen über Art und Ausbreitung des krankhaften Prozesses in einem Fall von Pickscher Atrophie des Stirnhirns.Z. Gesamte Neurol. Psychiatr.170:311–30[Google Scholar]
    49. GhettiB,OblakAL,BoeveBF,JohnsonKA,DickersonBC,GoedertM.2015. Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging.Neuropathol. Appl. Neurobiol.41:24–46[Google Scholar]
    50. GoedertM.2015. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein.Science349:1255555[Google Scholar]
    51. GoedertM,BaurCP,AhringerJ,JakesR,HasegawaM. et al.1996a. PTL-1, a microtubule-associated protein with tau-like repeats from the nematodeCaenorhabditis elegans.J. Cell Sci.109:2661–72[Google Scholar]
    52. GoedertM,FalconB,ClavagueraF,TolnayM.2014. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies.Curr. Neurol. Neurosci. Rep.14:495[Google Scholar]
    53. GoedertM,JakesR.1990. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.EMBO J9:4225–30[Google Scholar]
    54. GoedertM,JakesR,SpillantiniMG,HasegawaM,SmithMJ. et al.1996b. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans.Nature383:550–53[Google Scholar]
    55. GoedertM,SpillantiniMG,CairnsNJ,CrowtherRA.1992a. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.Neuron8:159–68[Google Scholar]
    56. GoedertM,SpillantiniMG,CrowtherRA.1992b. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system.PNAS89:1983–87[Google Scholar]
    57. GoedertM,SpillantiniMG,JakesR,RutherfordD,CrowtherRA.1989. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease.Neuron3:519–26[Google Scholar]
    58. GoedertM,WischikCM,CrowtherRA,WalkerJE,KlugA.1988. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau.PNAS85:4051–55[Google Scholar]
    59. GötzJ,ProbstA,SpillantiniMG,SchäferT,JakesR. et al.1995. Somatodendritic localisation and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform.EMBO J14:1304–13[Google Scholar]
    60. HardyJ,SelkoeDJ.2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.Science297:353–56[Google Scholar]
    61. HarrisJA,KoyamaA,MaedaS,HoK,DevidzeN. et al.2012. Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits.PLOS ONE7:e45881[Google Scholar]
    62. HeidaryG,FortiniME.2001. Identification and characterization of theDrosophila tau homolog.Mech. Dev.108:171–78[Google Scholar]
    63. HöglingerGU,MelhemNM,DicksonDW,SleimanPM,WangLS. et al.2011. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy.Nat. Genet.43:699–705[Google Scholar]
    64. HolmesBB,De VosSL,KfouryN,LiM,JacksR. et al.2013. Heparan sulphate proteoglycans mediate internalization and propagation of specific proteopathic seeds.PNAS110:E3138–47[Google Scholar]
    65. HouldenH,BakerM,MorrisHR,MacDonaldN,Pickering-BrownS. et al.2001. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype.Neurology56:1702–6[Google Scholar]
    66. HuttonM,LendonCL,RizzuP,BakerM,FroelichS. et al.1998. Association of missense and 5′-splice-site mutations intau with the inherited dementia FTDP-17.Nature393:702–5[Google Scholar]
    67. IbaM,GuoJL,McBrideJD,ZhangB,TrojanowskiJQ. et al.2013. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy.J. Neurosci.33:1024–37[Google Scholar]
    68. IqbalK,LiuF,GongCX.2016. Tau and neurodegenerative disease: the story so far.Nat. Rev. Neurol.12:15–27[Google Scholar]
    69. IrwinDJ,BrettschneiderJ,McMillanCT,CooperF,OlmC. et al.2015. Deep clinical and neuropathological phenotyping of Pick disease.Ann. Neurol.79:272–87[Google Scholar]
    70. JacksonSJ,KerridgeC,CooperJ,CavalliniA,FalconB. et al.2016. Short fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau.J. Neurosci.36:762–72[Google Scholar]
    71. JanningD,IgaevM,SündermannF,BrühmannJ,BeutelO. et al.2014. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons.Mol. Biol. Cell25:3541–51[Google Scholar]
    72. JohnsonKA,SchultzA,BetenskyRA,BeckerJA,SepulcreJ. et al.2016. Tau positron emission tomographic imaging in aging and early Alzheimer disease.Ann. Neurol.79:110–19[Google Scholar]
    73. KadavathH,JaremkoM,JaremkoL,BiernatJ,MandelkowE. et al.2015. Folding of tau protein on microtubules.Angew. Chem. Int. Ed.54:10347–51[Google Scholar]
    74. KaraE,LingH,PittmanAM,ShawK,de SilvaR. et al.2012. TheMAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features.Neurobiol. Aging33:2231.e7–14[Google Scholar]
    75. KiddM.1963. Paired helical filaments in electron microscopy of Alzheimer's disease.Nature197:192–94[Google Scholar]
    76. KouriN,RossOA,DombroskiB,YounkinCS,SerrieDJ. et al.2015. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy.Nat. Commun.6:7247[Google Scholar]
    77. KovacsGG,FerrerI,GrinbergLT,AlazuloffI,AttemsJ. et al.2016. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.Acta Neuropathol131:87–102[Google Scholar]
    78. KovacsGG,MajtenyiK,SpinaS,MurrellJR,GelpiE. et al.2008. White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration.J. Neuropathol. Exp. Neurol.67:963–75[Google Scholar]
    79. KovacsGG,WöhrerA,StröbelT,BotondG,AttemsJ. et al.2011. Unclassifiable tauopathy associated with an A152T variation inMAPT exon 7.Clin. Neuropathol.30:3–10[Google Scholar]
    80. Ksiezak-RedingH,MorganK,MattiaceLA,DaviesP,LiuWK. et al.1994. Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration.Am. J. Pathol.145:1496–508[Google Scholar]
    81. Lasagna-ReevesCA,Castillo-CarranzaDL,SenguptaU,SarmientoJ,TroncosoJ. et al.2012. Identification of oligomers at early stages of tau aggregation in Alzheimer's disease.FASEB J26:1946–59[Google Scholar]
    82. LeeVMY,GoedertM,TrojanowskiJQ.2001. Neurodegenerative tauopathies.Annu. Rev. Neurosci.24:1121–59[Google Scholar]
    83. LewisSA,WangD,CowanNJ.1988. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein.Science242:936–39[Google Scholar]
    84. LewisJ,McGowanE,RockwoodJ,MelroseH,NacharajuP. et al.2000. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein.Nat. Genet.25:402–5[Google Scholar]
    85. LiuL,DrouetV,WuJW,WitterMP,SmallSA. et al.2012. Trans-synaptic spread of tau pathology in vivo.PLOS ONE7:e31302[Google Scholar]
    86. LukKC,KehmVM,ZhangB,O'BrienP,TrojanowskiJQ. et al.2012. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice.J. Exp. Med.209:975–86[Google Scholar]
    87. MaedaS,SaharaN,SaitoY,MurayamaS,IkaiA. et al.2006. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease.Neurosci. Res.54:197–201[Google Scholar]
    88. McEwanWA,FalconB,VaysburdM,CliftD,OblakAL. et al.2017. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.PNAS114:574–79[Google Scholar]
    89. McKeeAC,SternRA,NowinskiCJ,SteinTD,AlvarezVE. et al.2013. The spectrum of disease in chronic traumatic encephalopathy.Brain136:43–64[Google Scholar]
    90. Meyer-LuehmannM,CoomaraswamyJ,BolmontT,KaeserS,SchaeferC. et al.2006. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host.Science313:1781–84[Google Scholar]
    91. MorozovaOA,MarchZM,RobinsonAS,ColbyDW.2013. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein.Biochemistry52:6960–67[Google Scholar]
    92. MorrisM,KnudsenGM,MaedaS,TrinidadJC,IoanoviciuA. et al.2015. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice.Nat. Neurosci.18:1183–89[Google Scholar]
    93. MorschR,SimonW,ColemanPD.1999. Neurons may live for decades with neurofibrillary tangles.J. Neuropathol. Exp. Neurol.58:188–97[Google Scholar]
    94. MurrellJR,SpillantiniMG,ZoloP,GuazzelliM,SmithMJ. et al.1999.Tau gene mutation G389R causes a tauopathy with abundant Pick body-like inclusions and axonal deposits.J. Neuropathol. Exp. Neurol.58:1207–26[Google Scholar]
    95. NeumannM,DiekmannS,BertschU,VanmassenhoveB,BogertsB. et al.2005. Novel G335V mutation in thetau gene associated with early onset familial frontotemporal dementia.Neurogenetics6:91–95[Google Scholar]
    96. NeveRL,HarrisP,KosikKS,KurnitDM,DonlonTA.1986. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2.Brain Res387:271–80[Google Scholar]
    97. NiewidokB,IgaevM,SündermannF,JanningD,BakotaL,BrandtR.2016. Presence of a carboxy-terminal pseudorepeat and disease-like pseudophosphorylation critically influence tau's interaction with microtubules in axon-like processes.Mol. Biol. Cell27:3537–49[Google Scholar]
    98. OnariK,SpatzH.1926. Anatomische Beiträge zur Lehre von der Pickschen umschriebenen Grosshirnrinden-Atrophie (“Picksche Krankheit”).Z. Gesamte Neurol. Psychiatr.101:470–511[Google Scholar]
    99. OzcelikS,SprengerF,SkachokovaZ,FraserG,AbramowskiD. et al.2016. Co-expression of truncated and full-length tau induces severe neurotoxicity.Mol. Psychiatry21:1790–98[Google Scholar]
    100. PalonevaJ,KestiläM,WuJ,SalminenA,BöhlingT. et al.2000. Loss-of-function mutations inTYROBP (DAP12) result in a presenile dementia with bone cysts.Nat. Genet25:357–61[Google Scholar]
    101. PastorP,EzquerraM,MunozE,MartiMJ,BlesaR. et al.2000. Significant association between the tau gene A0/A0 genotype and Parkinson's disease.Ann. Neurol.47:242–45[Google Scholar]
    102. PastorP,MorenoF,ClarimónJ,RuizA,CombarrosO. et al.2015. MAPT H1 haplotype is associated with late-onset Alzheimer's disease risk inAPOEɛ4 noncarriers: results from the dementia genetics Spanish consortium.J. Alzheimer's Dis.49:343–52[Google Scholar]
    103. PérezM,ValpuestaJM,MedinaM,Montejo de GarciniE,AvilaJ.1996. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction.J. Neurochem.67:1183–90[Google Scholar]
    104. Pickering-BrownSM,BakerM,NonakaT,IkedaK,SharmaS. et al.2004. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in thetau gene.Brain127:1415–26[Google Scholar]
    105. PieriL,MadionaK,BoussetL,MelkiR.2012. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to cells.Biophys. J.102:2894–905[Google Scholar]
    106. PoolerAM,PhillipsEC,LauDH,NobleW,HangerDP.2013. Physiological release of endogenous tau is stimulated by neuronal activity.EMBO Rep14:389–94[Google Scholar]
    107. PoorkajP,BirdTD,WijsmanE,NemensE,GarrutoRM. et al.1998. Tau is a candidate gene for chromosome 17 frontotemporal dementia.Ann. Neurol.43:815–25[Google Scholar]
    108. ProbstA,GötzJ,WiederholdKH,TolnayM,MistlC. et al.2000. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein.Acta Neuropathol99:469–81[Google Scholar]
    109. PrusinerSB.1982. Novel proteinaceous infectious particles cause scrapie.Science216:136–44[Google Scholar]
    110. PrusinerSB.2013. Biology and genetics of prions causing neurodegeneration.Annu. Rev. Genet.47:601–23[Google Scholar]
    111. RademakersR,BakerM,NicholsonAM,RutherfordNJ,FinchN. et al.2012. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leucoencephalopathy with spheroids.Nat. Genet.44:200–5[Google Scholar]
    112. RamachandranG,UdgaonkarJB.2011. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein.J. Biol. Chem.286:38948–59[Google Scholar]
    113. RaoMV,McBrayerMK,CampbellJ,KumarA,HashimA. et al.2014. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice.J. Neurosci.34:9222–34[Google Scholar]
    114. RecasensA,DehayB,BovéJ,Carballo-CarbajalI,DoveroS. et al.2014. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys.Ann. Neurol.75:351–62[Google Scholar]
    115. RewcastleNB,BallMJ.1968. Electron microscopic structure of the “inclusion bodies” in Pick's disease.Neurology18:1205–13[Google Scholar]
    116. SacinoAN,BrooksM,ThomasMA,McKinneyAB,LeeS. et al.2014. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice.PNAS111:10732–37[Google Scholar]
    117. SaitoY,RuberuNN,SawabeM,AraiT,TanakaN. et al.2004. Staging of argyrophilic grains: an age-associated tauopathy.J. Neuropathol. Exp. Neurol.63:911–18[Google Scholar]
    118. SandersDW,KaufmanSK,De VosSL,SharmaAM,MirhabaH. et al.2014. Distinct tau prion strains propagate in cells and mice and define different tauopathies.Neuron82:1271–88[Google Scholar]
    119. SankaranarayananS,BartenDM,VanaL,DevidzeN,YangL. et al.2015. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models.PLOS ONE10:e0125614[Google Scholar]
    120. SantaCruzK,LewisJ,SpiresT,PaulsonJ,KotilinekL. et al.2005. Tau suppression in a neurodegenerative mouse model improves memory function.Science309:476–81[Google Scholar]
    121. SatakeW,NakabayashiY,MizutaI,HirotaY,ItoC. et al.2009. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.Nat. Genet.41:1303–7[Google Scholar]
    122. SawayaMR,SambashivanS,NelsonR,IvanovaMI,SieversSA. et al.2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers.Nature447:453–57[Google Scholar]
    123. SchmidtML,ZhukarevaV,NewellKL,LeeVMY,TrojanowskiJQ.2001. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer's disease.Acta Neuropathol101:518–24[Google Scholar]
    124. SchöllM,LockhartSN,SchonhautDR,O'NeilJP,JanabiM. et al.2016. PET imaging of tau deposition in the aging human brain.Neuron89:971–82[Google Scholar]
    125. SimanR,LinYG,Malthankar-PhatakG,DongY.2013. A rapid gene delivery–based mouse model for early-stage Alzheimer's disease–type tauopathy.J. Neuropathol. Exp. Neurol.72:1062–71[Google Scholar]
    126. Simón-SánchezJ,SchulteC,BrasJM,SharmaM,GibbsJR. et al.2009. Genome-wide association study reveals genetic risk underlying Parkinson's disease.Nat. Genet.41:1308–12[Google Scholar]
    127. SpillantiniMG,CrowtherRA,GoedertM.1996. Comparison of the neurofibrillary pathology in Alzheimer's disease and familial presenile dementia with tangles.Acta Neuropathol92:42–48[Google Scholar]
    128. SpillantiniMG,CrowtherRA,KamphorstW,HeutinkP,van SwietenJC.1998a. Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau.Am. J. Pathol.153:1359–63[Google Scholar]
    129. SpillantiniMG,GoedertM.2013. Tau pathology and neurodegeneration.Lancet Neurol12:609–22[Google Scholar]
    130. SpillantiniMG,GoedertM,CrowtherRA,MurrellJR,FarlowMR,GhettiB.1997. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments.PNAS94:4113–18[Google Scholar]
    131. SpillantiniMG,MurrellJR,GoedertM,FarlowMR,KlugA. et al.1998b. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia.PNAS94:4113–18[Google Scholar]
    132. SpinaS,MurrellJR,YoshidaH,GhettiB,BerminghamN. et al.2007. The novelTau mutation G335S: clinical, neuropathological and molecular characterization.Acta Neuropathol113:461–70[Google Scholar]
    133. SpiresTL,OrneJD,SantaCruzK,PitstickR,CarlsonGA. et al.2006. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy.Am. J. Pathol.168:1598–607[Google Scholar]
    134. StefanssonH,HelgasonA,ThorleifssonG,SteinthorsdottirV,MassonG. et al.2005. A common inversion under selection in Europeans.Nat. Genet.37:129–37[Google Scholar]
    135. StertzG.1926. Über die Picksche Atrophie.Z. Gesamte Neurol. Psychiatr.101:729–49[Google Scholar]
    136. StöhrJ,WattsJC,MensingerZL,OehlerA,GrilloSK. et al.2012. Purified and synthetic Alzheimer's amyloid-beta (Aβ) prions.PNAS109:11025–30[Google Scholar]
    137. SündermannF,FernandezMP,MorganRO.2016. An evolutionary roadmap to the microtubule-associated protein MAP Tau.BMC Genom.17:264[Google Scholar]
    138. TacikP,DeTureM,HinkleKM,LinWL,Sanchez-ContrerasM. et al.2015. A novel tau mutation in exon 12, p.Q336H, causes hereditary Pick disease.J. Neuropathol. Exp. Neurol.74:1042–52[Google Scholar]
    139. TogoT,SaharaN,YenSH,CooksonN,IshizawaT. et al.2002. Argyrophilic grain disease is a sporadic 4-repeat tauopathy.J. Neuropathol. Exp. Neurol.61:547–66[Google Scholar]
    140. UchiharaT,TsuchiyaK,NakamuraA,AkiyamaH.2005. Argyrophilic grains are not always argyrophilic—distinction from neurofibrillary tangles of diffuse neurofibrillary tangles with calcification revealed by comparison between Gallyas and Campbell-Switzer methods.Acta Neuropathol110:158–64[Google Scholar]
    141. UlrichJ.1985. Alzheimer changes in nondemented patients younger than sixty-five: possible early stages of Alzheimer's disease and senile dementia of Alzheimer type.Ann. Neurol.17:273–77[Google Scholar]
    142. UlrichJ,SpillantiniMG,GoedertM,DukasL,StähelinHB.1992. Abundant neurofibrillary tangles without senile plaques in a subset of patients with senile dementia.Neurodegeneration1:257–64[Google Scholar]
    143. UsenovicM,NiroomandS,DroletSE,YaoL,GasparRC. et al.2015. Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells.J. Neurosci.35:14234–50[Google Scholar]
    144. ValencaGT,SrivastavaGP,Oliveiro-FilhoJ,WhiteCC,YuL. et al.2016. The role ofMAPT haplotype H2 and isoform 1N/4R in parkinsonism of older adults.PLOS ONE11:e0157452[Google Scholar]
    145. VerheyenA,DielsA,DijkmansJ,OyelamiT,MeneghelioG. et al.2015. Using human iPSC-derived neurons to model TAU aggregation.PLOS ONE10:e0146127[Google Scholar]
    146. Von BergenM,BarghornS,LiL,MarxA,BiernatJ. et al.2001. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure.J. Biol. Chem.276:48165–74[Google Scholar]
    147. Von BergenM,FriedhoffP,BiernatJ,HeberleJ,MandelkowEM,MandelkowE.2000. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure.PNAS97:5129–34[Google Scholar]
    148. WalshDM,SelkoeDJ.2016. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration.Nat. Rev. Neurosci.17:251–60[Google Scholar]
    149. WegmannS,MauryEA,KirkMJ,SaqranL,RoeA. et al.2015. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity.EMBO J34:3028–41[Google Scholar]
    150. WilhelmsenKC,LynchT,PavlouE,HigginsM,NygaardTG.1994. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22.Am. J. Hum. Genet.55:1159–65[Google Scholar]
    151. WiltziusJJW,LandauM,NelsonR,SawayaMR,ApostolMI. et al.2009. Molecular mechanisms for protein-encoded inheritance.Nat. Struct. Mol. Biol.16:973–78[Google Scholar]
    152. WischikCM,NovakM,EdwardsPC,KlugA,TichelaarW,CrowtherRA.1988a. Structural characterization of the core of the paired helical filament of Alzheimer disease.PNAS85:4884–88[Google Scholar]
    153. WischikCM,NovakM,ThogersenHC,EdwardsPC,RunswickMJ,JakesR. et al.1988b. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease.PNAS85:4506–10[Google Scholar]
    154. WittmannCW,WszolekMF,ShulmanJM,SalvaterraPM,LewisJ. et al.2001. Tauopathy inDrosophila: neurodegeneration without neurofibrillary tangles.Science293:711–14[Google Scholar]
    155. WuJW,HussainiSA,BastilleIM,RodriguezGA,MrejeruA. et al.2016. Neuronal activity enhances tau propagation and tau pathology in vivo.Nat. Neurosci.19:1085–92[Google Scholar]
    156. XieC,SoedaY,ShinzakiY,InY,TomooK. et al.2015. Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau.J. Neurochem.135:19–26[Google Scholar]
    157. YamadaK,CirritoJR,StewartFR,JianH,FinnMB. et al.2011. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice.J. Neurosci.31:13110–17[Google Scholar]
    158. YamadaK,HolthJK,LiaoF,StewartFR,MahanTE. et al.2014. Neuronal activity regulates extracellular tau in vivo.J. Exp. Med.211:387–93[Google Scholar]
    159. YanamandraK,KfouryN,JiangH,MahanTE,MaS. et al.2014. Anti-tau antibodies that block aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.Neuron80:402–14[Google Scholar]
    160. YetmanMJ,LillehaugS,BjaalieJG,LeergaardTB,JankowskyJL.2016. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex.Brain Struct. Funct.221:2231–49[Google Scholar]
    161. YoshidaH,GoedertM.2002. Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats.Biochemistry41:15203–11[Google Scholar]
    162. ZhangB,UneY,FuX,YanJ,GeFX. et al.2008. Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease.PNAS105:7263–68[Google Scholar]
    163. ZhaoY,TsengIC,HeyserCJ,RockensteinE,ManteM. et al.2015. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis.Neuron87:963–75[Google Scholar]
    164. ZhongQ,CondonEE,NagarajaHN,KuretJ.2012. Tau isoform composition influences rate and extent of filament formation.J. Biol. Chem.287:20711–19[Google Scholar]
    165. ZhouJ,GennatasED,KramerJH,MillerBL,SeeleyWW.2012. Predicting regional neurodegeneration from the healthy brain functional connectome.Neuron73:1216–27[Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-neuro-072116-031153
    10.1146/annurev-neuro-072116-031153
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp