Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Open Access

Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic

  • Edward A.G. Schuur1,2,Benjamin W. Abbott3,Roisin Commane4,Jessica Ernakovich5,Eugenie Euskirchen6,Gustaf Hugelius7,Guido Grosse8,Miriam Jones9,Charlie Koven10,Victor Leshyk1,David Lawrence11,Michael M. Loranty12,Marguerite Mauritz13,David Olefeldt14,Susan Natali15,Heidi Rodenhizer1,Verity Salmon16,Christina Schädel1,Jens Strauss8,Claire Treat8 andMerritt Turetsky17
  • 1Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA; email:[email protected]2Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA3Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA4Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA5Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA6Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA7Department of Physical Geography, Stockholm University, Stockholm, Sweden8Permafrost Research Section, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany9Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, Virginia, USA10Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA11National Center for Atmospheric Research, Boulder, Colorado, USA12Department of Geography, Colgate University, Hamilton, New York, USA13Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA14Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada15Woodwell Climate Research Center, Falmouth, Massachusetts, USA16Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA17Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
  • Vol. 47:343-371(Volume publication date October 2022)
  • © Annual Reviews
    This is a work of the US Government and is not subject to copyright protection in the United States

Abstract

Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. In addition, the response of vegetation in a warming climate has the potential to offset at least some of the accelerating feedback to the climate from permafrost carbon. Temperature, organic carbon, and ground ice are key regulators for determining the impact of permafrost ecosystems on the global carbon cycle. Together, these encompass services of permafrost relevant to global society as well as to the people living in the region and help to determine the landscape-level response of this region to a changing climate.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-environ-012220-011847
    2022-10-17
    2025-10-26
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/energy/47/1/annurev-environ-012220-011847.html?itemId=/content/journals/10.1146/annurev-environ-012220-011847&mimeType=html&fmt=ahah

    Literature Cited

    1. 1.
      MeredithM,SommerkornM,CassottaS,DerksenC,EkaykinA et al.2019. Polar regions.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al.203–320 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    2. 2.
      ChurchJA,ClarkPU,CazenaveA,GregoryJM,JevrejevaS et al.2013. Sea level change.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al.1137–1216 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    3. 3.
      SchuurEAG,McGuireAD,SchädelC,GrosseG,HardenJW et al.2015. Climate change and the permafrost carbon feedback.Nature520:7546171–79
      [Crossref][Google Scholar]
    4. 4.
      BiskabornBK,SmithSL,NoetzliJ,MatthesH,VieiraG et al.2019. Permafrost is warming at a global scale.Nat. Commun.10:1264
      [Crossref][Google Scholar]
    5. 5.
      SchuurEAG,MackMC.2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services.Annu. Rev. Ecol. Evol. Syst.49:279–301
      [Crossref][Google Scholar]
    6. 6.
      SjöbergY,SiewertMB,RudyACA,PaquetteM,BouchardF et al.2020. Hot trends and impact in permafrost science.Permafrost Periglac. Process.31:4461–71
      [Crossref][Google Scholar]
    7. 7.
      HarrisSA,FrenchHM,HeginbottomJA,JohnstonGH,LadanyiB et al.1988.Glossary of permafrost and related ground-ice terms Tech. Memo. 142 Natl. Res. Counc. Can. Ottawa, Can:https://globalcryospherewatch.org/reference/glossary_docs/permafrost_and_ground_terms_canada.pdf
      [Google Scholar]
    8. 8.
      GruberS.2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation.Cryosphere6:1221–33
      [Crossref][Google Scholar]
    9. 9.
      ObuJ,WestermannS,BartschA,BerdnikovN,ChristiansenHH et al.2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale.Earth-Sci. Rev.193:299–316
      [Crossref][Google Scholar]
    10. 10.
      GrosseG,HardenJ,TuretskyM,McGuireAD,CamillP et al.2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance.J. Geophys. Res.-Biogeo.116:G4https://doi.org/10.1029/2010JG001507
      [Crossref][Google Scholar]
    11. 11.
      KanevskiyM,ShurY,JorgensonMT,PingC-L,MichaelsonGJ et al.2013. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska.Cold Regions Sci. Technol.85:56–70
      [Crossref][Google Scholar]
    12. 12.
      LarsenJN,AnisimovOA,ConstableA,HollowedAB,MaynardN et al.2014. 2014: Polar regions.Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, KJ Mach, TE Bilir, M Chatterjee, et al.1567–1612 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    13. 13.
      PendakurK.2017. Northern territories.Climate Risks & Adaptation Practices For the Canadian Transportation Sector 2016 K Palko, DS Lemmen27–64 Ottawa: Gov. Can.
      [Google Scholar]
    14. 14.
      SchuurEAG,BockheimJ,CanadellJG,EuskirchenE,FieldCB et al.2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle.BioScience58:8701–14
      [Crossref][Google Scholar]
    15. 15.
      GorhamE.1991. Northern peatlands: role in the carbon-cycle and probable responses to climatic warming.Ecol. Appl.1:2182–95
      [Crossref][Google Scholar]
    16. 16.
      ZimovSA,SchuurEAG,ChapinFS.2006. Permafrost and the global carbon budget.Science312:57801612–13
      [Crossref][Google Scholar]
    17. 17.
      PingCL,MichaelsonGJ,JorgensonMT,KimbleJM,EpsteinH et al.2008. High stocks of soil organic carbon in the North American Arctic region.Nat. Geosci.1:9615–19
      [Crossref][Google Scholar]
    18. 18.
      SchuurEAG,AbbottBW,BowdenWB,BrovkinV,CamillP et al.2013. Expert assessment of vulnerability of permafrost carbon to climate change.Clim. Change119:2359–74
      [Crossref][Google Scholar]
    19. 19.
      HugeliusG,StraussJ,ZubrzyckiS,HardenJW,SchuurEAG et al.2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps.Biogeosciences11:236573–93
      [Crossref][Google Scholar]
    20. 20.
      TarnocaiC,CanadellJG,MazhitovaG,SchuurEAG,KuhryP.2009. Soil organic carbon pools in the northern circumpolar permafrost region.Glob. Biogeochem. Cycles.23:GB2023
      [Crossref][Google Scholar]
    21. 21.
      HugeliusG,LoiselJ,ChadburnS,JacksonRB,JonesM et al.2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw.PNAS117:3420438–46
      [Crossref][Google Scholar]
    22. 22.
      MishraU,HugeliusG,ShelefE,YangY,StraussJ et al.2021. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks.Sci. Adv.7:9eaaz5236
      [Crossref][Google Scholar]
    23. 23.
      StraussJ,SchirrmeisterL,GrosseG,FortierD,HugeliusG et al.2017. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability.Earth-Sci. Rev.172:75–86
      [Crossref][Google Scholar]
    24. 24.
      SchuurEAG,McGuireAD,RomanovskyVE,SchadelC,MackM2018. Arctic and boreal carbon.Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report N Cavallaro, G Shrestha, R Birdsey, MA Mayes, RG Najjar, et al.428–68 Washington, DC: U.S. Glob. Change Res. Progr.
      [Google Scholar]
    25. 25.
      SayediSS,AbbottBW,ThorntonBF,FrederickJM,VonkJE et al.2020. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment.Environ. Res. Lett.15:12124075
      [Crossref][Google Scholar]
    26. 26.
      Schneider von DeimlingT,GrosseG,StraussJ,SchirrmeisterL,MorgensternA et al.2015. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity.Biogeosciences12:113469–88
      [Crossref][Google Scholar]
    27. 27.
      Walter AnthonyK,Schneider von DeimlingT,NitzeI,FrolkingS,EmondA et al.2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes.Nat. Commun.9:13262
      [Crossref][Google Scholar]
    28. 28.
      SchuurEAG,AbbottB,NetworkPC2011. High risk of permafrost thaw.Nature480:737532–33
      [Crossref][Google Scholar]
    29. 29.
      McGuireAD,KovenC,LawrenceDM,CleinJS,XiaJ et al.2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009.Global Biogeochem. Cycles.30:71015–37
      [Crossref][Google Scholar]
    30. 30.
      McGuireAD,LawrenceDM,KovenC,CleinJS,BurkeE et al.2018. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change.PNAS115:153882–87
      [Crossref][Google Scholar]
    31. 31.
      QianHF,JosephR,ZengN2010. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections.Glob. Change Biol.16:2641–56
      [Crossref][Google Scholar]
    32. 32.
      KovenC,RingevalB,FriedlingsteinP,CiaisP,CaduleP et al.2011. Permafrost carbon-climate feedbacks accelerate global warming.PNAS108:3614769–74
      [Crossref][Google Scholar]
    33. 33.
      SchaeferK,LantuitH,RomanovskyVE,SchuurEAG,WittR.2014. The impact of the permafrost carbon feedback on global climate.Environ. Res. Lett.9:8085003
      [Crossref][Google Scholar]
    34. 34.
      AndresenCG,LawrenceDM,WilsonCJ,McGuireAD,KovenC et al.2020. Soil moisture and hydrology projections of the permafrost region—a model intercomparison.Cryosphere14:2445–59
      [Crossref][Google Scholar]
    35. 35.
      LawrenceDM,KovenCD,SwensonSC,RileyWJ,SlaterAG.2015. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions.Environ. Res. Lett.10:9094011
      [Crossref][Google Scholar]
    36. 36.
      O'NeillHB,WolfeSA,DuchesneC.2019. New ground ice maps for Canada using a paleogeographic modelling approach.The Cryosphere13:3753–73
      [Crossref][Google Scholar]
    37. 37.
      ZhangT,HeginbottomJA,BarryRG,BrownJ.2000. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere.Polar Geogr24:2126–31
      [Crossref][Google Scholar]
    38. 38.
      KokeljS,JorgensonM.2013. Advances in thermokarst research.Permafrost Periglac. Process.24:2108–19
      [Crossref][Google Scholar]
    39. 39.
      RodenhizerH,LedmanJ,MauritzM,NataliSM,PegoraroE et al.2020. Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment.J. Geophys. Res. Biogeosci.125:6e2019JG005528
      [Crossref][Google Scholar]
    40. 40.
      JorgensonMT,RomanovskyV,HardenJ,ShurY,O'DonnellJ et al.2010. Resilience and vulnerability of permafrost to climate change.Can. J. Forest Res.40:71219–36
      [Crossref][Google Scholar]
    41. 41.
      NitzbonJ,WestermannS,LangerM,MartinLCP,StraussJ et al.2020. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate.Nat. Commun.11:2201
      [Crossref][Google Scholar]
    42. 42.
      ShurYL,JorgensonMT.2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems.Permafrost Periglac. Process.18:17–19
      [Crossref][Google Scholar]
    43. 43.
      JorgensonMT2013. Thermokarst terrains.Glacial and Periglacial Geomorphology J Shroder313–24 San Diego, CA: Academic
      [Google Scholar]
    44. 44.
      LiljedahlAK,BoikeJ,DaanenRP,FedorovAN,FrostGV et al.2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology.Nat. Geosci.9:4312–18
      [Crossref][Google Scholar]
    45. 45.
      LewkowiczAG,WayRG.2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment.Nat. Commun.10:11329
      [Crossref][Google Scholar]
    46. 46.
      NitzeI,GrosseG,JonesBM,RomanovskyVE,BoikeJ.2018. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic.Nat. Commun.9:15423
      [Crossref][Google Scholar]
    47. 47.
      OlefeldtD,GoswamiS,GrosseG,HayesD,HugeliusG et al.2016. Circumpolar distribution and carbon storage of thermokarst landscapes.Nat. Commun.7:13043
      [Crossref][Google Scholar]
    48. 48.
      TuretskyMR,AbbottBW,JonesMC,AnthonyKW,OlefeldtD et al.2020. Carbon release through abrupt permafrost thaw.Nat. Geosci.13:2138–43
      [Crossref][Google Scholar]
    49. 49.
      CanadellJG,MontieroPMS,CostaMH,Cotrim da CunhaL,CoxPM et al.2021. Global carbon and other biogeochemical cycles and feedbacks.Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al.673–816 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    50. 50.
      SlaterAG,LawrenceDM.2013. Diagnosing present and future permafrost from climate models.J. Clim.26:155608–23
      [Crossref][Google Scholar]
    51. 51.
      Fox-KemperB,HewittHT,XiaoC,AðalgeirsdóttirG,DrijfhoutSS et al.2021. Ocean, cryosphere and sea level change.Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al.1211–362 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    52. 52.
      GasserT,KechiarM,CiaisP,BurkeEJ,KleinenT et al.2018. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release.Nat. Geosci.11:11830–35
      [Crossref][Google Scholar]
    53. 53.
      BrosiusLS,Walter AnthonyKM,GrosseG,ChantonJP,FarquharsonLM et al.2012. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation.J. Geophys. Res. A117:G1https://doi.org/10.1029/2011JG001810
      [Crossref][Google Scholar]
    54. 54.
      WalterKM,EdwardsME,GrosseG,ZimovSA,ChapinFS.2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation.Science318:5850633–36
      [Crossref][Google Scholar]
    55. 55.
      Masson-DelmotteV,ZhaiP,PörtnerH-O,RobertsDC,SkeaJ et al.2018.Global Warming of 1.5°C : Summary for Policy Makers Geneva: Intergov. Panel Clim. Change
      [Google Scholar]
    56. 56.
      Comyn-PlattE,HaymanG,HuntingfordC,ChadburnSE,BurkeEJ et al.2018. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks.Nat. Geosci.11:8568–73
      [Crossref][Google Scholar]
    57. 57.
      de VreseP,BrovkinV.2021. Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios.Nat. Commun.12:12688
      [Crossref][Google Scholar]
    58. 58.
      MacDougallAH,ZickfeldK,KnuttiR,MatthewsHD.2015. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings.Environ. Res. Lett.10:12125003
      [Crossref][Google Scholar]
    59. 59.
      NataliSM,HoldrenJP,RogersBM,TreharneR,DuffyPB et al.2021. Permafrost carbon feedbacks threaten global climate goals.PNAS118:21e2100163118
      [Crossref][Google Scholar]
    60. 60.
      MetcalfeDB,HermansTDG,AhlstrandJ,BeckerM,BerggrenM et al.2018. Patchy field sampling biases understanding of climate change impacts across the Arctic.Nat. Ecol. Evol.2:91443–48
      [Crossref][Google Scholar]
    61. 61.
      PallandtMMTA,KumarJ,MauritzM,SchuurEAG,VirkkalaA-M et al.2021. Representativeness assessment of the pan-Arctic eddy-covariance site network, and optimized future enhancements.Biogeosciences19:559–83
      [Crossref][Google Scholar]
    62. 62.
      BelsheEF,SchuurEAG,BolkerBM.2013. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.Ecol. Lett.16:101307–15
      [Crossref][Google Scholar]
    63. 63.
      McGuireA,ChristensenT,HayesD,HeroultA,EuskirchenE et al.2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions.Biogeosciences9:83185–3204
      [Crossref][Google Scholar]
    64. 64.
      NataliSM,WattsJD,RogersBM,PotterS,LudwigSM et al.2019. Large loss of CO2 in winter observed across the northern permafrost region.Nat. Clim. Change9:11852–57
      [Crossref][Google Scholar]
    65. 65.
      VirkkalaA-M,AaltoJ,RogersBM,TagessonT,TreatCC et al.2021. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties.Glob. Change Biol.27:174040–59
      [Crossref][Google Scholar]
    66. 66.
      WattsJD,NataliSM,MinionsC,RiskD,ArndtK et al.2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada.Environ. Res. Lett.16:8084051
      [Crossref][Google Scholar]
    67. 67.
      GagliotiBV,MannDH,JonesBM,PohlmanJW,KunzML,WoollerMJ.2014. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change: radiocarbon age-offsets.J. Geophys. Res. Biogeosci.119:81630–51
      [Crossref][Google Scholar]
    68. 68.
      TesiT,MuschitielloF,SmittenbergRH,JakobssonM,VonkJE et al.2016. Massive remobilization of permafrost carbon during post-glacial warming.Nat. Commun.7:113653
      [Crossref][Google Scholar]
    69. 69.
      MartensJ,WildB,PearceC,TesiT,AnderssonA et al.2019. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation.Glob. Biogeochem Cycles33:12–14
      [Crossref][Google Scholar]
    70. 70.
      KöhlerP,KnorrG,BardE.2014. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød.Nat. Commun.5:15520
      [Crossref][Google Scholar]
    71. 71.
      Walter AnthonyKM,ZimovSA,GrosseG,JonesMC,AnthonyPM et al.2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.Nature511:7510452–56
      [Crossref][Google Scholar]
    72. 72.
      HardenJW,SundquistET,StallardRF,MarkRK.1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet.Science258:50901921–24
      [Crossref][Google Scholar]
    73. 73.
      LindgrenA,HugeliusG,KuhryP.2018. Extensive loss of past permafrost carbon but a net accumulation into present-day soils.Nature560:7717219–22
      [Crossref][Google Scholar]
    74. 74.
      LoiselJ,YuZ,BeilmanDW,CamillP,AlmJ et al.2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation.Holocene24:91028–42
      [Crossref][Google Scholar]
    75. 75.
      TreatCC,KleinenT,BroothaertsN,DaltonAS,DommainR et al.2019. Widespread global peatland establishment and persistence over the last 130,000 y.PNAS116:114822–27
      [Crossref][Google Scholar]
    76. 76.
      TreatCC,JonesMC.2018. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years.Holocene28:6998–1010
      [Crossref][Google Scholar]
    77. 77.
      YuZ.2011. Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications.Holocene21:5761–74
      [Crossref][Google Scholar]
    78. 78.
      GanopolskiA,BrovkinV.2017. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity.Clim. Past13:121695–1716
      [Crossref][Google Scholar]
    79. 79.
      ShaverGR,CanadellJ,ChapinFS,GurevitchJ,HarteJ et al.2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis.Bioscience50:10871–82
      [Crossref][Google Scholar]
    80. 80.
      EuskirchenES,Bret-HarteMS,ShaverGR,EdgarCW,RomanovskyVE.2017. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska.Ecosystems20:5960–74
      [Crossref][Google Scholar]
    81. 81.
      LundM,LafleurPM,RouletNT,LindrothA,ChristensenTR et al.2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites.Glob. Change Biol.16:92436–48
      [Crossref][Google Scholar]
    82. 82.
      SchuurEAG,AndersenJK,AndreassenLM,BakerEH,BallingerTJ et al.2020. Permafrost carbon.State of the Climate in 2019 J Richter-Menge, ML DruckenmillerBull. Am. Meteorol. Soc.1018S239–86
      [Google Scholar]
    83. 83.
      BruhwilerL,ParmentierF-JW,CrillP,LeonardM,PalmerPI2021. The arctic carbon cycle and its response to changing climate.Curr. Clim. Change Rep.7:114–34
      [Crossref][Google Scholar]
    84. 84.
      GravenHD,KeelingRF,PiperSC,PatraPK,StephensBB et al.2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960.Science341:61501085–89
      [Crossref][Google Scholar]
    85. 85.
      ParazooNC,CommaneR,WofsySC,KovenCD,SweeneyC et al.2016. Detecting regional patterns of changing CO2 flux in Alaska.PNAS113:287733–38
      [Crossref][Google Scholar]
    86. 86.
      CommaneR,LindaasJ,BenmerguiJ,LuusKA,ChangRY-W et al.2017. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra.PNAS114:215361–66
      [Crossref][Google Scholar]
    87. 87.
      UeyamaM,IwataH,HarazonoY,EuskirchenES,OechelWC,ZonaD2013. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).Ecol. Appl.23:81798–1816
      [Crossref][Google Scholar]
    88. 88.
      O'NeillBC,KrieglerE,EbiKL,Kemp-BenedictE,RiahiK et al.2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century.Glob. Environ. Change42:169–80
      [Crossref][Google Scholar]
    89. 89.
      AbramN,GattusoJ-P,PrakashA,ChengL,ChidichimoMP et al.2019. Framing and context of the report.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al.73–129 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    90. 90.
      Gallego-SalaAV,CharmanDJ,BrewerS,PageSE,PrenticeIC et al.2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming.Nat. Clim Change.8:10907–13
      [Crossref][Google Scholar]
    91. 91.
      PlazaC,PegoraroE,BrachoR,CelisG,CrummerKG et al.2019. Direct observation of permafrost degradation and rapid soil carbon loss in tundra.Nat. Geosci.12:8627–31
      [Crossref][Google Scholar]
    92. 92.
      KnoblauchC,BeerC,LiebnerS,GrigorievMN,PfeifferE-M.2018. Methane production as key to the greenhouse gas budget of thawing permafrost.Nat. Clim. Change8:4309–12
      [Crossref][Google Scholar]
    93. 93.
      SchädelC,SchuurEAG,BrachoR,ElberlingB,KnoblauchC et al.2014. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data.Glob. Change Biol.20:2641–52
      [Crossref][Google Scholar]
    94. 94.
      PegoraroEF,MauritzME,OgleK,EbertCH,SchuurEAG.2020. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming.Glob. Change Biol.27:61293–1308
      [Crossref][Google Scholar]
    95. 95.
      SchädelC,BaderMK-F,SchuurEAG,BiasiC,BrachoR et al.2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils.Nat. Clim. Change.6:10950–53
      [Crossref][Google Scholar]
    96. 96.
      Myers-SmithIH,KerbyJT,PhoenixGK,BjerkeJW,EpsteinHE et al.2020. Complexity revealed in the greening of the Arctic.Nat. Clim. Change10:2106–17
      [Crossref][Google Scholar]
    97. 97.
      PearsonR,PhillipsS,LorantyM,BeckP,DamoulasT et al.2013. Shifts in Arctic vegetation and associated feedbacks under climate change.Nat. Clim. Change3:7673–77
      [Crossref][Google Scholar]
    98. 98.
      Westergaard-NielsenA,LundM,PedersenSH,SchmidtNM,KlostermanS et al.2017. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013.Ambio46:S139–52
      [Crossref][Google Scholar]
    99. 99.
      XuL,MyneniRB,ChapinFSIII,CallaghanTV,PinzonJE et al.2013. Temperature and vegetation seasonality diminishment over northern lands.Nat. Clim. Change3:6581–86
      [Crossref][Google Scholar]
    100. 100.
      MackMC,WalkerXJ,JohnstoneJF,AlexanderHD,MelvinAM et al.2021. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees.Science372:6539280–83
      [Crossref][Google Scholar]
    101. 101.
      SchuurEAG,VogelJG,CrummerKG,LeeH,SickmanJO,OsterkampTE.2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra.Nature459:7246556–59
      [Crossref][Google Scholar]
    102. 102.
      CoryR,WardC,CrumpB,KlingG.2014. Sunlight controls water column processing of carbon in arctic fresh waters.Science345:6199925–28
      [Crossref][Google Scholar]
    103. 103.
      KruseS,WieczorekM,JeltschF,HerzschuhU.2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model forLarix.Ecol. Model.338:101–21
      [Crossref][Google Scholar]
    104. 104.
      KruseS,GerdesA,KathNJ,EppLS,Stoof-LeichsenringKR et al.2019. Dispersal distances and migration rates at the arctic treeline in Siberia—a genetic and simulation-based study.Biogeosciences16:61211–24
      [Crossref][Google Scholar]
    105. 105.
      BhattUS,WalkerDA,RaynoldsMK,BieniekPA,EpsteinHE et al.2017. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables.Environ. Res. Lett.12:5055003
      [Crossref][Google Scholar]
    106. 106.
      LaraMJ,NitzeI,GrosseG,MartinP,McGuireAD.2018. Reduced arctic tundra productivity linked with landform and climate change interactions.Sci Rep8:12345
      [Crossref][Google Scholar]
    107. 107.
      MuCC,AbbottBW,ZhaoQ,SuH,WangSF et al.2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau.Geophys. Res. Lett.44:178945–52
      [Crossref][Google Scholar]
    108. 108.
      TreatCC,JonesMC,BrosiusL,GrosseG,Walter AnthonyK,FrolkingS2021. The role of wetland expansion and successional processes in methane emissions from northern wetlands during the Holocene.Quaternary Sci. Rev.257:106864
      [Crossref][Google Scholar]
    109. 109.
      SaunoisM,StavertAR,PoulterB,BousquetP,CanadellJG et al.2020. The global methane budget 2000–2017.Earth System Sci. Data12:31561–1623
      [Crossref][Google Scholar]
    110. 110.
      SweeneyC,DlugokenckyE,MillerCE,WofsyS,KarionA et al.2016. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature.Geophys. Res. Lett.43:126604–11
      [Crossref][Google Scholar]
    111. 111.
      Walter AnthonyK,DaanenR,AnthonyP,Schneider von DeimlingT,PingC-L et al.2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s.Nat. Geosci.9:9679–82
      [Crossref][Google Scholar]
    112. 112.
      EngramM,Walter AnthonyKM,SachsT,KohnertK,SerafimovichA et al.2020. Remote sensing northern lake methane ebullition.Nat. Clim. Change10:6511–17
      [Crossref][Google Scholar]
    113. 113.
      ZonaD,GioliB,CommaneR,LindaasJ,WofsySC et al.2016. Cold season emissions dominate the Arctic tundra methane budget.PNAS113:140–45
      [Crossref][Google Scholar]
    114. 114.
      KohnertK,SerafimovichA,MetzgerS,HartmannJ,SachsT.2017. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada.Sci. Rep.7:15828
      [Crossref][Google Scholar]
    115. 115.
      RuppelCD,KesslerJD.2016. The interaction of climate change and methane hydrates.Rev. Geophys.55:1126–68
      [Crossref][Google Scholar]
    116. 116.
      Walter AnthonyKM,AnthonyP,GrosseG,ChantonJ2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers.Nat. Geosci.5:6419–26
      [Crossref][Google Scholar]
    117. 117.
      ThorntonBF,WikM,CrillPM.2016. Double-counting challenges the accuracy of high-latitude methane inventories.Geophys. Res. Lett.43:2412,569–77
      [Crossref][Google Scholar]
    118. 118.
      ShakhovaN,SemiletovI,LeiferI,SergienkoV,SalyukA et al.2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf.Nat. Geosci.7:164–70
      [Crossref][Google Scholar]
    119. 119.
      BerchetA,BousquetP,PisonI,LocatelliR,ChevallierF et al.2016. Atmospheric constraints on the methane emissions from the East Siberian Shelf.Atmos. Chem. Phys.16:64147–57
      [Crossref][Google Scholar]
    120. 120.
      CrillPM,ThorntonBF.2017. Whither methane in the IPCC process?.Nat. Clim. Change7:10678–80
      [Crossref][Google Scholar]
    121. 121.
      SaunoisM,BousquetP,PoulterB,PeregonA,CiaisP et al.2016. The global methane budget 2000–2012.Earth System Sci. Data8:2697–751
      [Crossref][Google Scholar]
    122. 122.
      ZhangZ,ZimmermannNE,StenkeA,LiX,HodsonEL et al.2017. Emerging role of wetland methane emissions in driving 21st century climate change.PNAS114:369647–52
      [Crossref][Google Scholar]
    123. 123.
      KuhnMA,VarnerRK,BastvikenD,CrillP,MacIntyreS et al.2021. BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems.Earth System Sci. Data13:115151–89
      [Crossref][Google Scholar]
    124. 124.
      OverduinPP,Schneider von DeimlingT,MiesnerF,GrigorievMN,RuppelC et al.2019. Submarine Permafrost Map in the Arctic Modeled Using 1-D Transient Heat Flux (SuPerMAP).J. Geophys. Res. Oceans.124:63490–3507
      [Crossref][Google Scholar]
    125. 125.
      HeslopJK,Walter AnthonyKM,WinkelM,Sepulveda-JaureguiA,Martinez-CruzK et al.2020. A synthesis of methane dynamics in thermokarst lake environments.Earth-Sci. Rev.210:103365
      [Crossref][Google Scholar]
    126. 126.
      SteinbachJ,HolmstrandH,ShcherbakovaK,KosmachD,BrüchertV et al.2021. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf.PNAS118:10e2019672118
      [Crossref][Google Scholar]
    127. 127.
      KraevG,RivkinaE,VishnivetskayaT,BelonosovA,van HuisstedenJ et al.2019. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic.Geosciences9:267
      [Crossref][Google Scholar]
    128. 128.
      NeubauerSC.2021. Global warming potential is not an ecosystem property.Ecosystems24:2079–89
      [Crossref][Google Scholar]
    129. 129.
      NeubauerSC,MegonigalJP.2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems.Ecosystems18:61000–13
      [Crossref][Google Scholar]
    130. 130.
      FriedlingsteinP,O'SullivanM,JonesMW,AndrewRM,HauckJ et al.2020. Global Carbon Budget 2020.Earth Syst. Sci. Data12:43269–3340
      [Crossref][Google Scholar]
    131. 131.
      GilfillanD,MarlandG.2021. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017.Earth Syst. Sci. Data13:1667–80
      [Crossref][Google Scholar]
    132. 132.
      WhitemanG,HopeC,WadhamsP.2013. Vast costs of Arctic change.Nature499:7459401–3
      [Crossref][Google Scholar]
    133. 133.
      BogoyavlenskyV,BogoyavlenskyI,NikonovR,KarginaT,ChuvilinE et al.2021. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: results of the expedition and data processing.Geosciences11:271
      [Crossref][Google Scholar]
    134. 134.
      RuppelCD,HermanBM,BrothersLL,HartPE.2016. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints.Geochem. Geophys. Geosyst.17:114333–53
      [Crossref][Google Scholar]
    135. 135.
      KreplinHN,Santos FerreiraCS,DestouniG,KeesstraSD,SalvatiL,KalantariZ2021. Arctic wetland system dynamics under climate warming.WIREs Water8:4e1526
      [Crossref][Google Scholar]
    136. 136.
      WalvoordMA,StrieglRG.2021. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw.Front. Clim.3:730402
      [Crossref][Google Scholar]
    137. 137.
      MusterS,RothK,LangerM,LangeS,Cresto AleinaF et al.2017. PeRL: a circum-Arctic Permafrost Region Pond and Lake database.Earth System Sci. Data9:1317–48
      [Crossref][Google Scholar]
    138. 138.
      LentonTM,HeldH,KrieglerE,HallJW,LuchtW et al.2008. Tipping elements in the Earth's climate system.PNAS105:61786–93
      [Crossref][Google Scholar]
    139. 139.
      BurkeKD,WilliamsJW,ChandlerMA,HaywoodAM,LuntDJ,Otto-BliesnerBL.2018. Pliocene and Eocene provide best analogs for near-future climates.PNAS115:5213288–93
      [Crossref][Google Scholar]
    140. 140.
      MackMC,Bret-HarteMS,HollingsworthTN,JandtRR,SchuurEAG et al.2011. Carbon loss from an unprecedented Arctic tundra wildfire.Nature475:7357489–92
      [Crossref][Google Scholar]
    141. 141.
      TalucciAC,LorantyMM,AlexanderHD.2022. Siberian taiga and tundra fire regimes from 2001–2020.Environ. Res. Lett.17:2025001
      [Crossref][Google Scholar]
    142. 142.
      GibsonCM,ChasmerLE,ThompsonDK,QuintonWL,FlanniganMD,OlefeldtD.2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands.Nat. Commun.9:13041
      [Crossref][Google Scholar]
    143. 143.
      OlsonDM,DinersteinE,WikramanayakeED,BurgessND,PowellGVN et al.2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.BioScience51:11933–38
      [Crossref][Google Scholar]
    144. 144.
      BrownJ,FerriansO,HeginbottomJA,MelnikovES.2002.Circum-arctic map of permafrost and ground-ice conditions, Version 2 (GGD318) National Snow and Ice Center Dataset GGD318: CIRES, Univ. Colo. Boulder: accessed Aug. 7, 2022.https://doi.org/10.7265/skbg-kf16
      [Crossref][Google Scholar]
    145. 145.
      MacDougallAH,KnuttiR.2016. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach.Biogeosciences13:72123–36
      [Crossref][Google Scholar]
    146. 146.
      BurkeEJ,ChadburnSE,EkiciA.2017. A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions.Geosci. Model Dev.10:2959–75
      [Crossref][Google Scholar]
    147. 147.
      KleinenT,BrovkinV.2018. Pathway-dependent fate of permafrost region carbon.Environ. Res. Lett.13:9094001
      [Crossref][Google Scholar]
    148. 148.
      KeuperF,WildB,KummuM,BeerC,Blume-WerryG et al.2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming.Nat. Geosci.13:8560–65
      [Crossref][Google Scholar]
    149. 149.
      KovenCD,SchuurEAG,SchädelC,BohnTJ,BurkeEJ et al.2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback.Philos. Trans. R. Soc. A.373:20140423
      [Crossref][Google Scholar]
    /content/journals/10.1146/annurev-environ-012220-011847
    Loading
    Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic
    Annual Review of Environment and Resources47, 343 (2022);https://doi.org/10.1146/annurev-environ-012220-011847
    /content/journals/10.1146/annurev-environ-012220-011847
    /content/journals/10.1146/annurev-environ-012220-011847
    Loading

    Data & Media loading...

    Supplemental Material

    • Supplemental Appendix

    Most Read This Month

    Article
    content/journals/energy
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-environ-012220-011847
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1.
      MeredithM,SommerkornM,CassottaS,DerksenC,EkaykinA et al.2019. Polar regions.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al.203–320 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    2. 2.
      ChurchJA,ClarkPU,CazenaveA,GregoryJM,JevrejevaS et al.2013. Sea level change.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al.1137–1216 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    3. 3.
      SchuurEAG,McGuireAD,SchädelC,GrosseG,HardenJW et al.2015. Climate change and the permafrost carbon feedback.Nature520:7546171–79
      [Crossref][Google Scholar]
    4. 4.
      BiskabornBK,SmithSL,NoetzliJ,MatthesH,VieiraG et al.2019. Permafrost is warming at a global scale.Nat. Commun.10:1264
      [Crossref][Google Scholar]
    5. 5.
      SchuurEAG,MackMC.2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services.Annu. Rev. Ecol. Evol. Syst.49:279–301
      [Crossref][Google Scholar]
    6. 6.
      SjöbergY,SiewertMB,RudyACA,PaquetteM,BouchardF et al.2020. Hot trends and impact in permafrost science.Permafrost Periglac. Process.31:4461–71
      [Crossref][Google Scholar]
    7. 7.
      HarrisSA,FrenchHM,HeginbottomJA,JohnstonGH,LadanyiB et al.1988.Glossary of permafrost and related ground-ice terms Tech. Memo. 142 Natl. Res. Counc. Can. Ottawa, Can:https://globalcryospherewatch.org/reference/glossary_docs/permafrost_and_ground_terms_canada.pdf
      [Google Scholar]
    8. 8.
      GruberS.2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation.Cryosphere6:1221–33
      [Crossref][Google Scholar]
    9. 9.
      ObuJ,WestermannS,BartschA,BerdnikovN,ChristiansenHH et al.2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale.Earth-Sci. Rev.193:299–316
      [Crossref][Google Scholar]
    10. 10.
      GrosseG,HardenJ,TuretskyM,McGuireAD,CamillP et al.2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance.J. Geophys. Res.-Biogeo.116:G4https://doi.org/10.1029/2010JG001507
      [Crossref][Google Scholar]
    11. 11.
      KanevskiyM,ShurY,JorgensonMT,PingC-L,MichaelsonGJ et al.2013. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska.Cold Regions Sci. Technol.85:56–70
      [Crossref][Google Scholar]
    12. 12.
      LarsenJN,AnisimovOA,ConstableA,HollowedAB,MaynardN et al.2014. 2014: Polar regions.Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, KJ Mach, TE Bilir, M Chatterjee, et al.1567–1612 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    13. 13.
      PendakurK.2017. Northern territories.Climate Risks & Adaptation Practices For the Canadian Transportation Sector 2016 K Palko, DS Lemmen27–64 Ottawa: Gov. Can.
      [Google Scholar]
    14. 14.
      SchuurEAG,BockheimJ,CanadellJG,EuskirchenE,FieldCB et al.2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle.BioScience58:8701–14
      [Crossref][Google Scholar]
    15. 15.
      GorhamE.1991. Northern peatlands: role in the carbon-cycle and probable responses to climatic warming.Ecol. Appl.1:2182–95
      [Crossref][Google Scholar]
    16. 16.
      ZimovSA,SchuurEAG,ChapinFS.2006. Permafrost and the global carbon budget.Science312:57801612–13
      [Crossref][Google Scholar]
    17. 17.
      PingCL,MichaelsonGJ,JorgensonMT,KimbleJM,EpsteinH et al.2008. High stocks of soil organic carbon in the North American Arctic region.Nat. Geosci.1:9615–19
      [Crossref][Google Scholar]
    18. 18.
      SchuurEAG,AbbottBW,BowdenWB,BrovkinV,CamillP et al.2013. Expert assessment of vulnerability of permafrost carbon to climate change.Clim. Change119:2359–74
      [Crossref][Google Scholar]
    19. 19.
      HugeliusG,StraussJ,ZubrzyckiS,HardenJW,SchuurEAG et al.2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps.Biogeosciences11:236573–93
      [Crossref][Google Scholar]
    20. 20.
      TarnocaiC,CanadellJG,MazhitovaG,SchuurEAG,KuhryP.2009. Soil organic carbon pools in the northern circumpolar permafrost region.Glob. Biogeochem. Cycles.23:GB2023
      [Crossref][Google Scholar]
    21. 21.
      HugeliusG,LoiselJ,ChadburnS,JacksonRB,JonesM et al.2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw.PNAS117:3420438–46
      [Crossref][Google Scholar]
    22. 22.
      MishraU,HugeliusG,ShelefE,YangY,StraussJ et al.2021. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks.Sci. Adv.7:9eaaz5236
      [Crossref][Google Scholar]
    23. 23.
      StraussJ,SchirrmeisterL,GrosseG,FortierD,HugeliusG et al.2017. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability.Earth-Sci. Rev.172:75–86
      [Crossref][Google Scholar]
    24. 24.
      SchuurEAG,McGuireAD,RomanovskyVE,SchadelC,MackM2018. Arctic and boreal carbon.Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report N Cavallaro, G Shrestha, R Birdsey, MA Mayes, RG Najjar, et al.428–68 Washington, DC: U.S. Glob. Change Res. Progr.
      [Google Scholar]
    25. 25.
      SayediSS,AbbottBW,ThorntonBF,FrederickJM,VonkJE et al.2020. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment.Environ. Res. Lett.15:12124075
      [Crossref][Google Scholar]
    26. 26.
      Schneider von DeimlingT,GrosseG,StraussJ,SchirrmeisterL,MorgensternA et al.2015. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity.Biogeosciences12:113469–88
      [Crossref][Google Scholar]
    27. 27.
      Walter AnthonyK,Schneider von DeimlingT,NitzeI,FrolkingS,EmondA et al.2018. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes.Nat. Commun.9:13262
      [Crossref][Google Scholar]
    28. 28.
      SchuurEAG,AbbottB,NetworkPC2011. High risk of permafrost thaw.Nature480:737532–33
      [Crossref][Google Scholar]
    29. 29.
      McGuireAD,KovenC,LawrenceDM,CleinJS,XiaJ et al.2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009.Global Biogeochem. Cycles.30:71015–37
      [Crossref][Google Scholar]
    30. 30.
      McGuireAD,LawrenceDM,KovenC,CleinJS,BurkeE et al.2018. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change.PNAS115:153882–87
      [Crossref][Google Scholar]
    31. 31.
      QianHF,JosephR,ZengN2010. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections.Glob. Change Biol.16:2641–56
      [Crossref][Google Scholar]
    32. 32.
      KovenC,RingevalB,FriedlingsteinP,CiaisP,CaduleP et al.2011. Permafrost carbon-climate feedbacks accelerate global warming.PNAS108:3614769–74
      [Crossref][Google Scholar]
    33. 33.
      SchaeferK,LantuitH,RomanovskyVE,SchuurEAG,WittR.2014. The impact of the permafrost carbon feedback on global climate.Environ. Res. Lett.9:8085003
      [Crossref][Google Scholar]
    34. 34.
      AndresenCG,LawrenceDM,WilsonCJ,McGuireAD,KovenC et al.2020. Soil moisture and hydrology projections of the permafrost region—a model intercomparison.Cryosphere14:2445–59
      [Crossref][Google Scholar]
    35. 35.
      LawrenceDM,KovenCD,SwensonSC,RileyWJ,SlaterAG.2015. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions.Environ. Res. Lett.10:9094011
      [Crossref][Google Scholar]
    36. 36.
      O'NeillHB,WolfeSA,DuchesneC.2019. New ground ice maps for Canada using a paleogeographic modelling approach.The Cryosphere13:3753–73
      [Crossref][Google Scholar]
    37. 37.
      ZhangT,HeginbottomJA,BarryRG,BrownJ.2000. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere.Polar Geogr24:2126–31
      [Crossref][Google Scholar]
    38. 38.
      KokeljS,JorgensonM.2013. Advances in thermokarst research.Permafrost Periglac. Process.24:2108–19
      [Crossref][Google Scholar]
    39. 39.
      RodenhizerH,LedmanJ,MauritzM,NataliSM,PegoraroE et al.2020. Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment.J. Geophys. Res. Biogeosci.125:6e2019JG005528
      [Crossref][Google Scholar]
    40. 40.
      JorgensonMT,RomanovskyV,HardenJ,ShurY,O'DonnellJ et al.2010. Resilience and vulnerability of permafrost to climate change.Can. J. Forest Res.40:71219–36
      [Crossref][Google Scholar]
    41. 41.
      NitzbonJ,WestermannS,LangerM,MartinLCP,StraussJ et al.2020. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate.Nat. Commun.11:2201
      [Crossref][Google Scholar]
    42. 42.
      ShurYL,JorgensonMT.2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems.Permafrost Periglac. Process.18:17–19
      [Crossref][Google Scholar]
    43. 43.
      JorgensonMT2013. Thermokarst terrains.Glacial and Periglacial Geomorphology J Shroder313–24 San Diego, CA: Academic
      [Google Scholar]
    44. 44.
      LiljedahlAK,BoikeJ,DaanenRP,FedorovAN,FrostGV et al.2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology.Nat. Geosci.9:4312–18
      [Crossref][Google Scholar]
    45. 45.
      LewkowiczAG,WayRG.2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment.Nat. Commun.10:11329
      [Crossref][Google Scholar]
    46. 46.
      NitzeI,GrosseG,JonesBM,RomanovskyVE,BoikeJ.2018. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic.Nat. Commun.9:15423
      [Crossref][Google Scholar]
    47. 47.
      OlefeldtD,GoswamiS,GrosseG,HayesD,HugeliusG et al.2016. Circumpolar distribution and carbon storage of thermokarst landscapes.Nat. Commun.7:13043
      [Crossref][Google Scholar]
    48. 48.
      TuretskyMR,AbbottBW,JonesMC,AnthonyKW,OlefeldtD et al.2020. Carbon release through abrupt permafrost thaw.Nat. Geosci.13:2138–43
      [Crossref][Google Scholar]
    49. 49.
      CanadellJG,MontieroPMS,CostaMH,Cotrim da CunhaL,CoxPM et al.2021. Global carbon and other biogeochemical cycles and feedbacks.Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al.673–816 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    50. 50.
      SlaterAG,LawrenceDM.2013. Diagnosing present and future permafrost from climate models.J. Clim.26:155608–23
      [Crossref][Google Scholar]
    51. 51.
      Fox-KemperB,HewittHT,XiaoC,AðalgeirsdóttirG,DrijfhoutSS et al.2021. Ocean, cryosphere and sea level change.Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al.1211–362 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    52. 52.
      GasserT,KechiarM,CiaisP,BurkeEJ,KleinenT et al.2018. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release.Nat. Geosci.11:11830–35
      [Crossref][Google Scholar]
    53. 53.
      BrosiusLS,Walter AnthonyKM,GrosseG,ChantonJP,FarquharsonLM et al.2012. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation.J. Geophys. Res. A117:G1https://doi.org/10.1029/2011JG001810
      [Crossref][Google Scholar]
    54. 54.
      WalterKM,EdwardsME,GrosseG,ZimovSA,ChapinFS.2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation.Science318:5850633–36
      [Crossref][Google Scholar]
    55. 55.
      Masson-DelmotteV,ZhaiP,PörtnerH-O,RobertsDC,SkeaJ et al.2018.Global Warming of 1.5°C : Summary for Policy Makers Geneva: Intergov. Panel Clim. Change
      [Google Scholar]
    56. 56.
      Comyn-PlattE,HaymanG,HuntingfordC,ChadburnSE,BurkeEJ et al.2018. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks.Nat. Geosci.11:8568–73
      [Crossref][Google Scholar]
    57. 57.
      de VreseP,BrovkinV.2021. Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios.Nat. Commun.12:12688
      [Crossref][Google Scholar]
    58. 58.
      MacDougallAH,ZickfeldK,KnuttiR,MatthewsHD.2015. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings.Environ. Res. Lett.10:12125003
      [Crossref][Google Scholar]
    59. 59.
      NataliSM,HoldrenJP,RogersBM,TreharneR,DuffyPB et al.2021. Permafrost carbon feedbacks threaten global climate goals.PNAS118:21e2100163118
      [Crossref][Google Scholar]
    60. 60.
      MetcalfeDB,HermansTDG,AhlstrandJ,BeckerM,BerggrenM et al.2018. Patchy field sampling biases understanding of climate change impacts across the Arctic.Nat. Ecol. Evol.2:91443–48
      [Crossref][Google Scholar]
    61. 61.
      PallandtMMTA,KumarJ,MauritzM,SchuurEAG,VirkkalaA-M et al.2021. Representativeness assessment of the pan-Arctic eddy-covariance site network, and optimized future enhancements.Biogeosciences19:559–83
      [Crossref][Google Scholar]
    62. 62.
      BelsheEF,SchuurEAG,BolkerBM.2013. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.Ecol. Lett.16:101307–15
      [Crossref][Google Scholar]
    63. 63.
      McGuireA,ChristensenT,HayesD,HeroultA,EuskirchenE et al.2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions.Biogeosciences9:83185–3204
      [Crossref][Google Scholar]
    64. 64.
      NataliSM,WattsJD,RogersBM,PotterS,LudwigSM et al.2019. Large loss of CO2 in winter observed across the northern permafrost region.Nat. Clim. Change9:11852–57
      [Crossref][Google Scholar]
    65. 65.
      VirkkalaA-M,AaltoJ,RogersBM,TagessonT,TreatCC et al.2021. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties.Glob. Change Biol.27:174040–59
      [Crossref][Google Scholar]
    66. 66.
      WattsJD,NataliSM,MinionsC,RiskD,ArndtK et al.2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada.Environ. Res. Lett.16:8084051
      [Crossref][Google Scholar]
    67. 67.
      GagliotiBV,MannDH,JonesBM,PohlmanJW,KunzML,WoollerMJ.2014. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change: radiocarbon age-offsets.J. Geophys. Res. Biogeosci.119:81630–51
      [Crossref][Google Scholar]
    68. 68.
      TesiT,MuschitielloF,SmittenbergRH,JakobssonM,VonkJE et al.2016. Massive remobilization of permafrost carbon during post-glacial warming.Nat. Commun.7:113653
      [Crossref][Google Scholar]
    69. 69.
      MartensJ,WildB,PearceC,TesiT,AnderssonA et al.2019. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation.Glob. Biogeochem Cycles33:12–14
      [Crossref][Google Scholar]
    70. 70.
      KöhlerP,KnorrG,BardE.2014. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød.Nat. Commun.5:15520
      [Crossref][Google Scholar]
    71. 71.
      Walter AnthonyKM,ZimovSA,GrosseG,JonesMC,AnthonyPM et al.2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.Nature511:7510452–56
      [Crossref][Google Scholar]
    72. 72.
      HardenJW,SundquistET,StallardRF,MarkRK.1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet.Science258:50901921–24
      [Crossref][Google Scholar]
    73. 73.
      LindgrenA,HugeliusG,KuhryP.2018. Extensive loss of past permafrost carbon but a net accumulation into present-day soils.Nature560:7717219–22
      [Crossref][Google Scholar]
    74. 74.
      LoiselJ,YuZ,BeilmanDW,CamillP,AlmJ et al.2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation.Holocene24:91028–42
      [Crossref][Google Scholar]
    75. 75.
      TreatCC,KleinenT,BroothaertsN,DaltonAS,DommainR et al.2019. Widespread global peatland establishment and persistence over the last 130,000 y.PNAS116:114822–27
      [Crossref][Google Scholar]
    76. 76.
      TreatCC,JonesMC.2018. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years.Holocene28:6998–1010
      [Crossref][Google Scholar]
    77. 77.
      YuZ.2011. Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications.Holocene21:5761–74
      [Crossref][Google Scholar]
    78. 78.
      GanopolskiA,BrovkinV.2017. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity.Clim. Past13:121695–1716
      [Crossref][Google Scholar]
    79. 79.
      ShaverGR,CanadellJ,ChapinFS,GurevitchJ,HarteJ et al.2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis.Bioscience50:10871–82
      [Crossref][Google Scholar]
    80. 80.
      EuskirchenES,Bret-HarteMS,ShaverGR,EdgarCW,RomanovskyVE.2017. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska.Ecosystems20:5960–74
      [Crossref][Google Scholar]
    81. 81.
      LundM,LafleurPM,RouletNT,LindrothA,ChristensenTR et al.2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites.Glob. Change Biol.16:92436–48
      [Crossref][Google Scholar]
    82. 82.
      SchuurEAG,AndersenJK,AndreassenLM,BakerEH,BallingerTJ et al.2020. Permafrost carbon.State of the Climate in 2019 J Richter-Menge, ML DruckenmillerBull. Am. Meteorol. Soc.1018S239–86
      [Google Scholar]
    83. 83.
      BruhwilerL,ParmentierF-JW,CrillP,LeonardM,PalmerPI2021. The arctic carbon cycle and its response to changing climate.Curr. Clim. Change Rep.7:114–34
      [Crossref][Google Scholar]
    84. 84.
      GravenHD,KeelingRF,PiperSC,PatraPK,StephensBB et al.2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960.Science341:61501085–89
      [Crossref][Google Scholar]
    85. 85.
      ParazooNC,CommaneR,WofsySC,KovenCD,SweeneyC et al.2016. Detecting regional patterns of changing CO2 flux in Alaska.PNAS113:287733–38
      [Crossref][Google Scholar]
    86. 86.
      CommaneR,LindaasJ,BenmerguiJ,LuusKA,ChangRY-W et al.2017. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra.PNAS114:215361–66
      [Crossref][Google Scholar]
    87. 87.
      UeyamaM,IwataH,HarazonoY,EuskirchenES,OechelWC,ZonaD2013. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).Ecol. Appl.23:81798–1816
      [Crossref][Google Scholar]
    88. 88.
      O'NeillBC,KrieglerE,EbiKL,Kemp-BenedictE,RiahiK et al.2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century.Glob. Environ. Change42:169–80
      [Crossref][Google Scholar]
    89. 89.
      AbramN,GattusoJ-P,PrakashA,ChengL,ChidichimoMP et al.2019. Framing and context of the report.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al.73–129 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    90. 90.
      Gallego-SalaAV,CharmanDJ,BrewerS,PageSE,PrenticeIC et al.2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming.Nat. Clim Change.8:10907–13
      [Crossref][Google Scholar]
    91. 91.
      PlazaC,PegoraroE,BrachoR,CelisG,CrummerKG et al.2019. Direct observation of permafrost degradation and rapid soil carbon loss in tundra.Nat. Geosci.12:8627–31
      [Crossref][Google Scholar]
    92. 92.
      KnoblauchC,BeerC,LiebnerS,GrigorievMN,PfeifferE-M.2018. Methane production as key to the greenhouse gas budget of thawing permafrost.Nat. Clim. Change8:4309–12
      [Crossref][Google Scholar]
    93. 93.
      SchädelC,SchuurEAG,BrachoR,ElberlingB,KnoblauchC et al.2014. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data.Glob. Change Biol.20:2641–52
      [Crossref][Google Scholar]
    94. 94.
      PegoraroEF,MauritzME,OgleK,EbertCH,SchuurEAG.2020. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming.Glob. Change Biol.27:61293–1308
      [Crossref][Google Scholar]
    95. 95.
      SchädelC,BaderMK-F,SchuurEAG,BiasiC,BrachoR et al.2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils.Nat. Clim. Change.6:10950–53
      [Crossref][Google Scholar]
    96. 96.
      Myers-SmithIH,KerbyJT,PhoenixGK,BjerkeJW,EpsteinHE et al.2020. Complexity revealed in the greening of the Arctic.Nat. Clim. Change10:2106–17
      [Crossref][Google Scholar]
    97. 97.
      PearsonR,PhillipsS,LorantyM,BeckP,DamoulasT et al.2013. Shifts in Arctic vegetation and associated feedbacks under climate change.Nat. Clim. Change3:7673–77
      [Crossref][Google Scholar]
    98. 98.
      Westergaard-NielsenA,LundM,PedersenSH,SchmidtNM,KlostermanS et al.2017. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013.Ambio46:S139–52
      [Crossref][Google Scholar]
    99. 99.
      XuL,MyneniRB,ChapinFSIII,CallaghanTV,PinzonJE et al.2013. Temperature and vegetation seasonality diminishment over northern lands.Nat. Clim. Change3:6581–86
      [Crossref][Google Scholar]
    100. 100.
      MackMC,WalkerXJ,JohnstoneJF,AlexanderHD,MelvinAM et al.2021. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees.Science372:6539280–83
      [Crossref][Google Scholar]
    101. 101.
      SchuurEAG,VogelJG,CrummerKG,LeeH,SickmanJO,OsterkampTE.2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra.Nature459:7246556–59
      [Crossref][Google Scholar]
    102. 102.
      CoryR,WardC,CrumpB,KlingG.2014. Sunlight controls water column processing of carbon in arctic fresh waters.Science345:6199925–28
      [Crossref][Google Scholar]
    103. 103.
      KruseS,WieczorekM,JeltschF,HerzschuhU.2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model forLarix.Ecol. Model.338:101–21
      [Crossref][Google Scholar]
    104. 104.
      KruseS,GerdesA,KathNJ,EppLS,Stoof-LeichsenringKR et al.2019. Dispersal distances and migration rates at the arctic treeline in Siberia—a genetic and simulation-based study.Biogeosciences16:61211–24
      [Crossref][Google Scholar]
    105. 105.
      BhattUS,WalkerDA,RaynoldsMK,BieniekPA,EpsteinHE et al.2017. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables.Environ. Res. Lett.12:5055003
      [Crossref][Google Scholar]
    106. 106.
      LaraMJ,NitzeI,GrosseG,MartinP,McGuireAD.2018. Reduced arctic tundra productivity linked with landform and climate change interactions.Sci Rep8:12345
      [Crossref][Google Scholar]
    107. 107.
      MuCC,AbbottBW,ZhaoQ,SuH,WangSF et al.2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau.Geophys. Res. Lett.44:178945–52
      [Crossref][Google Scholar]
    108. 108.
      TreatCC,JonesMC,BrosiusL,GrosseG,Walter AnthonyK,FrolkingS2021. The role of wetland expansion and successional processes in methane emissions from northern wetlands during the Holocene.Quaternary Sci. Rev.257:106864
      [Crossref][Google Scholar]
    109. 109.
      SaunoisM,StavertAR,PoulterB,BousquetP,CanadellJG et al.2020. The global methane budget 2000–2017.Earth System Sci. Data12:31561–1623
      [Crossref][Google Scholar]
    110. 110.
      SweeneyC,DlugokenckyE,MillerCE,WofsyS,KarionA et al.2016. No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature.Geophys. Res. Lett.43:126604–11
      [Crossref][Google Scholar]
    111. 111.
      Walter AnthonyK,DaanenR,AnthonyP,Schneider von DeimlingT,PingC-L et al.2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s.Nat. Geosci.9:9679–82
      [Crossref][Google Scholar]
    112. 112.
      EngramM,Walter AnthonyKM,SachsT,KohnertK,SerafimovichA et al.2020. Remote sensing northern lake methane ebullition.Nat. Clim. Change10:6511–17
      [Crossref][Google Scholar]
    113. 113.
      ZonaD,GioliB,CommaneR,LindaasJ,WofsySC et al.2016. Cold season emissions dominate the Arctic tundra methane budget.PNAS113:140–45
      [Crossref][Google Scholar]
    114. 114.
      KohnertK,SerafimovichA,MetzgerS,HartmannJ,SachsT.2017. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada.Sci. Rep.7:15828
      [Crossref][Google Scholar]
    115. 115.
      RuppelCD,KesslerJD.2016. The interaction of climate change and methane hydrates.Rev. Geophys.55:1126–68
      [Crossref][Google Scholar]
    116. 116.
      Walter AnthonyKM,AnthonyP,GrosseG,ChantonJ2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers.Nat. Geosci.5:6419–26
      [Crossref][Google Scholar]
    117. 117.
      ThorntonBF,WikM,CrillPM.2016. Double-counting challenges the accuracy of high-latitude methane inventories.Geophys. Res. Lett.43:2412,569–77
      [Crossref][Google Scholar]
    118. 118.
      ShakhovaN,SemiletovI,LeiferI,SergienkoV,SalyukA et al.2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf.Nat. Geosci.7:164–70
      [Crossref][Google Scholar]
    119. 119.
      BerchetA,BousquetP,PisonI,LocatelliR,ChevallierF et al.2016. Atmospheric constraints on the methane emissions from the East Siberian Shelf.Atmos. Chem. Phys.16:64147–57
      [Crossref][Google Scholar]
    120. 120.
      CrillPM,ThorntonBF.2017. Whither methane in the IPCC process?.Nat. Clim. Change7:10678–80
      [Crossref][Google Scholar]
    121. 121.
      SaunoisM,BousquetP,PoulterB,PeregonA,CiaisP et al.2016. The global methane budget 2000–2012.Earth System Sci. Data8:2697–751
      [Crossref][Google Scholar]
    122. 122.
      ZhangZ,ZimmermannNE,StenkeA,LiX,HodsonEL et al.2017. Emerging role of wetland methane emissions in driving 21st century climate change.PNAS114:369647–52
      [Crossref][Google Scholar]
    123. 123.
      KuhnMA,VarnerRK,BastvikenD,CrillP,MacIntyreS et al.2021. BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems.Earth System Sci. Data13:115151–89
      [Crossref][Google Scholar]
    124. 124.
      OverduinPP,Schneider von DeimlingT,MiesnerF,GrigorievMN,RuppelC et al.2019. Submarine Permafrost Map in the Arctic Modeled Using 1-D Transient Heat Flux (SuPerMAP).J. Geophys. Res. Oceans.124:63490–3507
      [Crossref][Google Scholar]
    125. 125.
      HeslopJK,Walter AnthonyKM,WinkelM,Sepulveda-JaureguiA,Martinez-CruzK et al.2020. A synthesis of methane dynamics in thermokarst lake environments.Earth-Sci. Rev.210:103365
      [Crossref][Google Scholar]
    126. 126.
      SteinbachJ,HolmstrandH,ShcherbakovaK,KosmachD,BrüchertV et al.2021. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf.PNAS118:10e2019672118
      [Crossref][Google Scholar]
    127. 127.
      KraevG,RivkinaE,VishnivetskayaT,BelonosovA,van HuisstedenJ et al.2019. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic.Geosciences9:267
      [Crossref][Google Scholar]
    128. 128.
      NeubauerSC.2021. Global warming potential is not an ecosystem property.Ecosystems24:2079–89
      [Crossref][Google Scholar]
    129. 129.
      NeubauerSC,MegonigalJP.2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems.Ecosystems18:61000–13
      [Crossref][Google Scholar]
    130. 130.
      FriedlingsteinP,O'SullivanM,JonesMW,AndrewRM,HauckJ et al.2020. Global Carbon Budget 2020.Earth Syst. Sci. Data12:43269–3340
      [Crossref][Google Scholar]
    131. 131.
      GilfillanD,MarlandG.2021. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017.Earth Syst. Sci. Data13:1667–80
      [Crossref][Google Scholar]
    132. 132.
      WhitemanG,HopeC,WadhamsP.2013. Vast costs of Arctic change.Nature499:7459401–3
      [Crossref][Google Scholar]
    133. 133.
      BogoyavlenskyV,BogoyavlenskyI,NikonovR,KarginaT,ChuvilinE et al.2021. New catastrophic gas blowout and giant crater on the Yamal Peninsula in 2020: results of the expedition and data processing.Geosciences11:271
      [Crossref][Google Scholar]
    134. 134.
      RuppelCD,HermanBM,BrothersLL,HartPE.2016. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints.Geochem. Geophys. Geosyst.17:114333–53
      [Crossref][Google Scholar]
    135. 135.
      KreplinHN,Santos FerreiraCS,DestouniG,KeesstraSD,SalvatiL,KalantariZ2021. Arctic wetland system dynamics under climate warming.WIREs Water8:4e1526
      [Crossref][Google Scholar]
    136. 136.
      WalvoordMA,StrieglRG.2021. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw.Front. Clim.3:730402
      [Crossref][Google Scholar]
    137. 137.
      MusterS,RothK,LangerM,LangeS,Cresto AleinaF et al.2017. PeRL: a circum-Arctic Permafrost Region Pond and Lake database.Earth System Sci. Data9:1317–48
      [Crossref][Google Scholar]
    138. 138.
      LentonTM,HeldH,KrieglerE,HallJW,LuchtW et al.2008. Tipping elements in the Earth's climate system.PNAS105:61786–93
      [Crossref][Google Scholar]
    139. 139.
      BurkeKD,WilliamsJW,ChandlerMA,HaywoodAM,LuntDJ,Otto-BliesnerBL.2018. Pliocene and Eocene provide best analogs for near-future climates.PNAS115:5213288–93
      [Crossref][Google Scholar]
    140. 140.
      MackMC,Bret-HarteMS,HollingsworthTN,JandtRR,SchuurEAG et al.2011. Carbon loss from an unprecedented Arctic tundra wildfire.Nature475:7357489–92
      [Crossref][Google Scholar]
    141. 141.
      TalucciAC,LorantyMM,AlexanderHD.2022. Siberian taiga and tundra fire regimes from 2001–2020.Environ. Res. Lett.17:2025001
      [Crossref][Google Scholar]
    142. 142.
      GibsonCM,ChasmerLE,ThompsonDK,QuintonWL,FlanniganMD,OlefeldtD.2018. Wildfire as a major driver of recent permafrost thaw in boreal peatlands.Nat. Commun.9:13041
      [Crossref][Google Scholar]
    143. 143.
      OlsonDM,DinersteinE,WikramanayakeED,BurgessND,PowellGVN et al.2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.BioScience51:11933–38
      [Crossref][Google Scholar]
    144. 144.
      BrownJ,FerriansO,HeginbottomJA,MelnikovES.2002.Circum-arctic map of permafrost and ground-ice conditions, Version 2 (GGD318) National Snow and Ice Center Dataset GGD318: CIRES, Univ. Colo. Boulder: accessed Aug. 7, 2022.https://doi.org/10.7265/skbg-kf16
      [Crossref][Google Scholar]
    145. 145.
      MacDougallAH,KnuttiR.2016. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach.Biogeosciences13:72123–36
      [Crossref][Google Scholar]
    146. 146.
      BurkeEJ,ChadburnSE,EkiciA.2017. A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions.Geosci. Model Dev.10:2959–75
      [Crossref][Google Scholar]
    147. 147.
      KleinenT,BrovkinV.2018. Pathway-dependent fate of permafrost region carbon.Environ. Res. Lett.13:9094001
      [Crossref][Google Scholar]
    148. 148.
      KeuperF,WildB,KummuM,BeerC,Blume-WerryG et al.2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming.Nat. Geosci.13:8560–65
      [Crossref][Google Scholar]
    149. 149.
      KovenCD,SchuurEAG,SchädelC,BohnTJ,BurkeEJ et al.2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback.Philos. Trans. R. Soc. A.373:20140423
      [Crossref][Google Scholar]

    knowable magazine Teen Brain Bootcamp Special

    Read the latest from
    Knowable Magazine

    knowable magazine from Annual Reviews



    Climate Resource Center, Article Collection from Annual Reviews





    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-environ-012220-011847
    10.1146/annurev-environ-012220-011847
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp