Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Peatlands and Global Change: Response and Resilience

Abstract

Peatlands are wetland ecosystems that accumulate dead organic matter (i.e., peat) when plant litter production outpaces peat decay, usually under conditions of frequent or continuous waterlogging. Collectively, global peatlands store vast amounts of carbon (C), equaling if not exceeding the amount of C in the Earth's vegetation; they also encompass a remarkable diversity of forms, from the frozen palsa mires of the northern subarctic to the lush swamp forests of the tropics, each with their own characteristic range of fauna and flora. In this review we explain what peatlands are, how they form, and the contribution that peatland science can make to our understanding of global change. We explore the variety in formation, shape, vegetation type, and chemistry of peatlands across the globe and stress the fundamental features that are common to all peat-forming ecosystems. We consider the impacts that past, present, and future environmental changes, including anthropogenic disturbances, have had and will have on peatland systems, particularly in terms of their important roles in C storage and the provision of ecosystem services. The most widespread uses of peatlands today are for forestry and agriculture, both of which require drainage that results in globally significant emissions of carbon dioxide (CO2), a greenhouse gas (GHG). Climatic drying and drainage also increase the risk of peat fires, which are a further source of GHG emissions [CO2 and methane (CH4)] to the atmosphere, as well as causing negative human health and socioeconomic impacts. We conclude our review by explaining the roles that paleoecological, experimental, and modeling studies can play in allowing us to build a more secure understanding of how peatlands function, how they will respond to future climate- and land-management-related disturbances, and how best we can improve their resilience in a changing world.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-environ-110615-085520
    2016-10-17
    2025-11-23
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/energy/41/1/annurev-environ-110615-085520.html?itemId=/content/journals/10.1146/annurev-environ-110615-085520&mimeType=html&fmt=ahah

    Literature Cited

    1. YuZ,LoiselJ,BrosseauDP,BeilmanDW,HuntSJ.1. 2010. Global peatland dynamics since the Last Glacial Maximum.Geophys. Res. Letts.37L13402[Google Scholar]
    2. PanY,BirdseyRA,FangJ,HoughtonR,KauppiP.2.  et al.2011. A large and persistent carbon sink in the world's forests.Science333988–93[Google Scholar]
    3. GraceJ.3. 2004. Understanding and managing the global carbon cycle.J. Ecol.92189–202[Google Scholar]
    4. JoostenH,ClarkeD.4. 2002.Wise Use of Mires and Peatlands Jyväskylä, Finl: Int. Mire Conserv. Group Int. Peat Soc.[Google Scholar]
    5. BiancalaniR,AvagyanA.5. 2014.Towards Climate Responsible Peatland Management Practices: Part 1 Rome: Food Agric. Org.[Google Scholar]
    6. SmithP,BustamanteM,AhammadH,ClarkH,DongH.6.  et al.2014. Agriculture, Forestry and Other Land Use (AFOLU).Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.811–922 Cambridge, UK; New York: Cambridge Univ. Press[Google Scholar]
    7. PageSE,RieleyJO,BanksCJ.7. 2011. Global and regional importance of the tropical peatland carbon pool.Glob. Change Biol.17:798–818[Google Scholar]
    8. RydinH,JeglumJK.8. 2006.The Biology of Peatlands Oxford: Oxford Univ. Press[Google Scholar]
    9. BelyeaLR,ClymoRS.9. 2001. Feedback control of the rate of peat formation.Philos. Trans. R. Soc. B268:1315–21[Google Scholar]
    10. SeppäläM.10. 1986. The origin of palsas.Geografisk. Annal.68A:141–47[Google Scholar]
    11. PageSE,RieleyJO,ShotykW,WeissD.11. 1999. Interdependence of peat and vegetation in a tropical swamp forest.Philos. Trans. R. Soc. B3541885–97[Google Scholar]
    12. TroxlerTG.12. 2007. Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama.J. Trop. Ecol.23:683–91[Google Scholar]
    13. SjögerstenS,CheesmanAW,LopezO,TurnerB.13. 2011. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland.Biogeochemistry104:147–63[Google Scholar]
    14. PhillipsS,RouseG,BustinR.14. 1997. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama.Palaeogeog. Palaeocol. Palynol.128:301–38[Google Scholar]
    15. AslanA,WhiteWA,WarneGA,GuevaraEH.15. 2003. Holocene evolution of the western Orinoco Delta, Venezuela.Geol. Soc. Am. Bull.115:479–98[Google Scholar]
    16. LähteenojaO,RuokolainenK,SchulmanL,AlvarezJ.16. 2009. Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands.Catena79140–45[Google Scholar]
    17. LähteenojaO,PageSE.17. 2011. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia.J. Geophys. Res. Biogeosci.116G02025[Google Scholar]
    18. DraperFC,RoucouxKH,LawsonIT,MitchardETA,CoronadoENH.18.  et al.2014. The distribution and amount of carbon in the largest peatland complex in Amazonia.Environ. Res. Lett.9:124017[Google Scholar]
    19. DraperF.19. 2015.Carbon storage and floristic dynamics in Peruvian peatland ecosystems PhD Thesis, Sch. Geogr., Univ. Leeds, Leeds, UK[Google Scholar]
    20. DargieG.20. 2016.Quantifying and understanding the tropical peatlands of the central Congo basin PhD Thesis, Univ. Leeds, Leeds, UK[Google Scholar]
    21. HopeG.21. 2015. Peat in the mountains of New Guinea.Mires Peat15:1–21[Google Scholar]
    22. SalvadorF,MonerrisJ,RochefortL.22. 2014. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance.Mires Peat15:1–17[Google Scholar]
    23. TaylorDM.23. 1990. Late quaternary pollen records from two Ugandan mires, evidence for environmental changes in the Rukiga Highlands of southwest Uganda.Palaeogeog. Palaeoclim. Palaeoecol.80:283–300[Google Scholar]
    24. McKeeKL,FaulknerPL.24. 2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize.Atoll Res. Bull.468:46–58[Google Scholar]
    25. MiddletonBA,McKeeKL.25. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests.J. Ecol.89:818–28[Google Scholar]
    26. RouletNT,LafleurPM,RichardPJH,MooreTR,HumphreysER.26.  et al.2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland.Glob. Change Biol.13:397–411[Google Scholar]
    27. SjögerstenS,BlackCR,EversS,Hoyos-SantillanJ,WrightEL.27.  et al.2014. Tropical wetlands: a missing link in the global carbon cycle?.Glob. Biogeochem. Cycles28:1371–86[Google Scholar]
    28. ChimnerRA,EwelKC.28. 2005. A tropical freshwater wetland: II. Production, decomposition and peat formation.Wet. Ecol. Manag.13:671–84[Google Scholar]
    29. BradyMA.29. 1997.Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia PhD Thesis, Dep. For., Univ. BC, Vanc., Can.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0075286[Google Scholar]
    30. JennyH,GesselSP,BinghamFT.30. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions.Soil Sci68419–32[Google Scholar]
    31. OlsonJS.31. 1963. Energy storage and the balance of producers and decomposers in ecological systems.Ecology44322–31[Google Scholar]
    32. MooreTR,BubierJL,BledzkiL.32. 2007. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site.Ecosystems10:949–63[Google Scholar]
    33. ClymoRS.33. 1984. The limits to peat bog growth.Philos. Trans. R. Soc. B303605–54[Google Scholar]
    34. BelyeaLR,BairdAJ.34. 2006. Beyond the “limits to peat bog growth”: cross-scale feedback in peatland development.Ecol. Mono.76299–322[Google Scholar]
    35. FrolkingS,RouletNT,TuittilaE,BubierJL,QuilletA.35.  et al.2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation.Earth Syst. Dyn.1:1–21[Google Scholar]
    36. QuilletA,GarneauM,FrolkingS.36. 2013. Sobol’ sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?.J. Geophys. Res.: Biogeosci.118:203–14[Google Scholar]
    37. MorrisPJ,BairdAJ,BelyeaLR.37. 2012. The DigiBog peatland development model 2: ecohydrological simulations in 2D.Ecohydrology5256–68[Google Scholar]
    38. MorrisPJ,BairdAJ,YoungDM,SwindlesGT.38. 2015. Untangling climate signals from autogenic changes in long-term peatland development.Geophys. Res. Letts.4210788–97[Google Scholar]
    39. HeinemeyerA,CroftS,GarnettMH,GloorM,HoldenJ.39.  et al.2010. The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands.Clim. Res.45207–26[Google Scholar]
    40. KurniantoS,WarrenM,TalbotJ,KauffmanB,MurdiyarsoD,FrolkingS.40. 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach.Glob. Change Biol.21:431–44[Google Scholar]
    41. HollingCS.41. 1973. Resilience and stability of ecological systems.Annu. Rev. Ecol. Syst.41–23[Google Scholar]
    42. MietinnenJ,HooijerA,ShiC,TollenaarD,VernimmenR.42.  et al.2012. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections.Glob. Change Biol. Bioenergy4908–18[Google Scholar]
    43. PageSE,HosciloA,JauhiainenJ,SilviusM,RieleyJ.43.  et al.2009. Ecological restoration of tropical peatlands in Southeast Asia.Ecosystems12:888–905[Google Scholar]
    44. MoorePD.44. 1993. The origin of blanket mire, revisited.. InClimate Change and Human Impact of the Landscape, ed.FM Chambers217–24 London: Chapman & Hall[Google Scholar]
    45. SperanzaA,HankeJ,van GeelB,FantaJ.45. 2000. Late-Holocene human impact and peat development in the Černá Hora bog, KrkonošeMountains, Czech Republic.Holocene10:575–85[Google Scholar]
    46. SolemT.46. 1989. Blanket mire formation at Haramsøy, Møre og Romsdal, western Norway.Boreas18:221–35[Google Scholar]
    47. TippingR.47. 2008. Blanket peat in the Scottish Highlands: timing, cause, spread and the myth of environmental determinism.Biol. Cons.17:2097–113[Google Scholar]
    48. Gallego-SalaAV,CharmanDJ,HarrisonSP,LiG,PrenticeIC.48. 2016. Climate-driven expansion of blanket bogs in Britain during the Holocene.Clim. Past12:129–36[Google Scholar]
    49. ColesJ,ColesB.49. 1986.Sweet Track to Glastonbury: The Somerset Levels in Prehistory London: Thames & Hudson[Google Scholar]
    50. RafteryB.50. 1996.Trackway Excavations in the Mountdillon Bogs, Co. Longford, 1985–1991 Dublin, Irel.: Crannóg[Google Scholar]
    51. SteadIM,BourkeJB,BrothwellD.51. 1986.Lindow Man: The Body in the Bog London: British Mus.[Google Scholar]
    52. BonsallC,MacklinRG,AndersonDE,PaytonRW.52. 2002. Climate change and the adoption of agriculture in north-west Europe.Europ. J. Archaeol.59–23[Google Scholar]
    53. HaberleSG.53. 2007. Prehistoric human impact on rainforest biodiversity in highland New Guinea.Phil. Trans. R. Soc. B362219–28[Google Scholar]
    54. MighallTM,Dumayne-PeatyL,CranstoneD.54. 2004. A record of atmospheric pollution and vegetation change as recorded in three peat bogs from the northern Pennines Pb-Zn orefield.Env. Archaeol.913–38[Google Scholar]
    55. MighallTM,TimberlakeS,FosterIDL,KruppE,SinghS.55. 2009. Ancient copper and lead contamination records from a raised bog complex in central Wales, UK.J. Archaeol. Sci.361504–15[Google Scholar]
    56. DeDekker K.56. 2011. Medieval smokestacks: fossil fuels in pre-industrial times.Low-Tech Magazine Sept. 29.http://www.lowtechmagazine.com/2011/09/peat-and-coal-fossil-fuels-in-pre-industrial-times.html[Google Scholar]
    57. LambertJM,JenningsMA,SmithCT,GreenC,HutchinsonJN.57. 1960.The Making of the Broads London:: R. Geogr. Soc.[Google Scholar]
    58. LaineJ,MinkkinenK,TretinC.58. 2009. Direct human impacts on the peatland carbon sink.Geophys. Mono. Ser.184:71–78[Google Scholar]
    59. StrackM.59. 2008.Peatlands and Climate Change Jyväskylä, Finl.: Int. Peat Soc.[Google Scholar]
    60. Schrier-UijlAP,VeraartAJ,LeffelaarPJ,BerendseF,VeenendaalEM.60. 2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands.Biogeochemistry102:265–79[Google Scholar]
    61. Kasimir-KlemedtssonÅ,KlemedtssonL,BerglundK,MartikainenP,SilvolaJ.61.  et al.1997. Greenhouse gas emissions from farmed organic soils: a review.Soil Use Man13:245–50[Google Scholar]
    62. JoostenH.62. 2009.The global peatland CO2 picture: peatland status and emissions in all countries of the World. Wetlands Int. Draft Rep., Ede, Neth.https://unfccc.int/files/kyoto_protocol/application/pdf/draftpeatlandco2report.pdf[Google Scholar]
    63. HooijerA,PageSE,CanadellJG,SilviusM,KwadijkJ.63.  et al.2010. Current and future CO2 emissions from drained peatlands in Southeast Asia.Biogeoscience71505–14[Google Scholar]
    64. MooreS,EvansCD,PageSE,GarnettMH,JonesTG.64.  et al.2013. Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands.Nature493660–63[Google Scholar]
    65. EvansCD,PageSE,JonesT,MooreS,GauciV.65.  et al.2014. Contrasting susceptibility of tropical and high-latitude peats to fluvial loss of stored carbon following drainage.Glob. Biogeochem. Cycles28:1215–34[Google Scholar]
    66. HooijerA,PageSE,JauhiainenJ,LeeWA,IdrisA.66.  et al.2012. Subsidence and carbon loss in drained tropical peatlands.Biogeoscience91053–71[Google Scholar]
    67. CouwenbergJ,HooijerA.67. 2013. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations.Mires Peat121[Google Scholar]
    68. PageSE,SiegertF,RieleyJO,BoehmH-DV,JayaA.68.  et al.2002. The amount of carbon released from peat and forest fires in Indonesia during 1997.Nature420:61–65[Google Scholar]
    69. KonecnyK,BallhornU,NavratilP,JubanskiJ,PageSE.69.  et al.2016. Variable carbon losses for recurrent fires in drained tropical peatlands.Glob. Change Biol.22:1469–80[Google Scholar]
    70. DeverelSJ,LeightonDA.70. 2010. Historic, recent, and future subsidence, Sacramento-San Joaquin Delta, California, USA.San Fran. Est. Watershed Sci. 8.http://escholarship.org/uc/item/7xd4x0xw[Google Scholar]
    71. DrexlerJZ,de FontaineCS,DeverelSJ.71. 2009. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA.Wetlands29:372–86[Google Scholar]
    72. WöstenJHM,IsmailAB,van WijkALM.72. 1997. Peat subsidence and its practical implications: a case study in Malaysia.Geoderma7825–36[Google Scholar]
    73. QuernerEP,JansenPC,van den AkkerJJH,KwakernaakC.73. 2012. Analysing water level strategies to reduce soil subsidence in Dutch peat meadows.J. Hydrol.44659–69[Google Scholar]
    74. LimpensJ,BerendseF,BlodauC,CanadellJG,FreemanC.74.  et al.2008. Peatlands and the carbon cycle: from local processes to global implications—a synthesis.Biogeoscience51475–91[Google Scholar]
    75. TuretskyM,BenscoterB,PageSE,ReinG,van der WerfG.75.  et al.2015. Global vulnerability of peatlands to fire and carbon loss.Nat. Geosci.811–14[Google Scholar]
    76. PageSE,HooijerA.76. 2016. In the line of fire: the peatlands of SE Asia.Philos. Trans. R. Soc. B371:20150176[Google Scholar]
    77. ReinG,CleaverN,AshtonC,PironiP,ToreroJL.77. 2008. The severity of smouldering peat fires and damage to the forest soil.Catena74304–9[Google Scholar]
    78. TarnocaiC,CanadellJG,SchuurEAG,KuhryP,MazhitovaG.78. 2009. Soil organic carbon pools in the northern circumpolar permafrost.Glob. Biogeochem. Cycles23GB2023[Google Scholar]
    79. ShepherdMJ,LabadzJ,CapornSJ,CrowleA,GoodisonR.79.  et al.2013.Restoration of Degraded Blanket Bog Natural England Evidence Rev., Number 003. Peterborough: Natural England.http://publications.naturalengland.org.uk/publication/5724822[Google Scholar]
    80. RochefortL.80. 2000.Sphagnum: a keystone in habitat restoration.Bryologist103:503–8[Google Scholar]
    81. LuchesseM,WaddingtonJM,PoulinM,PouliotR,RochefortL.81.  et al.2010. Organic matter accumulation in a restored peatland: evaluating restoration success.Ecol. Eng.36482–88[Google Scholar]
    82. IseT,DunnAL,WofsySC,MoorcroftPR.82. 2008. High sensitivity of peat decomposition to climate change through water-table feedback.Nat. Geosci.1763–66[Google Scholar]
    83. BelyeaLR,MalmerN.83. 2004. Carbon sequestration in peatland: patterns and mechanisms of response to climate change.Glob. Chan. Biol.10:1043–52[Google Scholar]
    84. SwindlesGT,MorrisPJ,BairdAJ,BlaauwM,PlunkettG.84. 2012. Ecohydrological feedbacks confound peat-based climate reconstructions.Geophys. Res. Letts.39L11401[Google Scholar]
    85. BelyeaLR.85. 2009. Nonlinear dynamics of peatlands and potential feedbacks on the climate system.Geophysical Monograph Ser. 184:Carbon Cycling in Northern Peatlands, ed. AJ Baird, LR Belyea, X Comas, AS Reeve, LD Slater, pp. 5–18. Washington, DC: Am. Geophys. Union[Google Scholar]
    86. ColeLES,BhagwatSA,WillisKJ.86. 2015. Long-term disturbance dynamics and resilience of tropical peat swamp forests.J. Ecol.103:16–30[Google Scholar]
    87. SwindlesGT,MorrisPJ,WheelerJ,SmithM,BaconKL.87.  et al.2016. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog.J. Ecol.104:621–36[Google Scholar]
    88. WheelerBD,ShawSC.88. 1995.Restoration of Damaged Peatlands London: Dep. Environ.[Google Scholar]
    89. PriceJ,RochefortL,QuintyF.89. 1998. Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover andSphagnum regeneration.Ecol. Eng.10:293–312[Google Scholar]
    90. PriceJS,WhiteheadGS.90. 2001. Developing hydrologic thresholds forSphagnum recolonization on an abandoned cutover bog.Wetlands21:32–40[Google Scholar]
    91. BriskeDD,FuhlendorfSD,SmeinsFE.91. 2003. Vegetation dynamics on rangelands: a critique of the current paradigms.J. Appl. Ecol.40601–14[Google Scholar]
    92. BridghamSC,PastorJ,DeweyB,WeltzinJF,UpdegraffK.92. 2008. Rapid carbon response of peatlands to climate change.Ecology893041–48[Google Scholar]
    93. DorrepaalE,ToetS,van LogtestijnRSP,SwartE,van de WegMJ.93.  et al.2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic.Nature460616–19[Google Scholar]
    94. LoiselJ,YuZ.94. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska.J. Geophys. Res. Biogeosci.118:1–13[Google Scholar]
    95. KettridgeN,TuretskyMR,SherwoodJH,ThompsonDK,MillerCA.95.  et al.2015. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.Sci. Rep.58063[Google Scholar]
    /content/journals/10.1146/annurev-environ-110615-085520
    Loading
    Peatlands and Global Change: Response and Resilience
    Annual Review of Environment and Resources41, 35 (2016);https://doi.org/10.1146/annurev-environ-110615-085520
    /content/journals/10.1146/annurev-environ-110615-085520
    /content/journals/10.1146/annurev-environ-110615-085520
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/energy
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-environ-110615-085520
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. YuZ,LoiselJ,BrosseauDP,BeilmanDW,HuntSJ.1. 2010. Global peatland dynamics since the Last Glacial Maximum.Geophys. Res. Letts.37L13402[Google Scholar]
    2. PanY,BirdseyRA,FangJ,HoughtonR,KauppiP.2.  et al.2011. A large and persistent carbon sink in the world's forests.Science333988–93[Google Scholar]
    3. GraceJ.3. 2004. Understanding and managing the global carbon cycle.J. Ecol.92189–202[Google Scholar]
    4. JoostenH,ClarkeD.4. 2002.Wise Use of Mires and Peatlands Jyväskylä, Finl: Int. Mire Conserv. Group Int. Peat Soc.[Google Scholar]
    5. BiancalaniR,AvagyanA.5. 2014.Towards Climate Responsible Peatland Management Practices: Part 1 Rome: Food Agric. Org.[Google Scholar]
    6. SmithP,BustamanteM,AhammadH,ClarkH,DongH.6.  et al.2014. Agriculture, Forestry and Other Land Use (AFOLU).Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.811–922 Cambridge, UK; New York: Cambridge Univ. Press[Google Scholar]
    7. PageSE,RieleyJO,BanksCJ.7. 2011. Global and regional importance of the tropical peatland carbon pool.Glob. Change Biol.17:798–818[Google Scholar]
    8. RydinH,JeglumJK.8. 2006.The Biology of Peatlands Oxford: Oxford Univ. Press[Google Scholar]
    9. BelyeaLR,ClymoRS.9. 2001. Feedback control of the rate of peat formation.Philos. Trans. R. Soc. B268:1315–21[Google Scholar]
    10. SeppäläM.10. 1986. The origin of palsas.Geografisk. Annal.68A:141–47[Google Scholar]
    11. PageSE,RieleyJO,ShotykW,WeissD.11. 1999. Interdependence of peat and vegetation in a tropical swamp forest.Philos. Trans. R. Soc. B3541885–97[Google Scholar]
    12. TroxlerTG.12. 2007. Patterns of phosphorus, nitrogen and δ15N along a peat development gradient in a coastal mire, Panama.J. Trop. Ecol.23:683–91[Google Scholar]
    13. SjögerstenS,CheesmanAW,LopezO,TurnerB.13. 2011. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland.Biogeochemistry104:147–63[Google Scholar]
    14. PhillipsS,RouseG,BustinR.14. 1997. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama.Palaeogeog. Palaeocol. Palynol.128:301–38[Google Scholar]
    15. AslanA,WhiteWA,WarneGA,GuevaraEH.15. 2003. Holocene evolution of the western Orinoco Delta, Venezuela.Geol. Soc. Am. Bull.115:479–98[Google Scholar]
    16. LähteenojaO,RuokolainenK,SchulmanL,AlvarezJ.16. 2009. Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands.Catena79140–45[Google Scholar]
    17. LähteenojaO,PageSE.17. 2011. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia.J. Geophys. Res. Biogeosci.116G02025[Google Scholar]
    18. DraperFC,RoucouxKH,LawsonIT,MitchardETA,CoronadoENH.18.  et al.2014. The distribution and amount of carbon in the largest peatland complex in Amazonia.Environ. Res. Lett.9:124017[Google Scholar]
    19. DraperF.19. 2015.Carbon storage and floristic dynamics in Peruvian peatland ecosystems PhD Thesis, Sch. Geogr., Univ. Leeds, Leeds, UK[Google Scholar]
    20. DargieG.20. 2016.Quantifying and understanding the tropical peatlands of the central Congo basin PhD Thesis, Univ. Leeds, Leeds, UK[Google Scholar]
    21. HopeG.21. 2015. Peat in the mountains of New Guinea.Mires Peat15:1–21[Google Scholar]
    22. SalvadorF,MonerrisJ,RochefortL.22. 2014. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance.Mires Peat15:1–17[Google Scholar]
    23. TaylorDM.23. 1990. Late quaternary pollen records from two Ugandan mires, evidence for environmental changes in the Rukiga Highlands of southwest Uganda.Palaeogeog. Palaeoclim. Palaeoecol.80:283–300[Google Scholar]
    24. McKeeKL,FaulknerPL.24. 2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize.Atoll Res. Bull.468:46–58[Google Scholar]
    25. MiddletonBA,McKeeKL.25. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests.J. Ecol.89:818–28[Google Scholar]
    26. RouletNT,LafleurPM,RichardPJH,MooreTR,HumphreysER.26.  et al.2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland.Glob. Change Biol.13:397–411[Google Scholar]
    27. SjögerstenS,BlackCR,EversS,Hoyos-SantillanJ,WrightEL.27.  et al.2014. Tropical wetlands: a missing link in the global carbon cycle?.Glob. Biogeochem. Cycles28:1371–86[Google Scholar]
    28. ChimnerRA,EwelKC.28. 2005. A tropical freshwater wetland: II. Production, decomposition and peat formation.Wet. Ecol. Manag.13:671–84[Google Scholar]
    29. BradyMA.29. 1997.Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia PhD Thesis, Dep. For., Univ. BC, Vanc., Can.https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0075286[Google Scholar]
    30. JennyH,GesselSP,BinghamFT.30. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions.Soil Sci68419–32[Google Scholar]
    31. OlsonJS.31. 1963. Energy storage and the balance of producers and decomposers in ecological systems.Ecology44322–31[Google Scholar]
    32. MooreTR,BubierJL,BledzkiL.32. 2007. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site.Ecosystems10:949–63[Google Scholar]
    33. ClymoRS.33. 1984. The limits to peat bog growth.Philos. Trans. R. Soc. B303605–54[Google Scholar]
    34. BelyeaLR,BairdAJ.34. 2006. Beyond the “limits to peat bog growth”: cross-scale feedback in peatland development.Ecol. Mono.76299–322[Google Scholar]
    35. FrolkingS,RouletNT,TuittilaE,BubierJL,QuilletA.35.  et al.2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation.Earth Syst. Dyn.1:1–21[Google Scholar]
    36. QuilletA,GarneauM,FrolkingS.36. 2013. Sobol’ sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?.J. Geophys. Res.: Biogeosci.118:203–14[Google Scholar]
    37. MorrisPJ,BairdAJ,BelyeaLR.37. 2012. The DigiBog peatland development model 2: ecohydrological simulations in 2D.Ecohydrology5256–68[Google Scholar]
    38. MorrisPJ,BairdAJ,YoungDM,SwindlesGT.38. 2015. Untangling climate signals from autogenic changes in long-term peatland development.Geophys. Res. Letts.4210788–97[Google Scholar]
    39. HeinemeyerA,CroftS,GarnettMH,GloorM,HoldenJ.39.  et al.2010. The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands.Clim. Res.45207–26[Google Scholar]
    40. KurniantoS,WarrenM,TalbotJ,KauffmanB,MurdiyarsoD,FrolkingS.40. 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach.Glob. Change Biol.21:431–44[Google Scholar]
    41. HollingCS.41. 1973. Resilience and stability of ecological systems.Annu. Rev. Ecol. Syst.41–23[Google Scholar]
    42. MietinnenJ,HooijerA,ShiC,TollenaarD,VernimmenR.42.  et al.2012. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections.Glob. Change Biol. Bioenergy4908–18[Google Scholar]
    43. PageSE,HosciloA,JauhiainenJ,SilviusM,RieleyJ.43.  et al.2009. Ecological restoration of tropical peatlands in Southeast Asia.Ecosystems12:888–905[Google Scholar]
    44. MoorePD.44. 1993. The origin of blanket mire, revisited.. InClimate Change and Human Impact of the Landscape, ed.FM Chambers217–24 London: Chapman & Hall[Google Scholar]
    45. SperanzaA,HankeJ,van GeelB,FantaJ.45. 2000. Late-Holocene human impact and peat development in the Černá Hora bog, KrkonošeMountains, Czech Republic.Holocene10:575–85[Google Scholar]
    46. SolemT.46. 1989. Blanket mire formation at Haramsøy, Møre og Romsdal, western Norway.Boreas18:221–35[Google Scholar]
    47. TippingR.47. 2008. Blanket peat in the Scottish Highlands: timing, cause, spread and the myth of environmental determinism.Biol. Cons.17:2097–113[Google Scholar]
    48. Gallego-SalaAV,CharmanDJ,HarrisonSP,LiG,PrenticeIC.48. 2016. Climate-driven expansion of blanket bogs in Britain during the Holocene.Clim. Past12:129–36[Google Scholar]
    49. ColesJ,ColesB.49. 1986.Sweet Track to Glastonbury: The Somerset Levels in Prehistory London: Thames & Hudson[Google Scholar]
    50. RafteryB.50. 1996.Trackway Excavations in the Mountdillon Bogs, Co. Longford, 1985–1991 Dublin, Irel.: Crannóg[Google Scholar]
    51. SteadIM,BourkeJB,BrothwellD.51. 1986.Lindow Man: The Body in the Bog London: British Mus.[Google Scholar]
    52. BonsallC,MacklinRG,AndersonDE,PaytonRW.52. 2002. Climate change and the adoption of agriculture in north-west Europe.Europ. J. Archaeol.59–23[Google Scholar]
    53. HaberleSG.53. 2007. Prehistoric human impact on rainforest biodiversity in highland New Guinea.Phil. Trans. R. Soc. B362219–28[Google Scholar]
    54. MighallTM,Dumayne-PeatyL,CranstoneD.54. 2004. A record of atmospheric pollution and vegetation change as recorded in three peat bogs from the northern Pennines Pb-Zn orefield.Env. Archaeol.913–38[Google Scholar]
    55. MighallTM,TimberlakeS,FosterIDL,KruppE,SinghS.55. 2009. Ancient copper and lead contamination records from a raised bog complex in central Wales, UK.J. Archaeol. Sci.361504–15[Google Scholar]
    56. DeDekker K.56. 2011. Medieval smokestacks: fossil fuels in pre-industrial times.Low-Tech Magazine Sept. 29.http://www.lowtechmagazine.com/2011/09/peat-and-coal-fossil-fuels-in-pre-industrial-times.html[Google Scholar]
    57. LambertJM,JenningsMA,SmithCT,GreenC,HutchinsonJN.57. 1960.The Making of the Broads London:: R. Geogr. Soc.[Google Scholar]
    58. LaineJ,MinkkinenK,TretinC.58. 2009. Direct human impacts on the peatland carbon sink.Geophys. Mono. Ser.184:71–78[Google Scholar]
    59. StrackM.59. 2008.Peatlands and Climate Change Jyväskylä, Finl.: Int. Peat Soc.[Google Scholar]
    60. Schrier-UijlAP,VeraartAJ,LeffelaarPJ,BerendseF,VeenendaalEM.60. 2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands.Biogeochemistry102:265–79[Google Scholar]
    61. Kasimir-KlemedtssonÅ,KlemedtssonL,BerglundK,MartikainenP,SilvolaJ.61.  et al.1997. Greenhouse gas emissions from farmed organic soils: a review.Soil Use Man13:245–50[Google Scholar]
    62. JoostenH.62. 2009.The global peatland CO2 picture: peatland status and emissions in all countries of the World. Wetlands Int. Draft Rep., Ede, Neth.https://unfccc.int/files/kyoto_protocol/application/pdf/draftpeatlandco2report.pdf[Google Scholar]
    63. HooijerA,PageSE,CanadellJG,SilviusM,KwadijkJ.63.  et al.2010. Current and future CO2 emissions from drained peatlands in Southeast Asia.Biogeoscience71505–14[Google Scholar]
    64. MooreS,EvansCD,PageSE,GarnettMH,JonesTG.64.  et al.2013. Fluvial organic carbon fluxes reveal deep instability of deforested tropical peatlands.Nature493660–63[Google Scholar]
    65. EvansCD,PageSE,JonesT,MooreS,GauciV.65.  et al.2014. Contrasting susceptibility of tropical and high-latitude peats to fluvial loss of stored carbon following drainage.Glob. Biogeochem. Cycles28:1215–34[Google Scholar]
    66. HooijerA,PageSE,JauhiainenJ,LeeWA,IdrisA.66.  et al.2012. Subsidence and carbon loss in drained tropical peatlands.Biogeoscience91053–71[Google Scholar]
    67. CouwenbergJ,HooijerA.67. 2013. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations.Mires Peat121[Google Scholar]
    68. PageSE,SiegertF,RieleyJO,BoehmH-DV,JayaA.68.  et al.2002. The amount of carbon released from peat and forest fires in Indonesia during 1997.Nature420:61–65[Google Scholar]
    69. KonecnyK,BallhornU,NavratilP,JubanskiJ,PageSE.69.  et al.2016. Variable carbon losses for recurrent fires in drained tropical peatlands.Glob. Change Biol.22:1469–80[Google Scholar]
    70. DeverelSJ,LeightonDA.70. 2010. Historic, recent, and future subsidence, Sacramento-San Joaquin Delta, California, USA.San Fran. Est. Watershed Sci. 8.http://escholarship.org/uc/item/7xd4x0xw[Google Scholar]
    71. DrexlerJZ,de FontaineCS,DeverelSJ.71. 2009. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA.Wetlands29:372–86[Google Scholar]
    72. WöstenJHM,IsmailAB,van WijkALM.72. 1997. Peat subsidence and its practical implications: a case study in Malaysia.Geoderma7825–36[Google Scholar]
    73. QuernerEP,JansenPC,van den AkkerJJH,KwakernaakC.73. 2012. Analysing water level strategies to reduce soil subsidence in Dutch peat meadows.J. Hydrol.44659–69[Google Scholar]
    74. LimpensJ,BerendseF,BlodauC,CanadellJG,FreemanC.74.  et al.2008. Peatlands and the carbon cycle: from local processes to global implications—a synthesis.Biogeoscience51475–91[Google Scholar]
    75. TuretskyM,BenscoterB,PageSE,ReinG,van der WerfG.75.  et al.2015. Global vulnerability of peatlands to fire and carbon loss.Nat. Geosci.811–14[Google Scholar]
    76. PageSE,HooijerA.76. 2016. In the line of fire: the peatlands of SE Asia.Philos. Trans. R. Soc. B371:20150176[Google Scholar]
    77. ReinG,CleaverN,AshtonC,PironiP,ToreroJL.77. 2008. The severity of smouldering peat fires and damage to the forest soil.Catena74304–9[Google Scholar]
    78. TarnocaiC,CanadellJG,SchuurEAG,KuhryP,MazhitovaG.78. 2009. Soil organic carbon pools in the northern circumpolar permafrost.Glob. Biogeochem. Cycles23GB2023[Google Scholar]
    79. ShepherdMJ,LabadzJ,CapornSJ,CrowleA,GoodisonR.79.  et al.2013.Restoration of Degraded Blanket Bog Natural England Evidence Rev., Number 003. Peterborough: Natural England.http://publications.naturalengland.org.uk/publication/5724822[Google Scholar]
    80. RochefortL.80. 2000.Sphagnum: a keystone in habitat restoration.Bryologist103:503–8[Google Scholar]
    81. LuchesseM,WaddingtonJM,PoulinM,PouliotR,RochefortL.81.  et al.2010. Organic matter accumulation in a restored peatland: evaluating restoration success.Ecol. Eng.36482–88[Google Scholar]
    82. IseT,DunnAL,WofsySC,MoorcroftPR.82. 2008. High sensitivity of peat decomposition to climate change through water-table feedback.Nat. Geosci.1763–66[Google Scholar]
    83. BelyeaLR,MalmerN.83. 2004. Carbon sequestration in peatland: patterns and mechanisms of response to climate change.Glob. Chan. Biol.10:1043–52[Google Scholar]
    84. SwindlesGT,MorrisPJ,BairdAJ,BlaauwM,PlunkettG.84. 2012. Ecohydrological feedbacks confound peat-based climate reconstructions.Geophys. Res. Letts.39L11401[Google Scholar]
    85. BelyeaLR.85. 2009. Nonlinear dynamics of peatlands and potential feedbacks on the climate system.Geophysical Monograph Ser. 184:Carbon Cycling in Northern Peatlands, ed. AJ Baird, LR Belyea, X Comas, AS Reeve, LD Slater, pp. 5–18. Washington, DC: Am. Geophys. Union[Google Scholar]
    86. ColeLES,BhagwatSA,WillisKJ.86. 2015. Long-term disturbance dynamics and resilience of tropical peat swamp forests.J. Ecol.103:16–30[Google Scholar]
    87. SwindlesGT,MorrisPJ,WheelerJ,SmithM,BaconKL.87.  et al.2016. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog.J. Ecol.104:621–36[Google Scholar]
    88. WheelerBD,ShawSC.88. 1995.Restoration of Damaged Peatlands London: Dep. Environ.[Google Scholar]
    89. PriceJ,RochefortL,QuintyF.89. 1998. Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover andSphagnum regeneration.Ecol. Eng.10:293–312[Google Scholar]
    90. PriceJS,WhiteheadGS.90. 2001. Developing hydrologic thresholds forSphagnum recolonization on an abandoned cutover bog.Wetlands21:32–40[Google Scholar]
    91. BriskeDD,FuhlendorfSD,SmeinsFE.91. 2003. Vegetation dynamics on rangelands: a critique of the current paradigms.J. Appl. Ecol.40601–14[Google Scholar]
    92. BridghamSC,PastorJ,DeweyB,WeltzinJF,UpdegraffK.92. 2008. Rapid carbon response of peatlands to climate change.Ecology893041–48[Google Scholar]
    93. DorrepaalE,ToetS,van LogtestijnRSP,SwartE,van de WegMJ.93.  et al.2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic.Nature460616–19[Google Scholar]
    94. LoiselJ,YuZ.94. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska.J. Geophys. Res. Biogeosci.118:1–13[Google Scholar]
    95. KettridgeN,TuretskyMR,SherwoodJH,ThompsonDK,MillerCA.95.  et al.2015. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.Sci. Rep.58063[Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-environ-110615-085520
    10.1146/annurev-environ-110615-085520
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp