Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action

Abstract

The consumer preference for clean-label products is requiring the food industry to reformulate their products by replacing artificial additives with natural alternatives. Essential oils are natural antimicrobials isolated from plant sources that have the potential to combat many foodborne pathogens and spoilage organisms. This review begins by discussing the antimicrobial properties of essential oils, the relationships between their chemical structure and antimicrobial efficacy, and their potential limitations for commercial applications (such as strong flavor, volatility, and chemical instability). We then review the commonly used methods for screening the antimicrobial efficacy of essential oils and elucidating their mechanisms of action. Finally, potential applications of essential oils as antimicrobials in foods are reviewed and the major types of food-grade delivery systems available for improving their efficacy are discussed.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-food-032818-121727
    2019-03-25
    2025-11-25
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/food/10/1/annurev-food-032818-121727.html?itemId=/content/journals/10.1146/annurev-food-032818-121727&mimeType=html&fmt=ahah

    Literature Cited

    1. Acevedo-FaniA,Salvia-TrujilloL,Rojas-GraüMA,Martín-BellosoO2015. Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties.Food Hydrocoll47:168–77
      [Google Scholar]
    2. AligiannisN,KalpoutzakisE,MitakuS,ChinouIB2001. Composition and antimicrobial activity of the essential oils of twoOriganum species.J. Agric. Food Chem.49:94168–70
      [Google Scholar]
    3. AngioniA,BarraA,CeretiE,BarileD,CoïssonJD et al.2004. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil ofRosmarinus officinalis L.J. Agric. Food Chem.52:113530–35
      [Google Scholar]
    4. BagamboulaCF,UyttendaeleM,DebevereJ2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towardsShigella sonnei andS. flexneri.Food Microbiol21:133–42
      [Google Scholar]
    5. BajpaiVK,SharmaA,BaekKH2013. Antibacterial mode of action ofCudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens.Food Control32:2582–90
      [Google Scholar]
    6. BakkaliF,AverbeckS,AverbeckD,IdaomarM2008. Biological effects of essential oils: a review.Food Chem. Toxicol.46:2446–75
      [Google Scholar]
    7. BalouiriM,SadikiM,IbnsoudaSK2016. Methods for in vitro evaluating antimicrobial activity: a review.J. Pharm. Anal.6:271–79
      [Google Scholar]
    8. BassoléIHN,JulianiHR2012. Essential oils in combination and their antimicrobial properties.Molecules17:3989–4006
      [Google Scholar]
    9. BaydarH,SaǧdiçO,ÖzkanG,KaradoǧanT2004. Antibacterial activity and composition of essential oils fromOriganum,Thymbra andSatureja species with commercial importance in Turkey.Food Control15:3169–72
      [Google Scholar]
    10. Ben ArfaA,CombesS,Preziosi-BelloyL,GontardN,ChalierP2006. Antimicrobial activity of carvacrol related to its chemical structure.Lett. Appl. Microbiol.43:2149–54
      [Google Scholar]
    11. BhargavaK,ContiDS,da RochaSRP,ZhangY2015. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce.Food Microbiol47:69–73
      [Google Scholar]
    12. BurtS2004. Essential oils: their antibacterial properties and potential applications in foods—a review.Int. J. Food Microbiol.94:3223–53
      [Google Scholar]
    13. BurtSA,ReindersRD2003. Antibacterial activity of selected plant essential oils againstEscherichia coli O157:H7.Lett. Appl. Microbiol.36:3162–67
      [Google Scholar]
    14. BurtSA,VlielanderR,HaagsmanHP,VeldhuizenEJA2005. Increase in activity of essential oil components carvacrol and thymol againstEscherichia coli O157:H7 by addition of food stabilizers.J. Food Prot.68:5919–26
      [Google Scholar]
    15. CaloJR,CrandallPG,O'BryanCA,RickeSC2015. Essential oils as antimicrobials in food systems: a review.Food Control54:111–19
      [Google Scholar]
    16. CarsonCF,RileyTV1995. Antimicrobial activity of the major components of the essential oil ofMelaleuca alternifolia.J. Appl. Bacteriol78:3264–69
      [Google Scholar]
    17. CavaR,NowakE,TaboadaA,Marin-IniestaF2007. Antimicrobial activity of clove and cinnamon essential oils againstListeria monocytogenes in pasteurized milk.J. Food Prot.70:122757–63
      [Google Scholar]
    18. ChaDS,ChinnanMS2004. Biopolymer-based antimicrobial packaging: a review.Crit. Rev. Food Sci. Nutr.44:4223–37
      [Google Scholar]
    19. ChalchatJC,ChironF,GarryRP,LacosteJ,SautouV2000. Photochemical hydroperoxidation of terpenes. Antimicrobial activity of α-pinene, β-pinene and limonene hydroperoxides.J. Essent. Oil Res.12:1125–34
      [Google Scholar]
    20. ChangY,McLandsboroughL,McClementsDJ2012. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.J. Agric. Food Chem.60:4812056–63
      [Google Scholar]
    21. ChangY,McLandsboroughL,McClementsDJ2013. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification.J. Agric. Food Chem.61:378906–13
      [Google Scholar]
    22. CosentinoS,TuberosoCIG,PisanoB,SattaM,MasciaV et al.1999. In-vitro antimicrobial activity and chemical composition of SardinianThymus essential oils.Lett. Appl. Microbiol.29:2130–35
      [Google Scholar]
    23. CoxSD,GustafsonJE,MannCM,MarkhamJL,LiewYC et al.1998. Tea tree oil causes K+ leakage and inhibits respiration inEscherichia coli.Lett. Appl. Microbiol26:5355–58
      [Google Scholar]
    24. CoxSD,MannCM,MarkhamJL,BellHC,GustafsonJE et al.2000. The mode of antimicrobial action of the essential oil ofMelaleuca alternifolia (tea tree oil).J. Appl. Microbiol.88:1170–75
      [Google Scholar]
    25. CoxSD,MannCM,MarkhamJL,GustafsonJE,WarmingtonJR,WyllieSG2001. Determining the antimicrobial actions of tea tree oil.Molecules6:287–91
      [Google Scholar]
    26. CristaniM,D'ArrigoM,MandalariG,CastelliF,SarpietroMG et al.2007. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity.J. Agric. Food Chem.55:156300–8
      [Google Scholar]
    27. DelaquisPJ,StanichK,GirardB,MazzaG2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils.Int. J. Food Microbiol.74:1–2101–9
      [Google Scholar]
    28. DelgadoB,FernándezPS,PalopA,PeriagoPM2004. Effect of thymol and cymene onBacillus cereus vegetative cells evaluated through the use of frequency distributions.Food Microbiol21:3327–34
      [Google Scholar]
    29. de OliveiraCEV,StamfordTLM,NetoNJG,de SouzaEL2010. Inhibition ofStaphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids.Int. J. Food Microbiol.137:2–3312–16
      [Google Scholar]
    30. de SouzaEL,de BarrosJC,de OliveiraCEV,da ConceiçãoML2010. Influence ofOriganum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics ofStaphylococcus aureus.Int. J.Food Microbiol137:2–3308–11
      [Google Scholar]
    31. DeviKP,NishaSA,SakthivelR,PandianSK2010. Eugenol (an essential oil of clove) acts as an antibacterial agent againstSalmonella typhi by disrupting the cellular membrane.J. Ethnopharmacol.130:1107–15
      [Google Scholar]
    32. DiaoW-R,HuaQ-P,ZhangH,XuJ-G2014. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.).Food Control35:1109–16
      [Google Scholar]
    33. Di PasquaR,BettsG,HoskinsN,EdwardsM,ErcoliniD,MaurielloG2007. Membrane toxicity of antimicrobial compounds from essential oils.J. Agric. Food Chem.55:124863–70
      [Google Scholar]
    34. Di PasquaR,HoskinsN,BettsG,MaurielloG2006. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media.J. Agric. Food Chem.54:72745–49
      [Google Scholar]
    35. DonsìF,AnnunziataM,SessaM,FerrariG2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods.LWT Food Sci. Technol.44:91908–14
      [Google Scholar]
    36. DonsìF,AnnunziataM,VincensiM,FerrariG2012. Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier.J. Biotechnol.159:4342–50
      [Google Scholar]
    37. DonsìF,CuomoA,MarcheseE,FerrariG2014. Infusion of essential oils for food stabilization: unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity.Innov. Food Sci. Emerg. Technol.22:212–20
      [Google Scholar]
    38. DormanHJD,DeansSG2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.J. Appl. Microbiol.88:2308–16
      [Google Scholar]
    39. El-SayedHS,ChizzolaR,RamadancAA,EdrisAE2017. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems.Food Chem221:196–204
      [Google Scholar]
    40. FuYJ,ZuYG,ChenLY,ShiXG,WangZ et al.2007. Antimicrobial activity of clove and rosemary essential oils alone and in combination.Phytother. Res.21:10989–94
      [Google Scholar]
    41. GallucciMN,OlivaM,CaseroC,DambolenaJ,LunaA et al.2009. Antimicrobial combined action of terpenes against the food-borne microorganismsEscherichia coli,Staphylococcus aureus andBacillus cereus.Flavour Fragr. J24:6348–54
      [Google Scholar]
    42. GaysinskyS,DavidsonPM,BruceBD,WeissJ2005.a Growth inhibition ofEscherichia coli O157:H7 andListeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles.J. Food Prot.68:122559–66
      [Google Scholar]
    43. GaysinskyS,DavidsonPM,BruceBD,WeissJ2005.b Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH.J. Food Prot.68:71359–66
      [Google Scholar]
    44. GhoshV,MukherjeeA,ChandrasekaranN2014. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage.Colloids Surf. B114:392–97
      [Google Scholar]
    45. GillAO,HolleyRA2004. Mechanisms of bactericidal action of cinnamaldehyde againstListeria monocytogenes and of eugenol againstL. monocytogenes andLactobacillus sakei. Appl. Environ.Microbiol70:105750–55
      [Google Scholar]
    46. GillAO,HolleyRA2006. Disruption ofEscherichia coli,Listeria monocytogenes andLactobacillus sakei cellular membranes by plant oil aromatics.Int. J. Food Microbiol.108:11–9
      [Google Scholar]
    47. GoñiP,LópezP,SánchezC,Gómez-LusR,BecerrilR,NerínC2009. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils.Food Chem116:4982–89
      [Google Scholar]
    48. GortziO,LalasS,ChinouI,TsaknisJ2007. Evaluation of the antimicrobial and antioxidant activities ofOriganum dictamnus extracts before and after encapsulation in liposomes.Molecules12:5932–45
      [Google Scholar]
    49. GovarisA,SolomakosN,PexaraA,ChatzopoulouPS2010. The antimicrobial effect of oregano essential oil, nisin and their combination againstSalmonella Enteritidis in minced sheep meat during refrigerated storage.Int. J. Food Microbiol.137:2–3175–80
      [Google Scholar]
    50. GriffinSG,MarkhamJL,LeachDN2000. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils.J. Essent. Oil Res.12:249–55
      [Google Scholar]
    51. GriffinSG,WyllieSG,MarkhamJL,LeachDN1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity.Flavour Fragr. J.14:5322–32
      [Google Scholar]
    52. GutierrezJ,Barry-RyanC,BourkeP2008. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients.Int. J. Food Microbiol.124:191–97
      [Google Scholar]
    53. GutierrezJ,Barry-RyanC,BourkeP2009. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components.Food Microbiol26:2142–50
      [Google Scholar]
    54. HammerKA,CarsonCF,RileyTV1999. Antimicrobial activity of essential oils and other plant extracts.J. Appl. Microbiol.86:6985–90
      [Google Scholar]
    55. HelanderIM,AlakomiHL,Latva-KalaK,Mattila-SandholmT,PolI et al.1998. Characterization of the action of selected essential oil components on gram-negative bacteria.J. Agric. Food Chem.46:93590–95
      [Google Scholar]
    56. HussainAI,AnwarF,Hussain SheraziST,PrzybylskiR2008. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.Food Chem108:3986–95
      [Google Scholar]
    57. HyldgaardM,MygindT,MeyerRL2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.Front. Microbiol.3:12
      [Google Scholar]
    58. HillLE,GomesC,TaylorTM2013. Characterization of beta cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications.Food Sci. Technol.51:86–93
      [Google Scholar]
    59. ImelouaneB,AmhamdiH,WatheletJP,AnkitM,ElbachiriKK2009. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco.Int. J. Agric. Biol.11:205–8
      [Google Scholar]
    60. JiangY,WuN,FuY-J,WangW,LuoM et al.2011. Chemical composition and antimicrobial activity of the essential oil of rosemary.Environ. Toxicol. Pharmacol.32:163–68
      [Google Scholar]
    61. JoYJ,ChunJY,KwonYJ,MinSG,HongGP,ChoiMJ2015. Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice.LWT Food Sci. Technol.60:1444–51
      [Google Scholar]
    62. KordaliS,KotanR,MaviA,CakirA,AlaA,YildirimA2005. Determination of the chemical composition and antioxidant activity of the essential oil ofArtemisia dracunculus and of the antifungal and antibacterial activities of TurkishArtemisia absinthium,A. dracunculus,Artemisia santonicum, andArtemisia spicig.J. Agric. Food Chem53:249452–58
      [Google Scholar]
    63. LambertRJW,SkandamisPN,CootePJ,NychasG-JE2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol.J. Appl. Microbiol.91:3453–62
      [Google Scholar]
    64. LeimannFV,GonçalvesOH,MachadoRAF,BolzanA2009. Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology.Mater. Sci. Eng. C29:2430–36
      [Google Scholar]
    65. LiangR,XuS,ShoemakerCF,LiY,ZhongF,HuangQ2012. Physical and antimicrobial properties of peppermint oil nanoemulsions.J. Agric. Food Chem.60:307548–55
      [Google Scholar]
    66. LioliosCCC,GortziO,LalasS,TsaknisJ,ChinouI2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil ofOriganum dictamnus L. and in vitro antimicrobial activity.Food Chem112:177–83
      [Google Scholar]
    67. LowWL,MartinC,HillDJ,KenwardMA2013. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil againstPseudomonas aeruginosa,Staphylococcus aureus andCandida albicans.Lett. Appl. Microbiol57:133–39
      [Google Scholar]
    68. LvF,LiangH,YuanQ,LiC2011. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms.Food Res. Int.44:93057–64
      [Google Scholar]
    69. MaQ,DavidsonPM,ZhongQ2016. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.Int. J. Food Microbiol.226:20–25
      [Google Scholar]
    70. MaQ,ZhongQ2015. Incorporation of soybean oil improves the dilutability of essential oil microemulsions.Food Res. Int.71:118–25
      [Google Scholar]
    71. MastelicJ,PoliteoO,JerkovicI,RadosevicN2005. Composition and antimicrobial activity ofHelichrysum italicum essential oils and its terpene and the terpenoid fractions.Chem. Nat. Compd.41:129–32
      [Google Scholar]
    72. McClementsDJ2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities.Soft Matter8:61719–29
      [Google Scholar]
    73. MellegårdH,StalheimT,HormazabalV,GranumPE,HardySP2009. Antibacterial activity of sphagnum acid and other phenolic compounds found inSphagnum papillosum against food-borne bacteria.Lett. Appl. Microbiol.49:185–90
      [Google Scholar]
    74. MoghimiR,GhaderiL,RafatiH,AliahmadiA,McclementsDJ2016. Superior antibacterial activity of nanoemulsion ofThymus daenensis essential oil againstE. coli.Food Chem194:410–15
      [Google Scholar]
    75. MulyaningsihS,SporerF,ZimmermannS,ReichlingJ,WinkM2010. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil ofEucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens.Phytomedicine17:131061–66
      [Google Scholar]
    76. MytleN,AndersonGL,DoyleMP,SmithMA2006. Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibitingListeria monocytogenes on chicken frankfurters.Food Control17:2102–7
      [Google Scholar]
    77. NguefackJ,BuddeBB,JakobsenM2004. Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane ofListeria innocua examined by flow cytometry.Lett. Appl. Microbiol.39:5395–400
      [Google Scholar]
    78. O'BryanCA,CrandallPG,ChalovaVI,RickeSC2008. Orange essential oils antimicrobial activities againstSalmonella spp.J. Food Sci.73:6M264–67
      [Google Scholar]
    79. OjaghSM,RezaeiM,RazaviSH,HosseiniSMH2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water.Food Chem122:1161–66
      [Google Scholar]
    80. OliveiraDR,LeitãoGG,BizzoHR,LopesD,AlvianoDS et al.2007. Chemical and antimicrobial analyses of essential oil ofLippia origanoides H.B.K.Food Chem101:1236–40
      [Google Scholar]
    81. OoiLSM,LiY,KamS-L,WangH,WongEYL,OoiVEC2006. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herbCinnamomum cassia Blume.Am. J. Chin. Med.34:3511–22
      [Google Scholar]
    82. OussalahM,CailletS,LacroixM2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls ofEscherichia coli O157:H7 andListeria monocytogenes.J Food Prot69:51046–55
      [Google Scholar]
    83. Palá-PaúlJ,Velasco-NegueruelaA,José Pérez-AlonsoM,SanzJ2002. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils ofMentha spicata andAnethum sowa.Flavour Fragr. J17:159–63
      [Google Scholar]
    84. PanditVA,ShelefLA1994. Sensitivity ofListeria monocytogenes to rosemary (Rosmarinus officinalis L.).Food Microbiol11:157–63
      [Google Scholar]
    85. PaparellaA,TaccognaL,AguzziI,Chaves-LópezC,SerioA et al.2008. Flow cytometric assessment of the antimicrobial activity of essential oils againstListeria monocytogenes.Food Control19:121174–82
      [Google Scholar]
    86. PaulS,DubeyRC,MaheswariDK,KangSC2011.Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens.Food Control22:5725–31
      [Google Scholar]
    87. Perez-ConesaD,CaoJ,ChenL,MclandsboroughL,WeissJ2011. Inactivation ofListeria monocytogenes andEscherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol.J. Food Prot.74:155–62
      [Google Scholar]
    88. PintoreG,UsaiM,BradesiP,JulianoC,BoattoG et al.2002. Chemical composition and antimicrobial activity ofRosmarinus officinalis L. oils from Sardinia and Corsica.Flavour Fragr. J.17:115–19
      [Google Scholar]
    89. PrasharaA,HiliP,VenessRG,EvansCS2003. Antimicrobial action of palmarosa oil (Cymbopogon martinii) onSaccharomyces cerevisiae.Phytochemistry63:5569–75
      [Google Scholar]
    90. RattanachaikunsoponP,PhumkhachornP2010. Antimicrobial activity of basil (Ocimum basilicum) oil againstSalmonella Enteritidis in vitro and in food.Biosci. Biotechnol. Biochem.74:61200–4
      [Google Scholar]
    91. Raybaudi-MassiliaRM,Mosqueda-MelgarJ,Martin-BellosoO2006. Antimicrobial activity of essential oils onSalmonella Enteritidis,Escherichia coli, andListeria innocua in fruit juices.J. Food Prot.69:71579–86
      [Google Scholar]
    92. RhayourK,BouchikhiT,Tantaoui-ElarakiA,SendideK,RemmalA2003. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components onEscherichia coli andBacillus subtilis.J. Essent.Oil Res15:4286–92
      [Google Scholar]
    93. Rivera CaloJ,CrandallaPG,O'BryanCA,RickeSC2015. Essential oils as antimicrobials in food systems: a review.Food Control54:111–19
      [Google Scholar]
    94. Rivera-CarrilesK,ArgaizA,PalouE,López-MaloA2005. Synergistic inhibitory effect of citral with selected phenolics againstZygosaccharomyces bailii.J.Food Prot68:3602–6
      [Google Scholar]
    95. Rojas-GraüMA,Avena-BustillosRJ,FriedmanM,HenikaPR,Martín-BellosoO,MchughTH2006. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils.J. Agric. Food Chem.54:249262–67
      [Google Scholar]
    96. RotaMC,HerreraA,MartínezRM,SotomayorJA,JordánMJ2008. Antimicrobial activity and chemical composition ofThymus vulgaris,Thymus zygis andThymus hyemalis essential oils.Food Control19:7681–87
      [Google Scholar]
    97. Salvia-TrujilloL,Rojas-GraüMA,Soliva-FortunyR,Martín-BellosoO2014. Impact of microfluidization or ultrasound processing on the antimicrobial activity againstEscherichia coli of lemongrass oil-loaded nanoemulsions.Food Control37:1292–97
      [Google Scholar]
    98. Salvia-TrujilloL,Rojas-GraüA,Soliva-FortunyR,Martín-BellosoO2015.a Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils.Food Hydrocoll43:547–56
      [Google Scholar]
    99. Salvia-TrujilloL,Rojas-GraüMA,Soliva-FortunyR,Martín-BellosoO2015.b Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut fuji apples.Postharvest Biol. Technol.105:8–16
      [Google Scholar]
    100. Sánchez-GonzálezL,González-MartínezC,ChiraltA,CháferM2010. Physical and antimicrobial properties of chitosan-tea tree essential oil composite films.J. Food Eng.98:4443–52
      [Google Scholar]
    101. Sánchez-GonzálezL,VargasM,González-MartínezC,ChiraltA,CháferM2011. Use of essential oils in bioactive edible coatings: a review.Food Eng. Rev.3:1–16
      [Google Scholar]
    102. SarrazinSLF,OliveiraRB,BarataLES,MourãoRHV2012. Chemical composition and antimicrobial activity of the essential oil ofLippia grandis Schauer (Verbenaceae) from the western Amazon.Food Chem134:31474–78
      [Google Scholar]
    103. Shahid Ud-DaulaAFM,DemirciF,Abu SalimaK,DemirciB,LimLBL et al.2016. Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes ofEtlingera fimbriobracteata (K.Schum.) R.M.Sm.Ind. Crops Prod.84:189–98
      [Google Scholar]
    104. SikkemaJ,de BontJA,PoolmanB1995. Mechanisms of membrane toxicity of hydrocarbons.Microbiol. Rev.59:2201–22
      [Google Scholar]
    105. SinghA,SinghRK,BhuniaAK,SinghN2003. Efficacy of plant essential oils as antimicrobial agents againstListeria monocytogenes in hotdogs.LWT Food Sci. Technol.36:8787–94
      [Google Scholar]
    106. SiroliL,PatrignaniF,GardiniF,LanciottiR2015. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile ofListeria monocytogenes,Escherichia coli andSalmonella enteritidis.Food Chem182:185–92
      [Google Scholar]
    107. Smith-PalmerA,StewartJ,FyfeL1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens.Lett. Appl. Microbiol.26:2118–22
      [Google Scholar]
    108. Smith-PalmerA,StewartJ,FyfeL2001. The potential application of plant essential oils as natural food preservatives in soft cheese.Food Microbiol18:4463–70
      [Google Scholar]
    109. SwamyMK,AkhtarMS,SinniahUR2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review.Evid. Based Complement. Altern. Med.2016:21
      [Google Scholar]
    110. TurgisM,HanJ,CailletS,LacroixM2009. Antimicrobial activity of mustard essential oil againstEscherichia coli O157:H7 andSalmonella typhi.Food Control20:121073–79
      [Google Scholar]
    111. TrombettaD,CastelliF,SarpietroMG,VenutiV,CristaniM et al.2005. Mechanisms of antibacterial action of three monoterpenes.Antimicrob. Agents Chemother.49:62474–78
      [Google Scholar]
    112. UlteeA,BennikMHJ,MoezelaarR2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogenBacillus cereus. Appl. Environ.Microbiol68:41561–68
      [Google Scholar]
    113. ValeroM,SalmerónMC2003. Antibacterial activity of 11 essential oils againstBacillus cereus in tyndallized carrot broth.Int. J. Food Microbiol.85:1–273–81
      [Google Scholar]
    114. van VuurenSF,ViljoenAM2007. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination.Flavour Fragr. J.22:6540–44
      [Google Scholar]
    115. VaronaS,MartínÁ,CoceroMJ2011. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions.Ind. Eng. Chem. Res.50:42088–97
      [Google Scholar]
    116. VazirianM,KashaniST,ArdekaniMRS,KhanaviM,JamalifarH et al.2012. Antimicrobial activity of lemongrass (Cymbopogon citratus (DC) Stapf.) essential oil against food-borne pathogens added to cream-filled cakes and pastries.J. Essent. Oil Res.24:6579–82
      [Google Scholar]
    117. WanJ,ZhongS,SchwarzP,ChenB,RaoJ2018. Influence of oil phase composition on antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions.Food Funct9:2872–82
      [Google Scholar]
    118. WiegandI,HilpertK,HancockREW2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.3:2163–75
      [Google Scholar]
    119. WuJ,LiuH,GeS,WangS,QinZ et al.2015. The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes.Food Hydrocoll43:427–35
      [Google Scholar]
    120. ZhangY,LiuX,WangY,JiangP,QuekSY2015. Antibacterial activity and mechanism of cinnamon essential oil againstEscherichia coli andStaphylococcus aureus.Food Control59:282–89
      [Google Scholar]
    121. ZianiK,ChangY,McLandsboroughL,McClementsDJ2011. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.J. Agric. Food Chem.59:116247–55
      [Google Scholar]
    /content/journals/10.1146/annurev-food-032818-121727
    Loading
    Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action
    Annual Review of Food Science and Technology10, 365 (2019);https://doi.org/10.1146/annurev-food-032818-121727
    /content/journals/10.1146/annurev-food-032818-121727
    /content/journals/10.1146/annurev-food-032818-121727
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/food
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-food-032818-121727
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. Acevedo-FaniA,Salvia-TrujilloL,Rojas-GraüMA,Martín-BellosoO2015. Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties.Food Hydrocoll47:168–77
      [Google Scholar]
    2. AligiannisN,KalpoutzakisE,MitakuS,ChinouIB2001. Composition and antimicrobial activity of the essential oils of twoOriganum species.J. Agric. Food Chem.49:94168–70
      [Google Scholar]
    3. AngioniA,BarraA,CeretiE,BarileD,CoïssonJD et al.2004. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil ofRosmarinus officinalis L.J. Agric. Food Chem.52:113530–35
      [Google Scholar]
    4. BagamboulaCF,UyttendaeleM,DebevereJ2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towardsShigella sonnei andS. flexneri.Food Microbiol21:133–42
      [Google Scholar]
    5. BajpaiVK,SharmaA,BaekKH2013. Antibacterial mode of action ofCudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens.Food Control32:2582–90
      [Google Scholar]
    6. BakkaliF,AverbeckS,AverbeckD,IdaomarM2008. Biological effects of essential oils: a review.Food Chem. Toxicol.46:2446–75
      [Google Scholar]
    7. BalouiriM,SadikiM,IbnsoudaSK2016. Methods for in vitro evaluating antimicrobial activity: a review.J. Pharm. Anal.6:271–79
      [Google Scholar]
    8. BassoléIHN,JulianiHR2012. Essential oils in combination and their antimicrobial properties.Molecules17:3989–4006
      [Google Scholar]
    9. BaydarH,SaǧdiçO,ÖzkanG,KaradoǧanT2004. Antibacterial activity and composition of essential oils fromOriganum,Thymbra andSatureja species with commercial importance in Turkey.Food Control15:3169–72
      [Google Scholar]
    10. Ben ArfaA,CombesS,Preziosi-BelloyL,GontardN,ChalierP2006. Antimicrobial activity of carvacrol related to its chemical structure.Lett. Appl. Microbiol.43:2149–54
      [Google Scholar]
    11. BhargavaK,ContiDS,da RochaSRP,ZhangY2015. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce.Food Microbiol47:69–73
      [Google Scholar]
    12. BurtS2004. Essential oils: their antibacterial properties and potential applications in foods—a review.Int. J. Food Microbiol.94:3223–53
      [Google Scholar]
    13. BurtSA,ReindersRD2003. Antibacterial activity of selected plant essential oils againstEscherichia coli O157:H7.Lett. Appl. Microbiol.36:3162–67
      [Google Scholar]
    14. BurtSA,VlielanderR,HaagsmanHP,VeldhuizenEJA2005. Increase in activity of essential oil components carvacrol and thymol againstEscherichia coli O157:H7 by addition of food stabilizers.J. Food Prot.68:5919–26
      [Google Scholar]
    15. CaloJR,CrandallPG,O'BryanCA,RickeSC2015. Essential oils as antimicrobials in food systems: a review.Food Control54:111–19
      [Google Scholar]
    16. CarsonCF,RileyTV1995. Antimicrobial activity of the major components of the essential oil ofMelaleuca alternifolia.J. Appl. Bacteriol78:3264–69
      [Google Scholar]
    17. CavaR,NowakE,TaboadaA,Marin-IniestaF2007. Antimicrobial activity of clove and cinnamon essential oils againstListeria monocytogenes in pasteurized milk.J. Food Prot.70:122757–63
      [Google Scholar]
    18. ChaDS,ChinnanMS2004. Biopolymer-based antimicrobial packaging: a review.Crit. Rev. Food Sci. Nutr.44:4223–37
      [Google Scholar]
    19. ChalchatJC,ChironF,GarryRP,LacosteJ,SautouV2000. Photochemical hydroperoxidation of terpenes. Antimicrobial activity of α-pinene, β-pinene and limonene hydroperoxides.J. Essent. Oil Res.12:1125–34
      [Google Scholar]
    20. ChangY,McLandsboroughL,McClementsDJ2012. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.J. Agric. Food Chem.60:4812056–63
      [Google Scholar]
    21. ChangY,McLandsboroughL,McClementsDJ2013. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification.J. Agric. Food Chem.61:378906–13
      [Google Scholar]
    22. CosentinoS,TuberosoCIG,PisanoB,SattaM,MasciaV et al.1999. In-vitro antimicrobial activity and chemical composition of SardinianThymus essential oils.Lett. Appl. Microbiol.29:2130–35
      [Google Scholar]
    23. CoxSD,GustafsonJE,MannCM,MarkhamJL,LiewYC et al.1998. Tea tree oil causes K+ leakage and inhibits respiration inEscherichia coli.Lett. Appl. Microbiol26:5355–58
      [Google Scholar]
    24. CoxSD,MannCM,MarkhamJL,BellHC,GustafsonJE et al.2000. The mode of antimicrobial action of the essential oil ofMelaleuca alternifolia (tea tree oil).J. Appl. Microbiol.88:1170–75
      [Google Scholar]
    25. CoxSD,MannCM,MarkhamJL,GustafsonJE,WarmingtonJR,WyllieSG2001. Determining the antimicrobial actions of tea tree oil.Molecules6:287–91
      [Google Scholar]
    26. CristaniM,D'ArrigoM,MandalariG,CastelliF,SarpietroMG et al.2007. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity.J. Agric. Food Chem.55:156300–8
      [Google Scholar]
    27. DelaquisPJ,StanichK,GirardB,MazzaG2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils.Int. J. Food Microbiol.74:1–2101–9
      [Google Scholar]
    28. DelgadoB,FernándezPS,PalopA,PeriagoPM2004. Effect of thymol and cymene onBacillus cereus vegetative cells evaluated through the use of frequency distributions.Food Microbiol21:3327–34
      [Google Scholar]
    29. de OliveiraCEV,StamfordTLM,NetoNJG,de SouzaEL2010. Inhibition ofStaphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids.Int. J. Food Microbiol.137:2–3312–16
      [Google Scholar]
    30. de SouzaEL,de BarrosJC,de OliveiraCEV,da ConceiçãoML2010. Influence ofOriganum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics ofStaphylococcus aureus.Int. J.Food Microbiol137:2–3308–11
      [Google Scholar]
    31. DeviKP,NishaSA,SakthivelR,PandianSK2010. Eugenol (an essential oil of clove) acts as an antibacterial agent againstSalmonella typhi by disrupting the cellular membrane.J. Ethnopharmacol.130:1107–15
      [Google Scholar]
    32. DiaoW-R,HuaQ-P,ZhangH,XuJ-G2014. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.).Food Control35:1109–16
      [Google Scholar]
    33. Di PasquaR,BettsG,HoskinsN,EdwardsM,ErcoliniD,MaurielloG2007. Membrane toxicity of antimicrobial compounds from essential oils.J. Agric. Food Chem.55:124863–70
      [Google Scholar]
    34. Di PasquaR,HoskinsN,BettsG,MaurielloG2006. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media.J. Agric. Food Chem.54:72745–49
      [Google Scholar]
    35. DonsìF,AnnunziataM,SessaM,FerrariG2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods.LWT Food Sci. Technol.44:91908–14
      [Google Scholar]
    36. DonsìF,AnnunziataM,VincensiM,FerrariG2012. Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier.J. Biotechnol.159:4342–50
      [Google Scholar]
    37. DonsìF,CuomoA,MarcheseE,FerrariG2014. Infusion of essential oils for food stabilization: unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity.Innov. Food Sci. Emerg. Technol.22:212–20
      [Google Scholar]
    38. DormanHJD,DeansSG2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.J. Appl. Microbiol.88:2308–16
      [Google Scholar]
    39. El-SayedHS,ChizzolaR,RamadancAA,EdrisAE2017. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems.Food Chem221:196–204
      [Google Scholar]
    40. FuYJ,ZuYG,ChenLY,ShiXG,WangZ et al.2007. Antimicrobial activity of clove and rosemary essential oils alone and in combination.Phytother. Res.21:10989–94
      [Google Scholar]
    41. GallucciMN,OlivaM,CaseroC,DambolenaJ,LunaA et al.2009. Antimicrobial combined action of terpenes against the food-borne microorganismsEscherichia coli,Staphylococcus aureus andBacillus cereus.Flavour Fragr. J24:6348–54
      [Google Scholar]
    42. GaysinskyS,DavidsonPM,BruceBD,WeissJ2005.a Growth inhibition ofEscherichia coli O157:H7 andListeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles.J. Food Prot.68:122559–66
      [Google Scholar]
    43. GaysinskyS,DavidsonPM,BruceBD,WeissJ2005.b Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH.J. Food Prot.68:71359–66
      [Google Scholar]
    44. GhoshV,MukherjeeA,ChandrasekaranN2014. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage.Colloids Surf. B114:392–97
      [Google Scholar]
    45. GillAO,HolleyRA2004. Mechanisms of bactericidal action of cinnamaldehyde againstListeria monocytogenes and of eugenol againstL. monocytogenes andLactobacillus sakei. Appl. Environ.Microbiol70:105750–55
      [Google Scholar]
    46. GillAO,HolleyRA2006. Disruption ofEscherichia coli,Listeria monocytogenes andLactobacillus sakei cellular membranes by plant oil aromatics.Int. J. Food Microbiol.108:11–9
      [Google Scholar]
    47. GoñiP,LópezP,SánchezC,Gómez-LusR,BecerrilR,NerínC2009. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils.Food Chem116:4982–89
      [Google Scholar]
    48. GortziO,LalasS,ChinouI,TsaknisJ2007. Evaluation of the antimicrobial and antioxidant activities ofOriganum dictamnus extracts before and after encapsulation in liposomes.Molecules12:5932–45
      [Google Scholar]
    49. GovarisA,SolomakosN,PexaraA,ChatzopoulouPS2010. The antimicrobial effect of oregano essential oil, nisin and their combination againstSalmonella Enteritidis in minced sheep meat during refrigerated storage.Int. J. Food Microbiol.137:2–3175–80
      [Google Scholar]
    50. GriffinSG,MarkhamJL,LeachDN2000. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils.J. Essent. Oil Res.12:249–55
      [Google Scholar]
    51. GriffinSG,WyllieSG,MarkhamJL,LeachDN1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity.Flavour Fragr. J.14:5322–32
      [Google Scholar]
    52. GutierrezJ,Barry-RyanC,BourkeP2008. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients.Int. J. Food Microbiol.124:191–97
      [Google Scholar]
    53. GutierrezJ,Barry-RyanC,BourkeP2009. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components.Food Microbiol26:2142–50
      [Google Scholar]
    54. HammerKA,CarsonCF,RileyTV1999. Antimicrobial activity of essential oils and other plant extracts.J. Appl. Microbiol.86:6985–90
      [Google Scholar]
    55. HelanderIM,AlakomiHL,Latva-KalaK,Mattila-SandholmT,PolI et al.1998. Characterization of the action of selected essential oil components on gram-negative bacteria.J. Agric. Food Chem.46:93590–95
      [Google Scholar]
    56. HussainAI,AnwarF,Hussain SheraziST,PrzybylskiR2008. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations.Food Chem108:3986–95
      [Google Scholar]
    57. HyldgaardM,MygindT,MeyerRL2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.Front. Microbiol.3:12
      [Google Scholar]
    58. HillLE,GomesC,TaylorTM2013. Characterization of beta cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications.Food Sci. Technol.51:86–93
      [Google Scholar]
    59. ImelouaneB,AmhamdiH,WatheletJP,AnkitM,ElbachiriKK2009. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco.Int. J. Agric. Biol.11:205–8
      [Google Scholar]
    60. JiangY,WuN,FuY-J,WangW,LuoM et al.2011. Chemical composition and antimicrobial activity of the essential oil of rosemary.Environ. Toxicol. Pharmacol.32:163–68
      [Google Scholar]
    61. JoYJ,ChunJY,KwonYJ,MinSG,HongGP,ChoiMJ2015. Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice.LWT Food Sci. Technol.60:1444–51
      [Google Scholar]
    62. KordaliS,KotanR,MaviA,CakirA,AlaA,YildirimA2005. Determination of the chemical composition and antioxidant activity of the essential oil ofArtemisia dracunculus and of the antifungal and antibacterial activities of TurkishArtemisia absinthium,A. dracunculus,Artemisia santonicum, andArtemisia spicig.J. Agric. Food Chem53:249452–58
      [Google Scholar]
    63. LambertRJW,SkandamisPN,CootePJ,NychasG-JE2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol.J. Appl. Microbiol.91:3453–62
      [Google Scholar]
    64. LeimannFV,GonçalvesOH,MachadoRAF,BolzanA2009. Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology.Mater. Sci. Eng. C29:2430–36
      [Google Scholar]
    65. LiangR,XuS,ShoemakerCF,LiY,ZhongF,HuangQ2012. Physical and antimicrobial properties of peppermint oil nanoemulsions.J. Agric. Food Chem.60:307548–55
      [Google Scholar]
    66. LioliosCCC,GortziO,LalasS,TsaknisJ,ChinouI2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil ofOriganum dictamnus L. and in vitro antimicrobial activity.Food Chem112:177–83
      [Google Scholar]
    67. LowWL,MartinC,HillDJ,KenwardMA2013. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil againstPseudomonas aeruginosa,Staphylococcus aureus andCandida albicans.Lett. Appl. Microbiol57:133–39
      [Google Scholar]
    68. LvF,LiangH,YuanQ,LiC2011. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms.Food Res. Int.44:93057–64
      [Google Scholar]
    69. MaQ,DavidsonPM,ZhongQ2016. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.Int. J. Food Microbiol.226:20–25
      [Google Scholar]
    70. MaQ,ZhongQ2015. Incorporation of soybean oil improves the dilutability of essential oil microemulsions.Food Res. Int.71:118–25
      [Google Scholar]
    71. MastelicJ,PoliteoO,JerkovicI,RadosevicN2005. Composition and antimicrobial activity ofHelichrysum italicum essential oils and its terpene and the terpenoid fractions.Chem. Nat. Compd.41:129–32
      [Google Scholar]
    72. McClementsDJ2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities.Soft Matter8:61719–29
      [Google Scholar]
    73. MellegårdH,StalheimT,HormazabalV,GranumPE,HardySP2009. Antibacterial activity of sphagnum acid and other phenolic compounds found inSphagnum papillosum against food-borne bacteria.Lett. Appl. Microbiol.49:185–90
      [Google Scholar]
    74. MoghimiR,GhaderiL,RafatiH,AliahmadiA,McclementsDJ2016. Superior antibacterial activity of nanoemulsion ofThymus daenensis essential oil againstE. coli.Food Chem194:410–15
      [Google Scholar]
    75. MulyaningsihS,SporerF,ZimmermannS,ReichlingJ,WinkM2010. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil ofEucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens.Phytomedicine17:131061–66
      [Google Scholar]
    76. MytleN,AndersonGL,DoyleMP,SmithMA2006. Antimicrobial activity of clove (Syzgium aromaticum) oil in inhibitingListeria monocytogenes on chicken frankfurters.Food Control17:2102–7
      [Google Scholar]
    77. NguefackJ,BuddeBB,JakobsenM2004. Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane ofListeria innocua examined by flow cytometry.Lett. Appl. Microbiol.39:5395–400
      [Google Scholar]
    78. O'BryanCA,CrandallPG,ChalovaVI,RickeSC2008. Orange essential oils antimicrobial activities againstSalmonella spp.J. Food Sci.73:6M264–67
      [Google Scholar]
    79. OjaghSM,RezaeiM,RazaviSH,HosseiniSMH2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water.Food Chem122:1161–66
      [Google Scholar]
    80. OliveiraDR,LeitãoGG,BizzoHR,LopesD,AlvianoDS et al.2007. Chemical and antimicrobial analyses of essential oil ofLippia origanoides H.B.K.Food Chem101:1236–40
      [Google Scholar]
    81. OoiLSM,LiY,KamS-L,WangH,WongEYL,OoiVEC2006. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herbCinnamomum cassia Blume.Am. J. Chin. Med.34:3511–22
      [Google Scholar]
    82. OussalahM,CailletS,LacroixM2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls ofEscherichia coli O157:H7 andListeria monocytogenes.J Food Prot69:51046–55
      [Google Scholar]
    83. Palá-PaúlJ,Velasco-NegueruelaA,José Pérez-AlonsoM,SanzJ2002. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils ofMentha spicata andAnethum sowa.Flavour Fragr. J17:159–63
      [Google Scholar]
    84. PanditVA,ShelefLA1994. Sensitivity ofListeria monocytogenes to rosemary (Rosmarinus officinalis L.).Food Microbiol11:157–63
      [Google Scholar]
    85. PaparellaA,TaccognaL,AguzziI,Chaves-LópezC,SerioA et al.2008. Flow cytometric assessment of the antimicrobial activity of essential oils againstListeria monocytogenes.Food Control19:121174–82
      [Google Scholar]
    86. PaulS,DubeyRC,MaheswariDK,KangSC2011.Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens.Food Control22:5725–31
      [Google Scholar]
    87. Perez-ConesaD,CaoJ,ChenL,MclandsboroughL,WeissJ2011. Inactivation ofListeria monocytogenes andEscherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol.J. Food Prot.74:155–62
      [Google Scholar]
    88. PintoreG,UsaiM,BradesiP,JulianoC,BoattoG et al.2002. Chemical composition and antimicrobial activity ofRosmarinus officinalis L. oils from Sardinia and Corsica.Flavour Fragr. J.17:115–19
      [Google Scholar]
    89. PrasharaA,HiliP,VenessRG,EvansCS2003. Antimicrobial action of palmarosa oil (Cymbopogon martinii) onSaccharomyces cerevisiae.Phytochemistry63:5569–75
      [Google Scholar]
    90. RattanachaikunsoponP,PhumkhachornP2010. Antimicrobial activity of basil (Ocimum basilicum) oil againstSalmonella Enteritidis in vitro and in food.Biosci. Biotechnol. Biochem.74:61200–4
      [Google Scholar]
    91. Raybaudi-MassiliaRM,Mosqueda-MelgarJ,Martin-BellosoO2006. Antimicrobial activity of essential oils onSalmonella Enteritidis,Escherichia coli, andListeria innocua in fruit juices.J. Food Prot.69:71579–86
      [Google Scholar]
    92. RhayourK,BouchikhiT,Tantaoui-ElarakiA,SendideK,RemmalA2003. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components onEscherichia coli andBacillus subtilis.J. Essent.Oil Res15:4286–92
      [Google Scholar]
    93. Rivera CaloJ,CrandallaPG,O'BryanCA,RickeSC2015. Essential oils as antimicrobials in food systems: a review.Food Control54:111–19
      [Google Scholar]
    94. Rivera-CarrilesK,ArgaizA,PalouE,López-MaloA2005. Synergistic inhibitory effect of citral with selected phenolics againstZygosaccharomyces bailii.J.Food Prot68:3602–6
      [Google Scholar]
    95. Rojas-GraüMA,Avena-BustillosRJ,FriedmanM,HenikaPR,Martín-BellosoO,MchughTH2006. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils.J. Agric. Food Chem.54:249262–67
      [Google Scholar]
    96. RotaMC,HerreraA,MartínezRM,SotomayorJA,JordánMJ2008. Antimicrobial activity and chemical composition ofThymus vulgaris,Thymus zygis andThymus hyemalis essential oils.Food Control19:7681–87
      [Google Scholar]
    97. Salvia-TrujilloL,Rojas-GraüMA,Soliva-FortunyR,Martín-BellosoO2014. Impact of microfluidization or ultrasound processing on the antimicrobial activity againstEscherichia coli of lemongrass oil-loaded nanoemulsions.Food Control37:1292–97
      [Google Scholar]
    98. Salvia-TrujilloL,Rojas-GraüA,Soliva-FortunyR,Martín-BellosoO2015.a Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils.Food Hydrocoll43:547–56
      [Google Scholar]
    99. Salvia-TrujilloL,Rojas-GraüMA,Soliva-FortunyR,Martín-BellosoO2015.b Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut fuji apples.Postharvest Biol. Technol.105:8–16
      [Google Scholar]
    100. Sánchez-GonzálezL,González-MartínezC,ChiraltA,CháferM2010. Physical and antimicrobial properties of chitosan-tea tree essential oil composite films.J. Food Eng.98:4443–52
      [Google Scholar]
    101. Sánchez-GonzálezL,VargasM,González-MartínezC,ChiraltA,CháferM2011. Use of essential oils in bioactive edible coatings: a review.Food Eng. Rev.3:1–16
      [Google Scholar]
    102. SarrazinSLF,OliveiraRB,BarataLES,MourãoRHV2012. Chemical composition and antimicrobial activity of the essential oil ofLippia grandis Schauer (Verbenaceae) from the western Amazon.Food Chem134:31474–78
      [Google Scholar]
    103. Shahid Ud-DaulaAFM,DemirciF,Abu SalimaK,DemirciB,LimLBL et al.2016. Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes ofEtlingera fimbriobracteata (K.Schum.) R.M.Sm.Ind. Crops Prod.84:189–98
      [Google Scholar]
    104. SikkemaJ,de BontJA,PoolmanB1995. Mechanisms of membrane toxicity of hydrocarbons.Microbiol. Rev.59:2201–22
      [Google Scholar]
    105. SinghA,SinghRK,BhuniaAK,SinghN2003. Efficacy of plant essential oils as antimicrobial agents againstListeria monocytogenes in hotdogs.LWT Food Sci. Technol.36:8787–94
      [Google Scholar]
    106. SiroliL,PatrignaniF,GardiniF,LanciottiR2015. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile ofListeria monocytogenes,Escherichia coli andSalmonella enteritidis.Food Chem182:185–92
      [Google Scholar]
    107. Smith-PalmerA,StewartJ,FyfeL1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens.Lett. Appl. Microbiol.26:2118–22
      [Google Scholar]
    108. Smith-PalmerA,StewartJ,FyfeL2001. The potential application of plant essential oils as natural food preservatives in soft cheese.Food Microbiol18:4463–70
      [Google Scholar]
    109. SwamyMK,AkhtarMS,SinniahUR2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review.Evid. Based Complement. Altern. Med.2016:21
      [Google Scholar]
    110. TurgisM,HanJ,CailletS,LacroixM2009. Antimicrobial activity of mustard essential oil againstEscherichia coli O157:H7 andSalmonella typhi.Food Control20:121073–79
      [Google Scholar]
    111. TrombettaD,CastelliF,SarpietroMG,VenutiV,CristaniM et al.2005. Mechanisms of antibacterial action of three monoterpenes.Antimicrob. Agents Chemother.49:62474–78
      [Google Scholar]
    112. UlteeA,BennikMHJ,MoezelaarR2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogenBacillus cereus. Appl. Environ.Microbiol68:41561–68
      [Google Scholar]
    113. ValeroM,SalmerónMC2003. Antibacterial activity of 11 essential oils againstBacillus cereus in tyndallized carrot broth.Int. J. Food Microbiol.85:1–273–81
      [Google Scholar]
    114. van VuurenSF,ViljoenAM2007. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination.Flavour Fragr. J.22:6540–44
      [Google Scholar]
    115. VaronaS,MartínÁ,CoceroMJ2011. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions.Ind. Eng. Chem. Res.50:42088–97
      [Google Scholar]
    116. VazirianM,KashaniST,ArdekaniMRS,KhanaviM,JamalifarH et al.2012. Antimicrobial activity of lemongrass (Cymbopogon citratus (DC) Stapf.) essential oil against food-borne pathogens added to cream-filled cakes and pastries.J. Essent. Oil Res.24:6579–82
      [Google Scholar]
    117. WanJ,ZhongS,SchwarzP,ChenB,RaoJ2018. Influence of oil phase composition on antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions.Food Funct9:2872–82
      [Google Scholar]
    118. WiegandI,HilpertK,HancockREW2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.3:2163–75
      [Google Scholar]
    119. WuJ,LiuH,GeS,WangS,QinZ et al.2015. The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes.Food Hydrocoll43:427–35
      [Google Scholar]
    120. ZhangY,LiuX,WangY,JiangP,QuekSY2015. Antibacterial activity and mechanism of cinnamon essential oil againstEscherichia coli andStaphylococcus aureus.Food Control59:282–89
      [Google Scholar]
    121. ZianiK,ChangY,McLandsboroughL,McClementsDJ2011. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.J. Agric. Food Chem.59:116247–55
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-food-032818-121727
    10.1146/annurev-food-032818-121727
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp