Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas

Abstract

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae:Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates.Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies ofMagicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeonMagicicada life cycles. New ecological studies have supported and questioned the role of prime numbers inMagicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution ofMagicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions betweenMagicicada and their fungal parasites and bacterial endosymbionts.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-ento-072121-061108
    2022-01-07
    2026-02-17

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ento/67/1/annurev-ento-072121-061108.html?itemId=/content/journals/10.1146/annurev-ento-072121-061108&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. 
      AlexanderRD.1975. Natural selection and specialized chorusing behavior in acoustical insects.Insects, Science, and Society D Pimentel35–77 New York: Academic
      [Google Scholar]
    2. 2. 
      AlexanderRD,MooreTE1962.The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera: Cicadidae, Magicicada) Misc. Publ. 121, Mus. Zool., Univ. Mich Ann Arbor:First to suggest that there are six species ofMagicicada and present hypotheses for the evolution of species and broods; provided a table of emergence dates.
      [Google Scholar]
    3. 3. 
      BeasleyDAE,BensonEP,WelchSM,ReidLS,MousseauTA2012. The use of citizen scientists to record and map 13-year periodical cicadas (Hemiptera: Cicadidae:Magicicada) in South Carolina.Fla. Entomol.95:489–91
      [Google Scholar]
    4. 4. 
      BennettGM,MoranNA.2015. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole.PNAS112:10169–76
      [Google Scholar]
    5. 5. 
      BlackwoodJC,MachtaJ,MeyerAD,NobleAE,HastingsA,LiebholdAM2018. Competition and stragglers as mediators of developmental synchrony in periodical cicadas.Am. Nat.192:479–89
      [Google Scholar]
    6. 6. 
      BourguignonT,KinjoY,Villa-MartínP,ColemanNV,TangQ et al.2020. Increased mutation rate is linked to genome reduction in prokaryotes.Curr. Biol.30:3848–55.e4
      [Google Scholar]
    7. 7. 
      BoyceGR,Gluck-ThalerE,SlotJC,StajichJE,DavisWJ et al.2019. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens.Fungal Ecol41:147–64
      [Google Scholar]
    8. 8. 
      BryceD,AspinwallN1975. Sympatry of two broods of the periodical cicada (Magicicada) in Missouri.Am. Midland Nat.93:450–54
      [Google Scholar]
    9. 9. 
      BulmerMG.1977. Periodical insects.Am. Nat.111:1099–117
      [Google Scholar]
    10. 10. 
      ButlinRK,GalindoJ,GrahameJW.2008. Sympatric, parapatric or allopatric: the most important way to classify speciation?.Philos. Trans. R. Soc. B363:2997–3007
      [Google Scholar]
    11. 11. 
      CampbellMA,ŁukasikP,MeyerMC,BucknerM,SimonC et al.2018. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas.mBio9:e02104-18Described how and why transmission ofHodgkinia endosymbionts byMagicicada mothers requires extra effort.
      [Google Scholar]
    12. 12. 
      CampbellMA,ŁukasikP,SimonC,McCutcheonJP2017. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas.Curr. Biol.27:3568–75.e3
      [Google Scholar]
    13. 13. 
      CampbellMA,Van LeuvenJT,MeisterRC,CareyKM,SimonC,McCutcheonJP2015. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiontHodgkinia.PNAS112:10192–99
      [Google Scholar]
    14. 14. 
      ClayK,SheltonAL,WinkleC.2009. Differential susceptibility of tree species to oviposition by periodical cicadas.Ecol. Entomol.34:277–86
      [Google Scholar]
    15. 15. 
      ClayK,SheltonAL,WinkleC.2009. Effects of oviposition by periodical cicadas on tree growth.Can. J. For. Res.39:1688–97
      [Google Scholar]
    16. 16. 
      CookWM,HoltRD.2002. Periodical cicada (Magicicada cassini) oviposition damage: visually impressive yet dynamically irrelevant.Am. Midland Nat.147:214–24
      [Google Scholar]
    17. 17. 
      CooleyJR.2001. Long-range acoustical signals, phonotaxis, and risk in the sexual pair-forming behaviors ofOkanagana canadensis andO. rimosa (Hemiptera: Cicadidae).Ann. Entomol. Soc. Am.94:755–60
      [Google Scholar]
    18. 18. 
      CooleyJR.2007. Decoding asymmetries in reproductive character displacement.Proc. Acad. Nat. Sci. Phila156:89–96
      [Google Scholar]
    19. 19. 
      CooleyJR.2015. The distribution of periodical cicada (Magicicada) Brood I in 2012, with previously unreported disjunct populations (Hemiptera: Cicadidae).Am. Entomol.61:52–57
      [Google Scholar]
    20. 20. 
      CooleyJR,ArguedasN,BonarosE,BunkerGJ,ChiswellSM et al.2018. The periodical cicada four-year acceleration hypothesis revisited: evidence for life cycle decelerations and an updated map for Brood V (Hemiptera:Magicicada spp.).PeerJ6:e5282
      [Google Scholar]
    21. 21. 
      CooleyJR,KritskyG,EdwardsMD,ZylaJD,MarshallDC et al.2011. Periodical cicadas (Magicicada spp.): the distribution of Broods XIV in 2008 and “XV” in 2009.Am. Entomol.57:144–51
      [Google Scholar]
    22. 22. 
      CooleyJR,KritskyG,ZylaJD,EdwardsMJ,SimonC et al.2009. The distribution of periodical cicada Brood X.Am. Entomol.55:106–12
      [Google Scholar]
    23. 23. 
      CooleyJR,MarshallDC2001. Sexual signaling in periodical cicadas,Magicicada spp. (Hemiptera: Cicadidae).Behaviour138:827–55Described wing-flick signaling in periodical cicadas, resolving some of the outstanding questions surrounding the uniquely complex courtship behaviors of these insects.
      [Google Scholar]
    24. 24. 
      CooleyJR,MarshallDC.2004. Thresholds or comparisons: mate choice criteria and sexual selection in a periodical cicada,Magicicada septendecim (Hemiptera: Cicadidae).Behaviour141:647–73
      [Google Scholar]
    25. 25. 
      CooleyJR,MarshallDC,HillKBR2018. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae:Magicicada).Sci. Rep.8:1432
      [Google Scholar]
    26. 26. 
      CooleyJR,MarshallDC,HillKBR,SimonC.2006. Reconstructing asymmetrical reproductive character displacement in a periodical cicada contact zone.J. Evol. Biol.19:855–68
      [Google Scholar]
    27. 27. 
      CooleyJR,MarshallDC,RichardsAF,AlexanderRD,IrwinMD et al.2013. The distribution of periodical cicada Brood III in 1997, with special emphasis on Illinois (Hemiptera:Magicicada spp.).Am. Entomol.59:9–14
      [Google Scholar]
    28. 28. 
      CooleyJR,MarshallDC,SimonC2004. The historical contraction of periodical cicada Brood VII (Hemiptera: Cicadidae:Magicicada).J. N. Y. Entomol. Soc.112:198–204
      [Google Scholar]
    29. 29. 
      CooleyJR,NeckermannML,BunkerGJ,MarshallDC,SimonC2013. At the limits: habitat suitability modeling of northern 17-year periodical cicada extinctions (Hemiptera:Magicicada spp.).Glob. Ecol. Biogeogr.22:410–21
      [Google Scholar]
    30. 30. 
      CooleyJR,SimonC,MaierC,MarshallDC,YoshimuraJ et al.2015. The distribution of periodical cicada (Magicicada) Brood II in 2013: Disjunct emergences suggest complex origins.Am. Entomol.61:245–51
      [Google Scholar]
    31. 31. 
      CooleyJR,SimonC,MarshallDC,SlonK,EhrhardtC.2001. Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera:Magicicada spp.): genetic, morphological, and behavioural evidence.Mol. Ecol.10:661–71
      [Google Scholar]
    32. 32. 
      CoxRT,CarltonCE.1988. Paleoclimatic influences in the evolution of periodical cicadas (Insecta: Homoptera: Cicadidae:Magicicada spp.).Am. Midland Nat.120:183–93
      [Google Scholar]
    33. 33. 
      CoxRT,CarltonCE.2003. A comment on gene introgression versus en masse cycle switching in the evolution of 13-year and 17-year life cycles in periodical cicadas.Evolution57:428–32
      [Google Scholar]
    34. 34. 
      de AssisRA,MalavaziMC2019. A simple model of periodic reproduction: selection of prime periods.Mathematics Applied to Engineering, Modelling, and Social Issues FT Smith, H Dutta, JN Mordeson421–38 Berlin: Springer
      [Google Scholar]
    35. 35. 
      DuZ,HasegawaH,CooleyJR,SimonC,YoshimuraJ et al.2019. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups.Mol. Biol. Evol.36:1187–200Used mitochondrial genomic data to show that periodical cicadas are divided into Eastern, Midwestern, Mississippi Valley, and Southern populations that likely refuged separately during the Pleistocene.
      [Google Scholar]
    36. 36. 
      DuffelsJP,EwartA.1988.The Cicadas of the Fiji, Samoa, and Tonga Islands, Their Taxonomy and Biogeography (Homoptera: Cicadoidea) Leiden, Neth.: E.J. Brill
      [Google Scholar]
    37. 37. 
      DugdaleJS,FlemingCA.1969. Two New Zealand cicadas collected on Cook's Endeavour Voyage, with description of a new genus.N. Z. J. Sci.12:929–57
      [Google Scholar]
    38. 38. 
      DunningD,ByersJ,ZangerC.1979. Courtship in two species of periodical cicada,Magicicada septendecim andMagicicada cassini.Anim. Behav.27:1073–90
      [Google Scholar]
    39. 39. 
      DybasHS.1969. The 17-year cicada: a four-year mistake?Bull. Field Mus..Nat. Hist40:10–12
      [Google Scholar]
    40. 40. 
      DybasHS,DavisDD.1962. A population census of seventeen-year periodical cicadas (Homoptera: Cicadidae:Magicicada).Ecology43:432–44
      [Google Scholar]
    41. 41. 
      EnglishLD,EnglishJJ,DukesRN,SmithKG.2006. Timing of 13-year periodical cicada (Homoptera: Cicadidae) emergence determined 9 months before emergence.Environ. Entomol.35:245–48
      [Google Scholar]
    42. 42. 
      ExcoffierL,DupanloupI,Huerta-SánchezE,SousaVC,FollM.2013. Robust demographic inference from genomic and SNP data.PLOS Genet9:e1003905
      [Google Scholar]
    43. 43. 
      FlorySL,MattinglyWB2008. Response of host plants to periodical cicada oviposition damage.Oecologia156:649–56
      [Google Scholar]
    44. 44. 
      FontaineKM,CooleyJR,SimonC.2007. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera:Magicicada spp.).PLOS ONE9:e892
      [Google Scholar]
    45. 45. 
      FujisawaT,KoyamaT,KakishimaS,CooleyJR,SimonC et al.2018. Triplicate parallel life cycle divergence despite gene flow in periodical cicadas.Commun. Biol.1:26Determined that there are four reproductively isolated species lineages of periodical cicadas (Tre, Neosep, Cassini, and Decula) and that, within each of these lineages (except Tre), there is evidence of gene flow between 13- and 17-year life cycles.
      [Google Scholar]
    46. 46. 
      GilbertC,KlassC2006. Decrease in geographic range of the Finger Lakes brood (Brood VII) of the periodical cicada (Hemiptera: Cicadidae:Magicicada spp.).J. N. Y. Entomol. Soc.114:78–85
      [Google Scholar]
    47. 47. 
      GolesE,SchulzO,MarkusM.2000. A biological generator of prime numbers.Nonlinear Phenom. Complex Syst.3:208–13
      [Google Scholar]
    48. 48. 
      GrantPR.2005. The priming of periodical cicada life cycles.Trends Ecol. Evol.20:169–74
      [Google Scholar]
    49. 49. 
      GwynneDT.1987. Sex-biased predation and the risky mate-locating behavior of male tick-tock cicadas (Homoptera: Cicadidae).Anim. Behav.35:571–76
      [Google Scholar]
    50. 50. 
      HajongSR.2013. Mass emergence of a cicada (Homoptera: Cicadidae) and its capture methods and consumption by villagers in Ri-bhoi district of Meghalaya.J. Entomol. Res.37:341–43
      [Google Scholar]
    51. 51. 
      HajongSR,YaakopS.2013.Chremistica ribhoi sp. n. (Hemiptera: Cicadidae) from North-East India and its mass emergence.Zootaxa3702:493–500
      [Google Scholar]
    52. 52. 
      HayesB.2004. Bugs that count.Am. Sci.92:401–5
      [Google Scholar]
    53. 53. 
      HeathJE.1968. Thermal synchronization of emergence in periodical “17-year” cicadas (Homoptera, Cicadidae,Magicicada).Am. Midland Nat.80:440–48
      [Google Scholar]
    54. 54. 
      HeliövaaraK,VaisanenR,SimonC.1994. Evolutionary ecology of periodical insects.Trends Ecol. Evol.9:475–80
      [Google Scholar]
    55. 55. 
      HiggieM,ChenowethS,BlowsMW.2000. Natural selection and the reinforcement of mate recognition.Science290:519–21
      [Google Scholar]
    56. 56. 
      HillKBR,SimonC,MarshallDC,ChambersGK2009. Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicadaMaoricicada campbelli.J. Biogeogr.36:675–92
      [Google Scholar]
    57. 57. 
      KakishimaS,LiangY,ItoT,YangT-YA,LuPL et al.2019. Evolutionary origin of a periodical mass-flowering plant.Ecol. Evol.9:4373–81
      [Google Scholar]
    58. 58. 
      KakishimaS,YoshimuraJ,MurataH,MurataJ.2011. 6-Year periodicity and variable synchronicity in a mass-flowering plant.PLOS ONE6:e28140
      [Google Scholar]
    59. 59. 
      KarbanR.1981. Effects of local density on fecundity and mating speed for periodical cicadas.Oecologia51:260–64
      [Google Scholar]
    60. 60. 
      KarbanR.1982. Increased reproductive success at high densities and predator satiation for periodical cicadas.Ecology63:321–28
      [Google Scholar]
    61. 61. 
      KarbanR.1983. Sexual selection, body size and sex-related mortality in the cicadaMagicicada cassini.Am. Midland Nat.109:324–30
      [Google Scholar]
    62. 62. 
      KarbanR2014. Transient habitats limit development time for periodical cicadas.Ecology95:3–8Showed that population density of periodical cicadas varies over time and space by monitoring the emergences of a set of study populations over three generations.
      [Google Scholar]
    63. 63. 
      KarbanR,BlackCA,WeinbaumSA2000. How 17-year cicadas keep track of time.Ecol. Lett.3:253–56Provided evidence that periodical cicadas count years by monitoring plant growth over seasons.
      [Google Scholar]
    64. 64. 
      KoenigWD,LiebholdAM.2003. Regional impacts of periodical cicadas on oak radial increment.Can. J. For. Res.33:1084–89
      [Google Scholar]
    65. 65. 
      KoenigWD,LieboldAM.2005. Effects of periodical cicada emergences on abundance and synchrony of avian populations.Ecology86:1873–82
      [Google Scholar]
    66. 66. 
      KohlerU,Lakes-HarlanR.2001. Auditory behaviour of a parasitoid fly (Emblemasoma auditrix, Sarcophagidae, Diptera).J. Comp. Physiol. A187:581–87
      [Google Scholar]
    67. 67. 
      KoyamaT,ItoH,FujisawaT,IkedaH,KakishimaS et al.2016. Genomic divergence and lack of introgressive hybridization between two 13-year periodical cicadas supports life-cycle switching in the face of climate change.Mol. Ecol.25:5543–56
      [Google Scholar]
    68. 68. 
      KoyamaT,ItoH,KakishimaS,YoshimuraJ,CooleyJR et al.2015. Geographic body size variation in the periodical cicadas (Magicicada): implications for life cycle divergence and local adaptation.J. Evol. Biol.28:1270–77
      [Google Scholar]
    69. 69. 
      KritskyG.1987. An historical analysis of periodical cicadas in Indiana (Homoptera: Cicadidae).Proc. Indiana Acad. Sci.97:295–322
      [Google Scholar]
    70. 70. 
      KritskyG.1988. The 1987 emergence of the periodical cicada (Homoptera: Cicadidae:Magicicada spp.: Brood X) in Ohio.Ohio J. Sci.88:168–70
      [Google Scholar]
    71. 71. 
      KritskyG.2004.Periodical Cicadas: The Plague and the Puzzle . Indianapolis: Indiana Acad. Sci.
      [Google Scholar]
    72. 72. 
      KritskyG.2021.Periodical Cicadas: The Brood X Edition Columbus: Ohio Biol. Surv.
      [Google Scholar]
    73. 73. 
      KritskyG,TroutmanR,MozgaiD,SimonC,ChiswellSM et al.2017. Evolution and geographic extent of a surprising northern disjunct population of 13-year cicada Brood XXII (Hemiptera: Cicadidae,Magicicada).Am. Entomol.63:E15–20
      [Google Scholar]
    74. 74. 
      KritskyG,WebbJ,FolsomM,PfeisterM.2005. Observations on periodical cicadas (Brood X) in Indiana and Ohio in 2004 (Hemiptera: Cicadidae:Magicicada spp.).Proc. Indiana Acad. Sci.114:65–69
      [Google Scholar]
    75. 75. 
      KritskyG,YoungFN.1992. Observations on periodical cicadas (Brood XIV) in Indiana in 1991 (Homoptera: Cicadidae).Proc. Indiana Acad. Sci.101:59–61
      [Google Scholar]
    76. 76. 
      KyeG,MachtaJ,AbbottKC,HastingsA,HuffmyerW et al.2021. Sharp boundary formation and invasion between spatially adjacent periodical cicada broods.J. Theor. Biol.515:110600
      [Google Scholar]
    77. 77. 
      Lakes-HarlanR,de VriesT.2014. Experimental infection of a periodical cicada (Magicicada cassinii) with a parasitoid (Emblemasoma auditrix) of a proto-periodical cicada (Okanagana rimosa).BMC Ecol14:31
      [Google Scholar]
    78. 78. 
      Lakes-HarlanR,StoltingH,MooreTE.2000. Phonotactic behaviour of a parasitoid fly (Emblemasoma auditrix, Diptera, Sarcophagidae) in response to the calling song of its host Cicada (Okanagana rimosa, Homoptera, Cicadidae)..Zool.-Anal. Complex Syst103:31–39
      [Google Scholar]
    79. 79. 
      LaneDH1995. The recognition concept of species applied in an analysis of putative hybridization in New Zealand cicadas of the genusKikihia (Insecta: Hemiptera: Tibicinidae).Speciation and the Recognition Concept: Theory and Application DM Lambert, HG Spencer367–421 Baltimore, MD: Johns Hopkins Univ. Press
      [Google Scholar]
    80. 80. 
      Lehmann-ZeibarthN,HeidemanPP,ShapiroRA,StoddartSL,HsiaoCCL et al.2005. Evolution of periodicity in periodical cicadas.Evolution86:3200–11
      [Google Scholar]
    81. 81. 
      LesnikJJ,StullV.2019. The colonial/imperial history of insect food avoidance in the United States.Ann. Entomol. Soc. Am.112:560–65
      [Google Scholar]
    82. 82. 
      LloydM.1987. A successful rearing of 13-year periodical cicadas beyond their present range and beyond that of 17-year cicadas.Am. Midland Nat.117:362–68
      [Google Scholar]
    83. 83. 
      LloydM,DybasHS.1966. The periodical cicada problem. I. Population ecology.Evolution20:133–49
      [Google Scholar]
    84. 84. 
      LloydM,DybasHS1966. The periodical cicada problem. II. Evolution.Evolution20:466–505Devised a scheme for the evolution of 17-year broods by one- and four-year accelerations and entrainment of individuals from one brood to another.
      [Google Scholar]
    85. 85. 
      LloydM,KritskyG,SimonC1983. A simple Mendelian model for 13- and 17-year life cycles of periodical cicadas, with historical evidence of hybridization between them.Evolution37:1162–80
      [Google Scholar]
    86. 86. 
      LloydM,WhiteJA1976. Sympatry of periodical cicada broods and the hypothetical four-year acceleration.Evolution30:786–801Expanded the four-year acceleration hypothesis and proposed that a four-year slow-growth phase in the early instars could be eliminated to produce 13-year cicadas.
      [Google Scholar]
    87. 87. 
      LovettB,MaciasA,StajichJE,CooleyJ,EilenbergJ et al.2020. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding.PLOS Pathog16:e1008598
      [Google Scholar]
    88. 88. 
      ŁukasikP,NazarioK,Van LeuvenJT,CampbellMA,MeyerM et al.2018. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas.PNAS115:E226–35
      [Google Scholar]
    89. 89. 
      MachtaJ,BlackwoodJC,NobleA,LiebholdAM,HastingsA.2018. A hybrid model for the population dynamics of periodical cicadas.Bull. Math. Biol.81:1122–42
      [Google Scholar]
    90. 90. 
      MaciasAM,GeiserDM,StajichJE,ŁukasikP,VelosoC et al.2020. Evolutionary relationships amongMassospora spp. (Entomophthorales), obligate pathogens of cicadas.Mycologia112:1060–74
      [Google Scholar]
    91. 91. 
      MaierCT.1980. A mole's eye view of seventeen-year periodical cicada nymphs,Magicicada septendecim (Hemiptera: Homoptera: Cicadidae).Ann. Entomol. Soc. Am.73:142–52
      [Google Scholar]
    92. 92. 
      MaierCT.1985. Brood VI of 17-year periodical cicadas,Magicicada spp. (Hemiptera: Homoptera: Cicadidae): new evidence from Connecticut (USA), the hypothetical 4-year deceleration, and the status of the brood.J. N. Y. Entomol. Soc.93:1019–26
      [Google Scholar]
    93. 93. 
      MaierCT.1996. Connecticut is awaiting the return of the periodical cicada.Front. Plant Sci.48:4–6
      [Google Scholar]
    94. 94. 
      MalletJ,BesanskyN,HahnMW.2016. How reticulated are species?.BioEssays38:140–49
      [Google Scholar]
    95. 95. 
      ManterJA1974. Brood XI of the periodical cicada seems doomed.25th Anniversary Memoirs of the Connecticut Entomological Society RL Beard99–100 New Haven: Conn. Entomol. Soc.
      [Google Scholar]
    96. 96. 
      MarlattCL.1902.New nomenclature for the broods of the periodical cicada Rep., Div. Entomol., U.S. Dept. Agric Washington, DC:
      [Google Scholar]
    97. 97. 
      MarlattCL.1923.The periodical cicada Bull. 71, Div. Entomol., U.S. Dept. Agric Washington, DC:
      [Google Scholar]
    98. 98. 
      MarshallDC.2001. Periodical cicada (Homoptera: Cicadidae) life-cycle variations, the historical emergence record, and the geographic stability of brood distributions.Ann. Entomol. Soc. Am.94:386–99
      [Google Scholar]
    99. 99. 
      MarshallDC,CooleyJR2000. Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-yearMagicicada neotredecim.Evolution54:1313–25Explained the lack of gene flow betweenM. tredecim andM. neotredecim by reproductive character displacement in male signal and female response; describedM. neotredecim.
      [Google Scholar]
    100. 100. 
      MarshallDC,CooleyJR,HillKBR.2011. Developmental plasticity of life-cycle length in thirteen-year periodical cicadas (Hemiptera: Cicadidae).Ann. Entomol. Soc. Am.104:443–50
      [Google Scholar]
    101. 101. 
      MarshallDC,CooleyJR,SimonC.2003. Holocene climate shifts, life-cycle plasticity, and speciation in periodical cicadas: a reply to Cox and Carlton.Evolution57:433–37
      [Google Scholar]
    102. 102. 
      MarshallDC,HillKBR.2009. Versatile aggressive mimicry of cicadas by an Australian predatory katydid.PLOS ONE4:e4185
      [Google Scholar]
    103. 103. 
      MarshallDC,HillKBR,CooleyJR.2017. Multimodal life cycle variation in 13- and 17-year periodical cicadas (Magicicada spp.).J. Kans. Entomol. Soc.90:211–26
      [Google Scholar]
    104. 104. 
      MarshallDC,HillKBR,CooleyJR,SimonC.2011. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genusKikihia).Syst. Biol.60:482–502
      [Google Scholar]
    105. 105. 
      MarshallDC,MouldsM,HillKBR,PriceB,WadeE et al.2018. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily level classification.Zootaxa4424:1–64
      [Google Scholar]
    106. 106. 
      MarshallDC,SlonK,CooleyJR,HillKBR,SimonC.2008. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation.Mol. Phylogenet. Evol.48:1054–66
      [Google Scholar]
    107. 107. 
      MartinA,SimonC1988. Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas.Nature336:237–39Used mtDNA, allozymes, and a color polymorphism to discover a northern genetic lineage of 13-year cicadas that was derived recently from 17-year cicadas.
      [Google Scholar]
    108. 108. 
      MartinA,SimonC1990. Differing levels of among-population divergence in the mitochondrial DNA of periodical cicadas related to historical biogeography.Evolution44:1066–80
      [Google Scholar]
    109. 109. 
      MartinA,SimonC1990. Temporal variation in insect life cycles and its evolutionary significance: lessons from periodical cicadas.BioScience40:359–67
      [Google Scholar]
    110. 110. 
      MatsuuraY,MoriyamaM,ŁukasikP,VanderpoolD,TanahashiM et al.2018. Recurrent symbiont recruitment from fungal parasites in cicadas.PNAS115:E5970–79
      [Google Scholar]
    111. 111. 
      McCutcheonJP,BoydBM,DaleC.2019. The life of an insect endosymbiont from the cradle to the grave.Curr. Biol.29:R485–95
      [Google Scholar]
    112. 112. 
      McCutcheonJP,McDonaldBR,MoranNA.2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects.PNAS106:15394–99
      [Google Scholar]
    113. 113. 
      McCutcheonJP,McDonaldBR,MoranNA.2009. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.PLOS Genet5:e1000565
      [Google Scholar]
    114. 114. 
      MoranNA,TranP,GerardoNM2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes.Appl. Environ. Microbiol.71:8802–10
      [Google Scholar]
    115. 115. 
      MouldsMS.2003. An appraisal of the cicadas of the genusAbricta Stål and allied genera (Hemiptera: Auchenorrhyncha: Cicadidae).Rec. Aust. Mus.55:245–304
      [Google Scholar]
    116. 116. 
      MouldsMS.2005. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna.Rec. Aust. Mus.57:375–446
      [Google Scholar]
    117. 117. 
      NariaiY,HayashiS,MoritaS,UmenuraY,TainakaK-I et al.2011. Life cycle shift by gene introduction under an Allee effect in periodical cicadas.PLOS ONE6:e18347
      [Google Scholar]
    118. 118. 
      NiijimaK,NiiM,YoshimuraJ.2021. Eight-year periodical outbreaks of the train millipede.R. Soc. Open Sci.8:201399
      [Google Scholar]
    119. 119. 
      PechumanLL.1968. The periodical cicada, Brood VII (Homoptera: Cicadidae:Magicicada).Trans. Am. Entomol. Soc.94:137–53
      [Google Scholar]
    120. 120. 
      PechumanLL1984. The periodical cicada: Brood VII revisited (Homoptera: Cicadidae).Entomol. News96:59–60
      [Google Scholar]
    121. 121. 
      Petino ZappalaMA,OrtizVE,FanaraJJ.2018. Study of natural genetic variation in early fitness traits reveals decoupling between larval and pupal developmental time inDrosophila melanogaster.Evol. Biol.45:437–48
      [Google Scholar]
    122. 122. 
      PoppleLW,MarshallDC.2016. Australian cicadas: worth a closer listen.Wildl. Aust.53:24–26
      [Google Scholar]
    123. 123. 
      PrayCL,NowlinWH,VanniMJ.2009. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae:Magicicada) in woodland aquatic ecosystems.J. North Am. Benthol. Soc.28:181–95
      [Google Scholar]
    124. 124. 
      RaupMJ,SargentC,HardingN,KritskyG.2020. Combining data from citizen scientists and weather stations to define emergence of periodical cicadas,Magicicada Davis spp. (Hemiptera: Cicadidae).Md. Entomol.7:31–42
      [Google Scholar]
    125. 125. 
      Román-KustasJ,HoffmanJB,AlonsoD,ReedJH,GonsalvesAE et al.2020. Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.158:105089
      [Google Scholar]
    126. 126. 
      SchniederkötterK,Lakes-HarlanR.2004. Infection behavior of a parasitoid fly,Emblemasoma auditrix, and its host cicadaOkanagana rimosa.J. Insect Sci.4:36
      [Google Scholar]
    127. 127. 
      SimonC.1983. Morphological differentiation in wing venation among broods of 13- and 17-year periodical cicadas.Evolution37:104–15
      [Google Scholar]
    128. 128. 
      SimonC.1988. Evolution of 13- and 17-year periodical cicadas.Bull. Entomol. Soc. Am.34:163–76
      [Google Scholar]
    129. 129. 
      SimonC1992. Discriminant analysis of the year-classes of periodical cicadas based on wing morphometric data enhanced by molecular information.Ordinations in the Study of Morphology, Evolution, and Systematics of Insects: Applications and Quantitative Genetic Rationales JT Sorensen, RG Footit309–22 Amsterdam: Elsevier
      [Google Scholar]
    130. 130. 
      SimonC,KarbanR,LloydM1981. Patchiness, density, and aggregative behavior in sympatric allochronic populations of 17-year cicadas.Ecology62:1525–35
      [Google Scholar]
    131. 131. 
      SimonC,LloydM1982. Disjunct synchronic populations of 17-year periodical cicadas: relicts or evidence of polyphyly?.J. N. Y. Entomol. Soc.90:275–301
      [Google Scholar]
    132. 132. 
      SimonC,TangJ,DalwadiS,StaleyG,DeniegaJ,UnnaschTR2000. Genetic evidence for assortative mating between 13-year cicadas and sympatric “17-year cicadas with 13-year life cycles” provides support for allochronic speciation.Evolution54:1326–36Used abdominal color and mtDNA evidence to suggest a lack of gene flow at contact zones betweenM. tredecim andM. neotredecim Brood XXIII lineages.
      [Google Scholar]
    133. 133. 
      SmitsA,CooleyJR,WestermanE.2010. Twig to root: eggnest density and underground nymph distribution in a periodical cicada (Hemiptera:Magicicada septendecim L.).Entomol. Am116:73–77
      [Google Scholar]
    134. 134. 
      SoltisDE,MorrisAB,McLachlanJS,ManosPS,SoltisPS.2006. Comparative phylogeography of unglaciated eastern North America.Mol. Ecol.15:4261–93
      [Google Scholar]
    135. 135. 
      SoperR.1974. The genusMassospora entomopathogenic for cicadas. Part I. Taxonomy of the genus.Mycotaxon1974.13–40
      [Google Scholar]
    136. 136. 
      SotaT,YamamotoS,CooleyJR,HillKBR,SimonC,YoshimuraJ2013. Different histories of divergence into 13- and 17-year life cycles among three periodical cicada lineages.PNAS110:6919–24Demonstrated noncontemporaneous, parallel formation of 13- and 17-year species in the Decim, Cassini, and Decula species groups.
      [Google Scholar]
    137. 137. 
      SpeerJH,ClayK,BishopG,CreechM2010. The effect of periodical cicadas on growth of five tree species in Midwestern deciduous forests.Am. Midland Nat.164:173–86
      [Google Scholar]
    138. 138. 
      StrangCA.2013. Geography and history of periodical cicadas (Hemiptera: Cicadidae) in DuPage County, Illinois.Great Lakes Entomol46:193–203
      [Google Scholar]
    139. 139. 
      TanakaY,YoshimuraJ,SimonC,CooleyJR,TainakaK.2009. The Allee effect in the selection for prime-numbered cycles in periodical cicadas.PNAS106:8975–79
      [Google Scholar]
    140. 140. 
      ToivonenJ,FromhageL.2019. Evolutionary hysteresis and ratchets in the evolution of periodical cicadas.Am. Nat.194:38–46
      [Google Scholar]
    141. 141. 
      ToivonenJ,FromhageL.2020. Hybridization selects for prime-numbered life cycles inMagicicada: an individual-based simulation model of a structured periodical cicada population.Ecol. Evol.10:5259–69
      [Google Scholar]
    142. 142. 
      UrbanJM,CryanJR.2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea).BMC Evol. Biol.12:87
      [Google Scholar]
    143. 143. 
      Van LeuvenJT,MeisterRC,SimonC,McCutcheonJP2014. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one.Cell158:1270–80
      [Google Scholar]
    144. 144. 
      WadeEJ.2014.Species and hybridization: understanding the exchange of nuclear and mitochondrial DNA in song-delimited cicada species complexes PhD Diss., Univ. Conn. Storrs:
      [Google Scholar]
    145. 145. 
      WanekaG,VasquezYM,BennettGM,SloanDB.2021. Mutational pressure drives differential genome conservation in two bacterial endosymbionts of sap feeding insects. bioRxiv 2020.07.29.225037.https://doi.org/10.1101/2020.07.29.225037
      [Crossref]
    146. 146. 
      WatlingD.2012.MaiVeikau: Tales of Fijian Wildlife Suva, Fiji: Shell Fiji Ltd. , 2nd ed..
      [Google Scholar]
    147. 147. 
      WebbGF.2001. The prime number periodical cicada problem.Discrete Contin. Dyn. Syst. B1:387–99
      [Google Scholar]
    148. 148. 
      West-EberhardMJ.2003.Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
      [Google Scholar]
    149. 149. 
      WhilesMR,CallahamMAJr.,MeyerCK,BrockBL,CharltonRE.2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass and nitrogen flux.Am. Midland Nat.145:176–87
      [Google Scholar]
    150. 150. 
      WhiteJ.1980. Resource partitioning by ovipositing cicadas.Am. Nat.115:1–28
      [Google Scholar]
    151. 151. 
      WhiteJ.1981. Flagging: hosts defences versus oviposition strategies in periodical cicadas (Magicicada spp., Cicadidae, Homoptera).Can. Entomol113:727–38
      [Google Scholar]
    152. 152. 
      WhiteJ,LloydM.1981. On the stainability and mortality of periodical cicada eggs.Am. Midland Nat.106:219–28
      [Google Scholar]
    153. 153. 
      WhiteJA1973. Viable hybrid young from crossmated periodical cicadas.Ecology54:573–80Demonstrated that the Decim, Cassini, and Decula lineages could be experimentally cross-mated and produce eggs that hatch.
      [Google Scholar]
    154. 154. 
      WhiteJA,LloydM.1975. Growth rates of 17- and 13-year periodical cicadas.Am. Midland Nat.94:127–43
      [Google Scholar]
    155. 155. 
      WilliamsKS,SimonC.1995. The ecology, behavior, and evolution of periodical cicadas.Annu. Rev. Entomol.40:269–95
      [Google Scholar]
    156. 156. 
      WilliamsKS,SmithKG,StephenFM.1993. Emergence of 13-yr periodical cicadas (Cicadidae:Magicicada): phenology, mortality, and predator satiation.Ecology74:1143–52
      [Google Scholar]
    157. 157. 
      YangLH.2004. Periodical cicadas as resource pulses in North American forests.Science306:1565–67
      [Google Scholar]
    158. 158. 
      YangLH.2005. Interactions between a detrital resource pulse and a detritivore community.Oecologia147:522–32
      [Google Scholar]
    159. 159. 
      YangLH.2006. Periodical cicadas use light for oviposition site selection.Proc. R. Soc. B273:2993–3000
      [Google Scholar]
    160. 160. 
      YangLH.2008. Pulses of dead periodical cicadas increase herbivory of American bellflowers.Ecology89:1497–502
      [Google Scholar]
    161. 161. 
      YangLH.2012. Resource pulses of dead periodical cicadas increase the growth of American bellflower rosettes under competitive and non-competitive conditions.Arthropod-Plant Interact7:93–98
      [Google Scholar]
    162. 162. 
      YangLH,KarbanR.2009. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth.Am. Nat.173:105–12
      [Google Scholar]
    163. 163. 
      YangLH,KarbanR.2019. The effects of pulsed fertilization and chronic herbivory by periodical cicadas on tree growth.Ecology100:e02705
      [Google Scholar]
    164. 164. 
      YoshimuraJ.1997. The evolutionary origins of periodical cicadas during Ice Ages.Am. Nat.149:112–24
      [Google Scholar]
    165. 165. 
      YoshimuraJ,HayashiT,TanakaY,TainakaK,SimonC2009. Selection of prime-number intervals in a numerical model of periodical cicada evolution.Evolution63:288–94
      [Google Scholar]
    166. 166. 
      ZhangZ,WangH,WangY,XiF,WangH et al.2021. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth.Plant J106:435–53
      [Google Scholar]
    /content/journals/10.1146/annurev-ento-072121-061108
    Loading
    Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas
    Annual Review of Entomology67, 457 (2022);https://doi.org/10.1146/annurev-ento-072121-061108
    /content/journals/10.1146/annurev-ento-072121-061108
    /content/journals/10.1146/annurev-ento-072121-061108
    Loading

    Data & Media loading...

    Supplementary Data

    Most Read This Month

    Article
    content/journals/ento
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-ento-072121-061108
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. 
      AlexanderRD.1975. Natural selection and specialized chorusing behavior in acoustical insects.Insects, Science, and Society D Pimentel35–77 New York: Academic
      [Google Scholar]
    2. 2. 
      AlexanderRD,MooreTE1962.The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera: Cicadidae, Magicicada) Misc. Publ. 121, Mus. Zool., Univ. Mich Ann Arbor:First to suggest that there are six species ofMagicicada and present hypotheses for the evolution of species and broods; provided a table of emergence dates.
      [Google Scholar]
    3. 3. 
      BeasleyDAE,BensonEP,WelchSM,ReidLS,MousseauTA2012. The use of citizen scientists to record and map 13-year periodical cicadas (Hemiptera: Cicadidae:Magicicada) in South Carolina.Fla. Entomol.95:489–91
      [Google Scholar]
    4. 4. 
      BennettGM,MoranNA.2015. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole.PNAS112:10169–76
      [Google Scholar]
    5. 5. 
      BlackwoodJC,MachtaJ,MeyerAD,NobleAE,HastingsA,LiebholdAM2018. Competition and stragglers as mediators of developmental synchrony in periodical cicadas.Am. Nat.192:479–89
      [Google Scholar]
    6. 6. 
      BourguignonT,KinjoY,Villa-MartínP,ColemanNV,TangQ et al.2020. Increased mutation rate is linked to genome reduction in prokaryotes.Curr. Biol.30:3848–55.e4
      [Google Scholar]
    7. 7. 
      BoyceGR,Gluck-ThalerE,SlotJC,StajichJE,DavisWJ et al.2019. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens.Fungal Ecol41:147–64
      [Google Scholar]
    8. 8. 
      BryceD,AspinwallN1975. Sympatry of two broods of the periodical cicada (Magicicada) in Missouri.Am. Midland Nat.93:450–54
      [Google Scholar]
    9. 9. 
      BulmerMG.1977. Periodical insects.Am. Nat.111:1099–117
      [Google Scholar]
    10. 10. 
      ButlinRK,GalindoJ,GrahameJW.2008. Sympatric, parapatric or allopatric: the most important way to classify speciation?.Philos. Trans. R. Soc. B363:2997–3007
      [Google Scholar]
    11. 11. 
      CampbellMA,ŁukasikP,MeyerMC,BucknerM,SimonC et al.2018. Changes in endosymbiont complexity drive host-level compensatory adaptations in cicadas.mBio9:e02104-18Described how and why transmission ofHodgkinia endosymbionts byMagicicada mothers requires extra effort.
      [Google Scholar]
    12. 12. 
      CampbellMA,ŁukasikP,SimonC,McCutcheonJP2017. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas.Curr. Biol.27:3568–75.e3
      [Google Scholar]
    13. 13. 
      CampbellMA,Van LeuvenJT,MeisterRC,CareyKM,SimonC,McCutcheonJP2015. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiontHodgkinia.PNAS112:10192–99
      [Google Scholar]
    14. 14. 
      ClayK,SheltonAL,WinkleC.2009. Differential susceptibility of tree species to oviposition by periodical cicadas.Ecol. Entomol.34:277–86
      [Google Scholar]
    15. 15. 
      ClayK,SheltonAL,WinkleC.2009. Effects of oviposition by periodical cicadas on tree growth.Can. J. For. Res.39:1688–97
      [Google Scholar]
    16. 16. 
      CookWM,HoltRD.2002. Periodical cicada (Magicicada cassini) oviposition damage: visually impressive yet dynamically irrelevant.Am. Midland Nat.147:214–24
      [Google Scholar]
    17. 17. 
      CooleyJR.2001. Long-range acoustical signals, phonotaxis, and risk in the sexual pair-forming behaviors ofOkanagana canadensis andO. rimosa (Hemiptera: Cicadidae).Ann. Entomol. Soc. Am.94:755–60
      [Google Scholar]
    18. 18. 
      CooleyJR.2007. Decoding asymmetries in reproductive character displacement.Proc. Acad. Nat. Sci. Phila156:89–96
      [Google Scholar]
    19. 19. 
      CooleyJR.2015. The distribution of periodical cicada (Magicicada) Brood I in 2012, with previously unreported disjunct populations (Hemiptera: Cicadidae).Am. Entomol.61:52–57
      [Google Scholar]
    20. 20. 
      CooleyJR,ArguedasN,BonarosE,BunkerGJ,ChiswellSM et al.2018. The periodical cicada four-year acceleration hypothesis revisited: evidence for life cycle decelerations and an updated map for Brood V (Hemiptera:Magicicada spp.).PeerJ6:e5282
      [Google Scholar]
    21. 21. 
      CooleyJR,KritskyG,EdwardsMD,ZylaJD,MarshallDC et al.2011. Periodical cicadas (Magicicada spp.): the distribution of Broods XIV in 2008 and “XV” in 2009.Am. Entomol.57:144–51
      [Google Scholar]
    22. 22. 
      CooleyJR,KritskyG,ZylaJD,EdwardsMJ,SimonC et al.2009. The distribution of periodical cicada Brood X.Am. Entomol.55:106–12
      [Google Scholar]
    23. 23. 
      CooleyJR,MarshallDC2001. Sexual signaling in periodical cicadas,Magicicada spp. (Hemiptera: Cicadidae).Behaviour138:827–55Described wing-flick signaling in periodical cicadas, resolving some of the outstanding questions surrounding the uniquely complex courtship behaviors of these insects.
      [Google Scholar]
    24. 24. 
      CooleyJR,MarshallDC.2004. Thresholds or comparisons: mate choice criteria and sexual selection in a periodical cicada,Magicicada septendecim (Hemiptera: Cicadidae).Behaviour141:647–73
      [Google Scholar]
    25. 25. 
      CooleyJR,MarshallDC,HillKBR2018. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae:Magicicada).Sci. Rep.8:1432
      [Google Scholar]
    26. 26. 
      CooleyJR,MarshallDC,HillKBR,SimonC.2006. Reconstructing asymmetrical reproductive character displacement in a periodical cicada contact zone.J. Evol. Biol.19:855–68
      [Google Scholar]
    27. 27. 
      CooleyJR,MarshallDC,RichardsAF,AlexanderRD,IrwinMD et al.2013. The distribution of periodical cicada Brood III in 1997, with special emphasis on Illinois (Hemiptera:Magicicada spp.).Am. Entomol.59:9–14
      [Google Scholar]
    28. 28. 
      CooleyJR,MarshallDC,SimonC2004. The historical contraction of periodical cicada Brood VII (Hemiptera: Cicadidae:Magicicada).J. N. Y. Entomol. Soc.112:198–204
      [Google Scholar]
    29. 29. 
      CooleyJR,NeckermannML,BunkerGJ,MarshallDC,SimonC2013. At the limits: habitat suitability modeling of northern 17-year periodical cicada extinctions (Hemiptera:Magicicada spp.).Glob. Ecol. Biogeogr.22:410–21
      [Google Scholar]
    30. 30. 
      CooleyJR,SimonC,MaierC,MarshallDC,YoshimuraJ et al.2015. The distribution of periodical cicada (Magicicada) Brood II in 2013: Disjunct emergences suggest complex origins.Am. Entomol.61:245–51
      [Google Scholar]
    31. 31. 
      CooleyJR,SimonC,MarshallDC,SlonK,EhrhardtC.2001. Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera:Magicicada spp.): genetic, morphological, and behavioural evidence.Mol. Ecol.10:661–71
      [Google Scholar]
    32. 32. 
      CoxRT,CarltonCE.1988. Paleoclimatic influences in the evolution of periodical cicadas (Insecta: Homoptera: Cicadidae:Magicicada spp.).Am. Midland Nat.120:183–93
      [Google Scholar]
    33. 33. 
      CoxRT,CarltonCE.2003. A comment on gene introgression versus en masse cycle switching in the evolution of 13-year and 17-year life cycles in periodical cicadas.Evolution57:428–32
      [Google Scholar]
    34. 34. 
      de AssisRA,MalavaziMC2019. A simple model of periodic reproduction: selection of prime periods.Mathematics Applied to Engineering, Modelling, and Social Issues FT Smith, H Dutta, JN Mordeson421–38 Berlin: Springer
      [Google Scholar]
    35. 35. 
      DuZ,HasegawaH,CooleyJR,SimonC,YoshimuraJ et al.2019. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups.Mol. Biol. Evol.36:1187–200Used mitochondrial genomic data to show that periodical cicadas are divided into Eastern, Midwestern, Mississippi Valley, and Southern populations that likely refuged separately during the Pleistocene.
      [Google Scholar]
    36. 36. 
      DuffelsJP,EwartA.1988.The Cicadas of the Fiji, Samoa, and Tonga Islands, Their Taxonomy and Biogeography (Homoptera: Cicadoidea) Leiden, Neth.: E.J. Brill
      [Google Scholar]
    37. 37. 
      DugdaleJS,FlemingCA.1969. Two New Zealand cicadas collected on Cook's Endeavour Voyage, with description of a new genus.N. Z. J. Sci.12:929–57
      [Google Scholar]
    38. 38. 
      DunningD,ByersJ,ZangerC.1979. Courtship in two species of periodical cicada,Magicicada septendecim andMagicicada cassini.Anim. Behav.27:1073–90
      [Google Scholar]
    39. 39. 
      DybasHS.1969. The 17-year cicada: a four-year mistake?Bull. Field Mus..Nat. Hist40:10–12
      [Google Scholar]
    40. 40. 
      DybasHS,DavisDD.1962. A population census of seventeen-year periodical cicadas (Homoptera: Cicadidae:Magicicada).Ecology43:432–44
      [Google Scholar]
    41. 41. 
      EnglishLD,EnglishJJ,DukesRN,SmithKG.2006. Timing of 13-year periodical cicada (Homoptera: Cicadidae) emergence determined 9 months before emergence.Environ. Entomol.35:245–48
      [Google Scholar]
    42. 42. 
      ExcoffierL,DupanloupI,Huerta-SánchezE,SousaVC,FollM.2013. Robust demographic inference from genomic and SNP data.PLOS Genet9:e1003905
      [Google Scholar]
    43. 43. 
      FlorySL,MattinglyWB2008. Response of host plants to periodical cicada oviposition damage.Oecologia156:649–56
      [Google Scholar]
    44. 44. 
      FontaineKM,CooleyJR,SimonC.2007. Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera:Magicicada spp.).PLOS ONE9:e892
      [Google Scholar]
    45. 45. 
      FujisawaT,KoyamaT,KakishimaS,CooleyJR,SimonC et al.2018. Triplicate parallel life cycle divergence despite gene flow in periodical cicadas.Commun. Biol.1:26Determined that there are four reproductively isolated species lineages of periodical cicadas (Tre, Neosep, Cassini, and Decula) and that, within each of these lineages (except Tre), there is evidence of gene flow between 13- and 17-year life cycles.
      [Google Scholar]
    46. 46. 
      GilbertC,KlassC2006. Decrease in geographic range of the Finger Lakes brood (Brood VII) of the periodical cicada (Hemiptera: Cicadidae:Magicicada spp.).J. N. Y. Entomol. Soc.114:78–85
      [Google Scholar]
    47. 47. 
      GolesE,SchulzO,MarkusM.2000. A biological generator of prime numbers.Nonlinear Phenom. Complex Syst.3:208–13
      [Google Scholar]
    48. 48. 
      GrantPR.2005. The priming of periodical cicada life cycles.Trends Ecol. Evol.20:169–74
      [Google Scholar]
    49. 49. 
      GwynneDT.1987. Sex-biased predation and the risky mate-locating behavior of male tick-tock cicadas (Homoptera: Cicadidae).Anim. Behav.35:571–76
      [Google Scholar]
    50. 50. 
      HajongSR.2013. Mass emergence of a cicada (Homoptera: Cicadidae) and its capture methods and consumption by villagers in Ri-bhoi district of Meghalaya.J. Entomol. Res.37:341–43
      [Google Scholar]
    51. 51. 
      HajongSR,YaakopS.2013.Chremistica ribhoi sp. n. (Hemiptera: Cicadidae) from North-East India and its mass emergence.Zootaxa3702:493–500
      [Google Scholar]
    52. 52. 
      HayesB.2004. Bugs that count.Am. Sci.92:401–5
      [Google Scholar]
    53. 53. 
      HeathJE.1968. Thermal synchronization of emergence in periodical “17-year” cicadas (Homoptera, Cicadidae,Magicicada).Am. Midland Nat.80:440–48
      [Google Scholar]
    54. 54. 
      HeliövaaraK,VaisanenR,SimonC.1994. Evolutionary ecology of periodical insects.Trends Ecol. Evol.9:475–80
      [Google Scholar]
    55. 55. 
      HiggieM,ChenowethS,BlowsMW.2000. Natural selection and the reinforcement of mate recognition.Science290:519–21
      [Google Scholar]
    56. 56. 
      HillKBR,SimonC,MarshallDC,ChambersGK2009. Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicadaMaoricicada campbelli.J. Biogeogr.36:675–92
      [Google Scholar]
    57. 57. 
      KakishimaS,LiangY,ItoT,YangT-YA,LuPL et al.2019. Evolutionary origin of a periodical mass-flowering plant.Ecol. Evol.9:4373–81
      [Google Scholar]
    58. 58. 
      KakishimaS,YoshimuraJ,MurataH,MurataJ.2011. 6-Year periodicity and variable synchronicity in a mass-flowering plant.PLOS ONE6:e28140
      [Google Scholar]
    59. 59. 
      KarbanR.1981. Effects of local density on fecundity and mating speed for periodical cicadas.Oecologia51:260–64
      [Google Scholar]
    60. 60. 
      KarbanR.1982. Increased reproductive success at high densities and predator satiation for periodical cicadas.Ecology63:321–28
      [Google Scholar]
    61. 61. 
      KarbanR.1983. Sexual selection, body size and sex-related mortality in the cicadaMagicicada cassini.Am. Midland Nat.109:324–30
      [Google Scholar]
    62. 62. 
      KarbanR2014. Transient habitats limit development time for periodical cicadas.Ecology95:3–8Showed that population density of periodical cicadas varies over time and space by monitoring the emergences of a set of study populations over three generations.
      [Google Scholar]
    63. 63. 
      KarbanR,BlackCA,WeinbaumSA2000. How 17-year cicadas keep track of time.Ecol. Lett.3:253–56Provided evidence that periodical cicadas count years by monitoring plant growth over seasons.
      [Google Scholar]
    64. 64. 
      KoenigWD,LiebholdAM.2003. Regional impacts of periodical cicadas on oak radial increment.Can. J. For. Res.33:1084–89
      [Google Scholar]
    65. 65. 
      KoenigWD,LieboldAM.2005. Effects of periodical cicada emergences on abundance and synchrony of avian populations.Ecology86:1873–82
      [Google Scholar]
    66. 66. 
      KohlerU,Lakes-HarlanR.2001. Auditory behaviour of a parasitoid fly (Emblemasoma auditrix, Sarcophagidae, Diptera).J. Comp. Physiol. A187:581–87
      [Google Scholar]
    67. 67. 
      KoyamaT,ItoH,FujisawaT,IkedaH,KakishimaS et al.2016. Genomic divergence and lack of introgressive hybridization between two 13-year periodical cicadas supports life-cycle switching in the face of climate change.Mol. Ecol.25:5543–56
      [Google Scholar]
    68. 68. 
      KoyamaT,ItoH,KakishimaS,YoshimuraJ,CooleyJR et al.2015. Geographic body size variation in the periodical cicadas (Magicicada): implications for life cycle divergence and local adaptation.J. Evol. Biol.28:1270–77
      [Google Scholar]
    69. 69. 
      KritskyG.1987. An historical analysis of periodical cicadas in Indiana (Homoptera: Cicadidae).Proc. Indiana Acad. Sci.97:295–322
      [Google Scholar]
    70. 70. 
      KritskyG.1988. The 1987 emergence of the periodical cicada (Homoptera: Cicadidae:Magicicada spp.: Brood X) in Ohio.Ohio J. Sci.88:168–70
      [Google Scholar]
    71. 71. 
      KritskyG.2004.Periodical Cicadas: The Plague and the Puzzle . Indianapolis: Indiana Acad. Sci.
      [Google Scholar]
    72. 72. 
      KritskyG.2021.Periodical Cicadas: The Brood X Edition Columbus: Ohio Biol. Surv.
      [Google Scholar]
    73. 73. 
      KritskyG,TroutmanR,MozgaiD,SimonC,ChiswellSM et al.2017. Evolution and geographic extent of a surprising northern disjunct population of 13-year cicada Brood XXII (Hemiptera: Cicadidae,Magicicada).Am. Entomol.63:E15–20
      [Google Scholar]
    74. 74. 
      KritskyG,WebbJ,FolsomM,PfeisterM.2005. Observations on periodical cicadas (Brood X) in Indiana and Ohio in 2004 (Hemiptera: Cicadidae:Magicicada spp.).Proc. Indiana Acad. Sci.114:65–69
      [Google Scholar]
    75. 75. 
      KritskyG,YoungFN.1992. Observations on periodical cicadas (Brood XIV) in Indiana in 1991 (Homoptera: Cicadidae).Proc. Indiana Acad. Sci.101:59–61
      [Google Scholar]
    76. 76. 
      KyeG,MachtaJ,AbbottKC,HastingsA,HuffmyerW et al.2021. Sharp boundary formation and invasion between spatially adjacent periodical cicada broods.J. Theor. Biol.515:110600
      [Google Scholar]
    77. 77. 
      Lakes-HarlanR,de VriesT.2014. Experimental infection of a periodical cicada (Magicicada cassinii) with a parasitoid (Emblemasoma auditrix) of a proto-periodical cicada (Okanagana rimosa).BMC Ecol14:31
      [Google Scholar]
    78. 78. 
      Lakes-HarlanR,StoltingH,MooreTE.2000. Phonotactic behaviour of a parasitoid fly (Emblemasoma auditrix, Diptera, Sarcophagidae) in response to the calling song of its host Cicada (Okanagana rimosa, Homoptera, Cicadidae)..Zool.-Anal. Complex Syst103:31–39
      [Google Scholar]
    79. 79. 
      LaneDH1995. The recognition concept of species applied in an analysis of putative hybridization in New Zealand cicadas of the genusKikihia (Insecta: Hemiptera: Tibicinidae).Speciation and the Recognition Concept: Theory and Application DM Lambert, HG Spencer367–421 Baltimore, MD: Johns Hopkins Univ. Press
      [Google Scholar]
    80. 80. 
      Lehmann-ZeibarthN,HeidemanPP,ShapiroRA,StoddartSL,HsiaoCCL et al.2005. Evolution of periodicity in periodical cicadas.Evolution86:3200–11
      [Google Scholar]
    81. 81. 
      LesnikJJ,StullV.2019. The colonial/imperial history of insect food avoidance in the United States.Ann. Entomol. Soc. Am.112:560–65
      [Google Scholar]
    82. 82. 
      LloydM.1987. A successful rearing of 13-year periodical cicadas beyond their present range and beyond that of 17-year cicadas.Am. Midland Nat.117:362–68
      [Google Scholar]
    83. 83. 
      LloydM,DybasHS.1966. The periodical cicada problem. I. Population ecology.Evolution20:133–49
      [Google Scholar]
    84. 84. 
      LloydM,DybasHS1966. The periodical cicada problem. II. Evolution.Evolution20:466–505Devised a scheme for the evolution of 17-year broods by one- and four-year accelerations and entrainment of individuals from one brood to another.
      [Google Scholar]
    85. 85. 
      LloydM,KritskyG,SimonC1983. A simple Mendelian model for 13- and 17-year life cycles of periodical cicadas, with historical evidence of hybridization between them.Evolution37:1162–80
      [Google Scholar]
    86. 86. 
      LloydM,WhiteJA1976. Sympatry of periodical cicada broods and the hypothetical four-year acceleration.Evolution30:786–801Expanded the four-year acceleration hypothesis and proposed that a four-year slow-growth phase in the early instars could be eliminated to produce 13-year cicadas.
      [Google Scholar]
    87. 87. 
      LovettB,MaciasA,StajichJE,CooleyJ,EilenbergJ et al.2020. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding.PLOS Pathog16:e1008598
      [Google Scholar]
    88. 88. 
      ŁukasikP,NazarioK,Van LeuvenJT,CampbellMA,MeyerM et al.2018. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas.PNAS115:E226–35
      [Google Scholar]
    89. 89. 
      MachtaJ,BlackwoodJC,NobleA,LiebholdAM,HastingsA.2018. A hybrid model for the population dynamics of periodical cicadas.Bull. Math. Biol.81:1122–42
      [Google Scholar]
    90. 90. 
      MaciasAM,GeiserDM,StajichJE,ŁukasikP,VelosoC et al.2020. Evolutionary relationships amongMassospora spp. (Entomophthorales), obligate pathogens of cicadas.Mycologia112:1060–74
      [Google Scholar]
    91. 91. 
      MaierCT.1980. A mole's eye view of seventeen-year periodical cicada nymphs,Magicicada septendecim (Hemiptera: Homoptera: Cicadidae).Ann. Entomol. Soc. Am.73:142–52
      [Google Scholar]
    92. 92. 
      MaierCT.1985. Brood VI of 17-year periodical cicadas,Magicicada spp. (Hemiptera: Homoptera: Cicadidae): new evidence from Connecticut (USA), the hypothetical 4-year deceleration, and the status of the brood.J. N. Y. Entomol. Soc.93:1019–26
      [Google Scholar]
    93. 93. 
      MaierCT.1996. Connecticut is awaiting the return of the periodical cicada.Front. Plant Sci.48:4–6
      [Google Scholar]
    94. 94. 
      MalletJ,BesanskyN,HahnMW.2016. How reticulated are species?.BioEssays38:140–49
      [Google Scholar]
    95. 95. 
      ManterJA1974. Brood XI of the periodical cicada seems doomed.25th Anniversary Memoirs of the Connecticut Entomological Society RL Beard99–100 New Haven: Conn. Entomol. Soc.
      [Google Scholar]
    96. 96. 
      MarlattCL.1902.New nomenclature for the broods of the periodical cicada Rep., Div. Entomol., U.S. Dept. Agric Washington, DC:
      [Google Scholar]
    97. 97. 
      MarlattCL.1923.The periodical cicada Bull. 71, Div. Entomol., U.S. Dept. Agric Washington, DC:
      [Google Scholar]
    98. 98. 
      MarshallDC.2001. Periodical cicada (Homoptera: Cicadidae) life-cycle variations, the historical emergence record, and the geographic stability of brood distributions.Ann. Entomol. Soc. Am.94:386–99
      [Google Scholar]
    99. 99. 
      MarshallDC,CooleyJR2000. Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-yearMagicicada neotredecim.Evolution54:1313–25Explained the lack of gene flow betweenM. tredecim andM. neotredecim by reproductive character displacement in male signal and female response; describedM. neotredecim.
      [Google Scholar]
    100. 100. 
      MarshallDC,CooleyJR,HillKBR.2011. Developmental plasticity of life-cycle length in thirteen-year periodical cicadas (Hemiptera: Cicadidae).Ann. Entomol. Soc. Am.104:443–50
      [Google Scholar]
    101. 101. 
      MarshallDC,CooleyJR,SimonC.2003. Holocene climate shifts, life-cycle plasticity, and speciation in periodical cicadas: a reply to Cox and Carlton.Evolution57:433–37
      [Google Scholar]
    102. 102. 
      MarshallDC,HillKBR.2009. Versatile aggressive mimicry of cicadas by an Australian predatory katydid.PLOS ONE4:e4185
      [Google Scholar]
    103. 103. 
      MarshallDC,HillKBR,CooleyJR.2017. Multimodal life cycle variation in 13- and 17-year periodical cicadas (Magicicada spp.).J. Kans. Entomol. Soc.90:211–26
      [Google Scholar]
    104. 104. 
      MarshallDC,HillKBR,CooleyJR,SimonC.2011. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genusKikihia).Syst. Biol.60:482–502
      [Google Scholar]
    105. 105. 
      MarshallDC,MouldsM,HillKBR,PriceB,WadeE et al.2018. A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily level classification.Zootaxa4424:1–64
      [Google Scholar]
    106. 106. 
      MarshallDC,SlonK,CooleyJR,HillKBR,SimonC.2008. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation.Mol. Phylogenet. Evol.48:1054–66
      [Google Scholar]
    107. 107. 
      MartinA,SimonC1988. Anomalous distribution of nuclear and mitochondrial DNA markers in periodical cicadas.Nature336:237–39Used mtDNA, allozymes, and a color polymorphism to discover a northern genetic lineage of 13-year cicadas that was derived recently from 17-year cicadas.
      [Google Scholar]
    108. 108. 
      MartinA,SimonC1990. Differing levels of among-population divergence in the mitochondrial DNA of periodical cicadas related to historical biogeography.Evolution44:1066–80
      [Google Scholar]
    109. 109. 
      MartinA,SimonC1990. Temporal variation in insect life cycles and its evolutionary significance: lessons from periodical cicadas.BioScience40:359–67
      [Google Scholar]
    110. 110. 
      MatsuuraY,MoriyamaM,ŁukasikP,VanderpoolD,TanahashiM et al.2018. Recurrent symbiont recruitment from fungal parasites in cicadas.PNAS115:E5970–79
      [Google Scholar]
    111. 111. 
      McCutcheonJP,BoydBM,DaleC.2019. The life of an insect endosymbiont from the cradle to the grave.Curr. Biol.29:R485–95
      [Google Scholar]
    112. 112. 
      McCutcheonJP,McDonaldBR,MoranNA.2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects.PNAS106:15394–99
      [Google Scholar]
    113. 113. 
      McCutcheonJP,McDonaldBR,MoranNA.2009. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.PLOS Genet5:e1000565
      [Google Scholar]
    114. 114. 
      MoranNA,TranP,GerardoNM2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes.Appl. Environ. Microbiol.71:8802–10
      [Google Scholar]
    115. 115. 
      MouldsMS.2003. An appraisal of the cicadas of the genusAbricta Stål and allied genera (Hemiptera: Auchenorrhyncha: Cicadidae).Rec. Aust. Mus.55:245–304
      [Google Scholar]
    116. 116. 
      MouldsMS.2005. An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna.Rec. Aust. Mus.57:375–446
      [Google Scholar]
    117. 117. 
      NariaiY,HayashiS,MoritaS,UmenuraY,TainakaK-I et al.2011. Life cycle shift by gene introduction under an Allee effect in periodical cicadas.PLOS ONE6:e18347
      [Google Scholar]
    118. 118. 
      NiijimaK,NiiM,YoshimuraJ.2021. Eight-year periodical outbreaks of the train millipede.R. Soc. Open Sci.8:201399
      [Google Scholar]
    119. 119. 
      PechumanLL.1968. The periodical cicada, Brood VII (Homoptera: Cicadidae:Magicicada).Trans. Am. Entomol. Soc.94:137–53
      [Google Scholar]
    120. 120. 
      PechumanLL1984. The periodical cicada: Brood VII revisited (Homoptera: Cicadidae).Entomol. News96:59–60
      [Google Scholar]
    121. 121. 
      Petino ZappalaMA,OrtizVE,FanaraJJ.2018. Study of natural genetic variation in early fitness traits reveals decoupling between larval and pupal developmental time inDrosophila melanogaster.Evol. Biol.45:437–48
      [Google Scholar]
    122. 122. 
      PoppleLW,MarshallDC.2016. Australian cicadas: worth a closer listen.Wildl. Aust.53:24–26
      [Google Scholar]
    123. 123. 
      PrayCL,NowlinWH,VanniMJ.2009. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae:Magicicada) in woodland aquatic ecosystems.J. North Am. Benthol. Soc.28:181–95
      [Google Scholar]
    124. 124. 
      RaupMJ,SargentC,HardingN,KritskyG.2020. Combining data from citizen scientists and weather stations to define emergence of periodical cicadas,Magicicada Davis spp. (Hemiptera: Cicadidae).Md. Entomol.7:31–42
      [Google Scholar]
    125. 125. 
      Román-KustasJ,HoffmanJB,AlonsoD,ReedJH,GonsalvesAE et al.2020. Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation.Microchem. J.158:105089
      [Google Scholar]
    126. 126. 
      SchniederkötterK,Lakes-HarlanR.2004. Infection behavior of a parasitoid fly,Emblemasoma auditrix, and its host cicadaOkanagana rimosa.J. Insect Sci.4:36
      [Google Scholar]
    127. 127. 
      SimonC.1983. Morphological differentiation in wing venation among broods of 13- and 17-year periodical cicadas.Evolution37:104–15
      [Google Scholar]
    128. 128. 
      SimonC.1988. Evolution of 13- and 17-year periodical cicadas.Bull. Entomol. Soc. Am.34:163–76
      [Google Scholar]
    129. 129. 
      SimonC1992. Discriminant analysis of the year-classes of periodical cicadas based on wing morphometric data enhanced by molecular information.Ordinations in the Study of Morphology, Evolution, and Systematics of Insects: Applications and Quantitative Genetic Rationales JT Sorensen, RG Footit309–22 Amsterdam: Elsevier
      [Google Scholar]
    130. 130. 
      SimonC,KarbanR,LloydM1981. Patchiness, density, and aggregative behavior in sympatric allochronic populations of 17-year cicadas.Ecology62:1525–35
      [Google Scholar]
    131. 131. 
      SimonC,LloydM1982. Disjunct synchronic populations of 17-year periodical cicadas: relicts or evidence of polyphyly?.J. N. Y. Entomol. Soc.90:275–301
      [Google Scholar]
    132. 132. 
      SimonC,TangJ,DalwadiS,StaleyG,DeniegaJ,UnnaschTR2000. Genetic evidence for assortative mating between 13-year cicadas and sympatric “17-year cicadas with 13-year life cycles” provides support for allochronic speciation.Evolution54:1326–36Used abdominal color and mtDNA evidence to suggest a lack of gene flow at contact zones betweenM. tredecim andM. neotredecim Brood XXIII lineages.
      [Google Scholar]
    133. 133. 
      SmitsA,CooleyJR,WestermanE.2010. Twig to root: eggnest density and underground nymph distribution in a periodical cicada (Hemiptera:Magicicada septendecim L.).Entomol. Am116:73–77
      [Google Scholar]
    134. 134. 
      SoltisDE,MorrisAB,McLachlanJS,ManosPS,SoltisPS.2006. Comparative phylogeography of unglaciated eastern North America.Mol. Ecol.15:4261–93
      [Google Scholar]
    135. 135. 
      SoperR.1974. The genusMassospora entomopathogenic for cicadas. Part I. Taxonomy of the genus.Mycotaxon1974.13–40
      [Google Scholar]
    136. 136. 
      SotaT,YamamotoS,CooleyJR,HillKBR,SimonC,YoshimuraJ2013. Different histories of divergence into 13- and 17-year life cycles among three periodical cicada lineages.PNAS110:6919–24Demonstrated noncontemporaneous, parallel formation of 13- and 17-year species in the Decim, Cassini, and Decula species groups.
      [Google Scholar]
    137. 137. 
      SpeerJH,ClayK,BishopG,CreechM2010. The effect of periodical cicadas on growth of five tree species in Midwestern deciduous forests.Am. Midland Nat.164:173–86
      [Google Scholar]
    138. 138. 
      StrangCA.2013. Geography and history of periodical cicadas (Hemiptera: Cicadidae) in DuPage County, Illinois.Great Lakes Entomol46:193–203
      [Google Scholar]
    139. 139. 
      TanakaY,YoshimuraJ,SimonC,CooleyJR,TainakaK.2009. The Allee effect in the selection for prime-numbered cycles in periodical cicadas.PNAS106:8975–79
      [Google Scholar]
    140. 140. 
      ToivonenJ,FromhageL.2019. Evolutionary hysteresis and ratchets in the evolution of periodical cicadas.Am. Nat.194:38–46
      [Google Scholar]
    141. 141. 
      ToivonenJ,FromhageL.2020. Hybridization selects for prime-numbered life cycles inMagicicada: an individual-based simulation model of a structured periodical cicada population.Ecol. Evol.10:5259–69
      [Google Scholar]
    142. 142. 
      UrbanJM,CryanJR.2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea).BMC Evol. Biol.12:87
      [Google Scholar]
    143. 143. 
      Van LeuvenJT,MeisterRC,SimonC,McCutcheonJP2014. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one.Cell158:1270–80
      [Google Scholar]
    144. 144. 
      WadeEJ.2014.Species and hybridization: understanding the exchange of nuclear and mitochondrial DNA in song-delimited cicada species complexes PhD Diss., Univ. Conn. Storrs:
      [Google Scholar]
    145. 145. 
      WanekaG,VasquezYM,BennettGM,SloanDB.2021. Mutational pressure drives differential genome conservation in two bacterial endosymbionts of sap feeding insects. bioRxiv 2020.07.29.225037.https://doi.org/10.1101/2020.07.29.225037
      [Crossref]
    146. 146. 
      WatlingD.2012.MaiVeikau: Tales of Fijian Wildlife Suva, Fiji: Shell Fiji Ltd. , 2nd ed..
      [Google Scholar]
    147. 147. 
      WebbGF.2001. The prime number periodical cicada problem.Discrete Contin. Dyn. Syst. B1:387–99
      [Google Scholar]
    148. 148. 
      West-EberhardMJ.2003.Developmental Plasticity and Evolution Oxford, UK: Oxford Univ. Press
      [Google Scholar]
    149. 149. 
      WhilesMR,CallahamMAJr.,MeyerCK,BrockBL,CharltonRE.2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass and nitrogen flux.Am. Midland Nat.145:176–87
      [Google Scholar]
    150. 150. 
      WhiteJ.1980. Resource partitioning by ovipositing cicadas.Am. Nat.115:1–28
      [Google Scholar]
    151. 151. 
      WhiteJ.1981. Flagging: hosts defences versus oviposition strategies in periodical cicadas (Magicicada spp., Cicadidae, Homoptera).Can. Entomol113:727–38
      [Google Scholar]
    152. 152. 
      WhiteJ,LloydM.1981. On the stainability and mortality of periodical cicada eggs.Am. Midland Nat.106:219–28
      [Google Scholar]
    153. 153. 
      WhiteJA1973. Viable hybrid young from crossmated periodical cicadas.Ecology54:573–80Demonstrated that the Decim, Cassini, and Decula lineages could be experimentally cross-mated and produce eggs that hatch.
      [Google Scholar]
    154. 154. 
      WhiteJA,LloydM.1975. Growth rates of 17- and 13-year periodical cicadas.Am. Midland Nat.94:127–43
      [Google Scholar]
    155. 155. 
      WilliamsKS,SimonC.1995. The ecology, behavior, and evolution of periodical cicadas.Annu. Rev. Entomol.40:269–95
      [Google Scholar]
    156. 156. 
      WilliamsKS,SmithKG,StephenFM.1993. Emergence of 13-yr periodical cicadas (Cicadidae:Magicicada): phenology, mortality, and predator satiation.Ecology74:1143–52
      [Google Scholar]
    157. 157. 
      YangLH.2004. Periodical cicadas as resource pulses in North American forests.Science306:1565–67
      [Google Scholar]
    158. 158. 
      YangLH.2005. Interactions between a detrital resource pulse and a detritivore community.Oecologia147:522–32
      [Google Scholar]
    159. 159. 
      YangLH.2006. Periodical cicadas use light for oviposition site selection.Proc. R. Soc. B273:2993–3000
      [Google Scholar]
    160. 160. 
      YangLH.2008. Pulses of dead periodical cicadas increase herbivory of American bellflowers.Ecology89:1497–502
      [Google Scholar]
    161. 161. 
      YangLH.2012. Resource pulses of dead periodical cicadas increase the growth of American bellflower rosettes under competitive and non-competitive conditions.Arthropod-Plant Interact7:93–98
      [Google Scholar]
    162. 162. 
      YangLH,KarbanR.2009. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth.Am. Nat.173:105–12
      [Google Scholar]
    163. 163. 
      YangLH,KarbanR.2019. The effects of pulsed fertilization and chronic herbivory by periodical cicadas on tree growth.Ecology100:e02705
      [Google Scholar]
    164. 164. 
      YoshimuraJ.1997. The evolutionary origins of periodical cicadas during Ice Ages.Am. Nat.149:112–24
      [Google Scholar]
    165. 165. 
      YoshimuraJ,HayashiT,TanakaY,TainakaK,SimonC2009. Selection of prime-number intervals in a numerical model of periodical cicada evolution.Evolution63:288–94
      [Google Scholar]
    166. 166. 
      ZhangZ,WangH,WangY,XiF,WangH et al.2021. Whole-genome characterization of chronological age-associated changes in methylome and circular RNAs in moso bamboo (Phyllostachys edulis) from vegetative to floral growth.Plant J106:435–53
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-ento-072121-061108
    10.1146/annurev-ento-072121-061108
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp