Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Transposable Elements and the Evolution of Insects

Abstract

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-ento-070720-074650
    2021-01-07
    2026-02-17

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/en/66/1/annurev-ento-070720-074650.html?itemId=/content/journals/10.1146/annurev-ento-070720-074650&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. 
      AminetzachYT.2005. Pesticide resistance via transposition-mediated adaptive gene truncation inDrosophila.Science309:5735764–67
      [Google Scholar]
    2. 2. 
      AttardoGM,Abd-AllaAMM,Acosta-SerranoA,AllenJE,BatetaR et al.2019. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes.Genome Biol20:1187
      [Google Scholar]
    3. 3. 
      BarrónMG,Fiston-LavierA-S,PetrovDA,GonzálezJ2014. Population genomics of transposable elements inDrosophila.Annu. Rev. Genet48:561–81
      [Google Scholar]
    4. 4. 
      BartoloméC,BelloX,MasideX2009. Widespread evidence for horizontal transfer of transposable elements acrossDrosophila genomes.Genome Biol10:R22
      [Google Scholar]
    5. 5. 
      BartoloméC,MasideX,CharlesworthB2002. On the abundance and distribution of transposable elements in the genome ofDrosophila melanogaster.Mol. Biol. Evol19:6926–37
      [Google Scholar]
    6. 6. 
      BastJ,SchaeferI,SchwanderT,MaraunM,ScheuS,KraaijeveldK2016. No accumulation of transposable elements in asexual arthropods.Mol. Biol. Evol.33:3697–706
      [Google Scholar]
    7. 7. 
      BergmanCM,QuesnevilleH,AnxolabéhèreD,AshburnerM2006. Recurrent insertion and duplication generate networks of transposable element sequences in theDrosophila melanogaster genome.Genome Biol7:11R112
      [Google Scholar]
    8. 8. 
      BiémontC.2010. A brief history of the status of transposable elements: from junk DNA to major players in evolution.Genetics186:41085–93
      [Google Scholar]
    9. 9. 
      BiessmannH,ValgeirsdottirK,LofskyA,ChinC,GintherB et al.1992. HeT-A, a transposable element specifically involved in “healing” broken chromosome ends inDrosophila melanogaster.Mol. Cell. Biol12:93910–18
      [Google Scholar]
    10. 10. 
      BlumenstielJP,ChenX,HeM,BergmanCM2014. An age-of-allele test of neutrality for transposable element insertions.Genetics196:2523–38
      [Google Scholar]
    11. 11. 
      BonasioR,ZhangG,YeC,MuttiNS,FangX et al.2010. Genomic comparison of the antsCamponotus floridanus andHarpegnathos saltator.Science329:59951068–71
      [Google Scholar]
    12. 12. 
      BourgeoisY,BoissinotS.2019. On the population dynamics of junk: a review on the population genomics of transposable elements.Genes10:6419
      [Google Scholar]
    13. 13. 
      BourqueG,BurnsKH,GehringM,GorbunovaV,SeluanovA et al.2018. Ten things you should know about transposable elements.Genome Biol19:199
      [Google Scholar]
    14. 14. 
      BowenNJ,McDonaldJF.2001.Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside.Genome Res11:91527–40
      [Google Scholar]
    15. 15. 
      BrenneckeJ,AravinAA,StarkA,DusM,KellisM et al.2007. Discrete small RNA-generating loci as master regulators of transposon activity inDrosophila.Cell128:61089–103
      [Google Scholar]
    16. 16. 
      BrownEJ,NguyenAH,BachtrogD2019. The Y chromosome contributes to sex-specific aging inDrosophila. bioRxiv 156042.https://doi.org/10.1101/156042
      [Crossref]
    17. 17. 
      BuchetonA,ParoR,SangHM,PelissonA,FinneganDJ1984. The molecular basis of I-R hybrid dysgenesis inDrosophila melanogaster: identification, cloning, and properties of the I factor.Cell38:1153–63
      [Google Scholar]
    18. 18. 
      ChalopinD,VolffJ-N,GalianaD,AndersonJL,SchartlM2015. Transposable elements and early evolution of sex chromosomes in fish.Chromosome Res23:3545–60
      [Google Scholar]
    19. 19. 
      ChangC-H,ChavanA,PalladinoJ,WeiX,MartinsNMC et al.2019. Islands of retroelements are major components ofDrosophila centromeres.PLOS Biol17:5e3000241
      [Google Scholar]
    20. 20. 
      ChenB,ZhangB,XuL,LiQ,JiangF et al.2017. Transposable element-mediated balancing selection atHsp90 underlies embryo developmental variation.Mol. Biol. Evol.34:1127–39
      [Google Scholar]
    21. 21. 
      ChungH,BogwitzMR,McCartC,AndrianopoulosA,ffrench-ConstantRH et al.2007.Cis-regulatory elements in theAccord retrotransposon result in tissue-specific expression of theDrosophila melanogaster insecticide resistance geneCyp6g1.Genetics175:31071–77
      [Google Scholar]
    22. 22. 
      CordauxR,BatzerMA.2009. The impact of retrotransposons on human genome evolution.Nat. Rev. Genet.10:691–703
      [Google Scholar]
    23. 23. 
      CosbyRL,ChangN-C,FeschotteC2019. Host-transposon interactions: conflict, cooperation, and cooption.Genes Dev33:17–181098–116
      [Google Scholar]
    24. 24. 
      CraigNL,ChandlerM,GellertM,LambowitzAM,RicePA,SandmeyerSB2015.Mobile DNA III Sterlin, VA: Am. Soc. Microbiol.
      [Google Scholar]
    25. 25. 
      CridlandJM,MacdonaldSJ,LongAD,ThorntonKR2013. Abundance and distribution of transposable elements in twoDrosophila QTL mapping resources.Mol. Biol. Evol.30:102311–27
      [Google Scholar]
    26. 26. 
      DabornPJ,YenJL,BogwitzMR,Le GoffG,FeilE et al.2002. A single p450 allele associated with insecticide resistance inDrosophila.Science297:55902253–56
      [Google Scholar]
    27. 27. 
      DanielsSB,PetersonKR,StrausbaughLD,KidwellMG,ChovnickA1990. Evidence for horizontal transmission of the P transposable element betweenDrosophila species.Genetics124:339–55
      [Google Scholar]
    28. 28. 
      De CeccoM,CriscioneSW,PeckhamEJ,HillenmeyerS,HammEA et al.2013. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements.Aging Cell12:2247–56
      [Google Scholar]
    29. 29. 
      De CeccoM,CriscioneSW,PetersonAL,NerettiN,SedivyJM,KreilingJA2013. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.Aging5:12867–83
      [Google Scholar]
    30. 30. 
      DennisS,ShethU,FeldmanJL,EnglishKA,PriessJR2012.C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon.PLOS Pathogens8:3e1002591
      [Google Scholar]
    31. 31. 
      DriverCJ,McKechnieSW.1992. Transposable elements as a factor in the aging ofDrosophila melanogaster.Ann. N. Y. Acad. Sci673:83–91
      [Google Scholar]
    32. 32. 
      Drosophila 12 Genomes Consort.ClarkAG,EisenMB,SmithDR,BergmanCM et al.2007. Evolution of genes and genomes on theDrosophila phylogeny.Nature450:7167203–18
      [Google Scholar]
    33. 33. 
      EickbushT.2002. Fruit flies and humans respond differently to retrotransposons.Curr. Opin. Genet. Dev.12:6669–74
      [Google Scholar]
    34. 34. 
      EllisonCE,BachtrogD.2013. Dosage compensation via transposable element mediated rewiring of a regulatory network.Science342:6160846–50
      [Google Scholar]
    35. 35. 
      EllisonCE,BachtrogD.2015. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements.eLife4:e05899
      [Google Scholar]
    36. 36. 
      ElsnerD,MeusemannK,KorbJ2018. Longevity and transposon defense, the case of termite reproductives.PNAS115:215504–9
      [Google Scholar]
    37. 37. 
      FabrickJA,MathewLG,TabashnikBE,LiX2011. Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm,Pectinophora gossypiella: CR1 retrotransposon and Bt resistance.Insect Mol. Biol.20:5651–65
      [Google Scholar]
    38. 38. 
      FagegaltierD,BougéA-L,BerryB,PoisotÉ,SismeiroO et al.2009. The endogenous siRNA pathway is involved in heterochromatin formation inDrosophila.PNAS106:5021258–63
      [Google Scholar]
    39. 39. 
      FeschotteC,PrithamEJ.2007. DNA transposons and the evolution of eukaryotic genomes.Annu. Rev. Genet.41:331–68
      [Google Scholar]
    40. 40. 
      FonsecaPM,MouraRD,WallauGL,LoretoELS2019. The mobilome ofDrosophila incompta, a flower-breeding species: comparison of transposable element landscapes among generalist and specialist flies.Chromosome Res27:3203–19
      [Google Scholar]
    41. 41. 
      FraserMJ,SmithGE,SummersMD1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants ofAutographa californica andGalleria mellonella nuclear polyhedrosis viruses.J. Virol.47:287–300
      [Google Scholar]
    42. 42. 
      GadauJ,HelmkampfM,NygaardS,RouxJ,SimolaDF et al.2012. The genomic impact of 100 million years of social evolution in seven ant species.Trends Genet28:114–21
      [Google Scholar]
    43. 43. 
      GahanLJ,GouldF,HeckelDG2001. Identification of a gene associated with Bt resistance inHeliothis virescens.Science293:5531857–60
      [Google Scholar]
    44. 44. 
      GavotteL,MercerDR,StoeckleJJ,DobsonSL2010. Costs and benefits ofWolbachia infection in immatureAedes albopictus depend upon sex and competition level.J. Invertebr. Pathol.105:3341–46
      [Google Scholar]
    45. 45. 
      GilbertC,FeschotteC.2018. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.Curr. Opin. Genet. Dev.49:15–24
      [Google Scholar]
    46. 46. 
      GilbertC,PeccoudJ,ChateignerA,MoumenB,CordauxR,HerniouEA2016. Continuous influx of genetic material from host to virus populations.PLOS Genet12:e1005838
      [Google Scholar]
    47. 47. 
      GilbertC,SchaackS,PaceJK,BrindleyPJ,FeschotteC2010. A role for host-parasite interactions in the horizontal transfer of transposons across phyla.Nature464:1347–50
      [Google Scholar]
    48. 48. 
      GoicB,StaplefordKA,FrangeulL,DoucetAJ,GaussonV et al.2016. Virus-derived DNA drives mosquito vector tolerance to arboviral infection.Nat. Commun.7:12410
      [Google Scholar]
    49. 49. 
      GoicB,VodovarN,MondotteJA,MonotC,FrangeulL et al.2013. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect modelDrosophila.Nat. Immunol14:396–403
      [Google Scholar]
    50. 50. 
      GonzálezJ,KarasovTL,MesserPW,PetrovDA2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements inDrosophila.PLOS Genet6:4e1000905
      [Google Scholar]
    51. 51. 
      GonzálezJ,LenkovK,LipatovM,MacphersonJM,PetrovDA2008. High rate of recent transposable element–induced adaptation inDrosophila melanogaster.PLOS Biol6:10e251
      [Google Scholar]
    52. 52. 
      GonzálezJ,MacphersonJM,PetrovDA2009. A recent adaptive transposable element insertion near highly conserved developmental loci inDrosophila melanogaster.Mol. Biol. Evol26:91949–61
      [Google Scholar]
    53. 53. 
      GoubertC,HenriH,MinardG,Valiente MoroC,MavinguiP et al.2017. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments.Mol. Ecol.26:153968–81
      [Google Scholar]
    54. 54. 
      GuioL,BarrónMG,GonzálezJ2014. The transposable elementBari-Jheh mediates oxidative stress response inDrosophila.Mol. Ecol23:82020–30
      [Google Scholar]
    55. 55. 
      HanM-J,ZhouQ-Z,ZhangH-H,TongX,LuC et al.2016. iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects.Database2016:baw148
      [Google Scholar]
    56. 56. 
      HandlerAM,McCombsSD,FraserMJ,SaulSH1998. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly.PNAS95:137520–25
      [Google Scholar]
    57. 57. 
      HanlonS,HawleyR.2018. B chromosomes in theDrosophila genus.Genes9:10470
      [Google Scholar]
    58. 58. 
      HarrisonMC,JongepierE,RobertsonHM,ArningN,Bitard-FeildelT et al.2018. Hemimetabolous genomes reveal molecular basis of termite eusociality.Nat. Ecol. Evol.2:3557–66
      [Google Scholar]
    59. 59. 
      HimberC,DunoyerP,MoissiardG,RitzenthalerC,VoinnetO2003. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing.EMBO J22:174523–33
      [Google Scholar]
    60. 60. 
      HoltRA,SubramanianGM,HalpernA,SuttonGG,CharlabR et al.2002. The genome sequence of the malaria mosquitoAnopheles gambiae.Science298:5591129–49
      [Google Scholar]
    61. 61. 
      Honeybee Genome Seq. Consort.2006. Insights into social insects from the genome of the honeybeeApis mellifera.Nature443:7114931–49
      [Google Scholar]
    62. 62. 
      Hua-VanA,Le RouzicA,BoutinTS,FileeJ,CapyP2011. The struggle for life of the genome's selfish architects.Biol. Direct.6:19
      [Google Scholar]
    63. 63. 
      Int. Aphid Genomics Consort.2010. Genome sequence of the pea aphidAcyrthosiphon pisum.PLOS Biol8:2e1000313
      [Google Scholar]
    64. 64. 
      JoshiD,McFaddenMJ,BevinsD,ZhangF,XiZ2014.Wolbachia strain wAlbB confers both fitness costs and benefit onAnopheles stephensi.Parasites Vectors7:1336
      [Google Scholar]
    65. 65. 
      KaminkerJS,BergmanCM,KronmillerB,CarlsonJ,SvirskasR et al.2002. The transposable elements of theDrosophila melanogaster euchromatin: a genomics perspective.Genome Biol3:12research0084
      [Google Scholar]
    66. 66. 
      KanostMR,ArreseEL,CaoX,ChenYR,ChellapillaS et al.2016. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth,Manduca sexta.Insect Biochem. Mol. Biol.76:118–47
      [Google Scholar]
    67. 67. 
      KapheimKM,PanH,LiC,SalzbergSL,PuiuD et al.2015. Social evolution: genomic signatures of evolutionary transitions from solitary to group living.Science348:62391139–43
      [Google Scholar]
    68. 68. 
      KapitonovVV,JurkaJ.2003. Molecular paleontology of transposable elements in theDrosophila melanogaster genome.PNAS100:116569–74
      [Google Scholar]
    69. 69. 
      KelleherES.2016. Reexamining theP-element invasion ofDrosophila melanogaster through the lens of piRNA silencing.Genetics203:41513–31
      [Google Scholar]
    70. 70. 
      KelleyJL,PeytonJT,Fiston-LavierA-S,TeetsNM,YeeM-C et al.2014. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.Nat. Commun.5:4611
      [Google Scholar]
    71. 71. 
      KidwellMG,KidwellJF.1975. Cytoplasm-chromosome interactions inDrosophila melanogaster.Nature253:5494755–56
      [Google Scholar]
    72. 72. 
      KoflerR.2019. Dynamics of transposable element invasions with piRNA clusters.Mol. Biol. Evol.36:71457–72
      [Google Scholar]
    73. 73. 
      KoflerR,BetancourtAJ,SchlöttererC2012. Sequencing of pooled DNA samples (pool-seq) uncovers complex dynamics of transposable element insertions inDrosophila melanogaster.PLOS Genet8:1e1002487
      [Google Scholar]
    74. 74. 
      KoflerR,NolteV,SchlöttererC2015. Tempo and mode of transposable element activity inDrosophila.PLOS Genet11:7e1005406
      [Google Scholar]
    75. 75. 
      KorbJ,PoulsenM,HuH,LiC,BoomsmaJJ et al.2015. A genomic comparison of two termites with different social complexity.Front. Genet.6:9
      [Google Scholar]
    76. 76. 
      KraaijeveldK,ZwanenburgB,HubertB,VieiraC,De PaterS et al.2012. Transposon proliferation in an asexual parasitoid.Mol. Ecol.21:163898–906
      [Google Scholar]
    77. 77. 
      KurakuS,QiuH,MeyerA2012. Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys.Genome Biol. Evol.4:929–36
      [Google Scholar]
    78. 78. 
      Le RouzicA,DupasS,CapyP2007. Genome ecosystem and transposable elements species.Gene390:1–2214–20
      [Google Scholar]
    79. 79. 
      LeratE,GoubertC,Guirao‐RicoS,MerencianoM,DufourA et al.2019. Population‐specific dynamics and selection patterns of transposable element insertions in European natural populations.Mol. Ecol.28:61506–22
      [Google Scholar]
    80. 80. 
      LermanDN,FederME.2005. Naturally occurring transposable elements disrupt hsp70 promoter function inDrosophila melanogaster.Mol. Biol. Evol22:3776–83
      [Google Scholar]
    81. 81. 
      LewisSH,QuarlesKA,YangY,TanguyM,FrézalL et al.2018. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements.Nat. Ecol. Evol.2:1174–81
      [Google Scholar]
    82. 82. 
      LinheiroRS,BergmanCM.2012. Whole genome resequencing reveals natural target site preferences of transposable elements inDrosophila melanogaster.PLOS ONE7:2e30008
      [Google Scholar]
    83. 83. 
      LowerSS,JohnstonJS,Stanger-HallKF,HjelmenCE,HanrahanSJ et al.2017. Genome size in North American fireflies: substantial variation likely driven by neutral processes.Genome Biol. Evol.9:61499–512
      [Google Scholar]
    84. 84. 
      LucasER,KellerL.2018. New explanation for the longevity of social insect reproductives: transposable element activity.PNAS115:215317–18
      [Google Scholar]
    85. 85. 
      MagwireMM,BayerF,WebsterCL,CaoC,JigginsFM2011. Successive increases in the resistance ofDrosophila to viral infection through a transposon insertion followed by a duplication.PLOS Genet7:10e1002337
      [Google Scholar]
    86. 86. 
      MajumdarS,RioDC.2015. P transposable elements inDrosophila and other eukaryotic organisms.Microbiol. Spectr.3:2MDNA3-0004–2014
      [Google Scholar]
    87. 87. 
      MaraisGAB,GaillardJ-M,VieiraC,PlottonI,SanlavilleD et al.2018. Sex gap in aging and longevity: Can sex chromosomes play a role.Biol. Sex Differ.9:33
      [Google Scholar]
    88. 88. 
      MateoL,UllastresA,GonzálezJ2014. A transposable element insertion confers xenobiotic resistance inDrosophila.PLOS Genet10:8e1004560
      [Google Scholar]
    89. 89. 
      MaumusF,Fiston-LavierAS,QuesnevilleH2015. Impact of transposable elements on insect genomes and biology.Curr. Opin. Insect Sci.7:30–36
      [Google Scholar]
    90. 90. 
      MaxwellPH,BurhansWC,CurcioMJ2011. Retrotransposition is associated with genome instability during chronological aging.PNAS108:5120376–81
      [Google Scholar]
    91. 91. 
      McClintockB.1950. The origin and behavior of mutable loci in maize.PNAS36:6344–55
      [Google Scholar]
    92. 92. 
      MerencianoM,UllastresA,de CaraMAR,BarrónMG,GonzálezJ2016. Multiple independent retroelement insertions in the promoter of a stress response gene have variable molecular and functional effects inDrosophila.PLOS Genet12:8e1006249
      [Google Scholar]
    93. 93. 
      MiesenP,JoostenJ,van RijRP2016. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes.PLOS Pathogens12:12e1006017
      [Google Scholar]
    94. 94. 
      MillerWJ,McDonaldJF,NouaudD,AnxolabéhèreD1999. Molecular domestication: more than a sporadic episode in evolution.Genetica107:1–3197–207
      [Google Scholar]
    95. 95. 
      NeafseyDE,WaterhouseRM,AbaiMR,AganezovSS,AlekseyevMA et al.2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16Anopheles mosquitoes.Science347:62171258522
      [Google Scholar]
    96. 96. 
      NeneV,WortmanJR,LawsonD,HaasB,KodiraC et al.2007. Genome sequence ofAedes aegypti, a major arbovirus vector.Science316:58321718–23
      [Google Scholar]
    97. 97. 
      OliverKR,GreeneWK.2012. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis.Ecol. Evol.2:112912–33
      [Google Scholar]
    98. 98. 
      OrtizMF,WallauGL,GraichenDA,LoretoEL2015. An evaluation of the ecological relationship betweenDrosophila species and their parasitoid wasps as an opportunity for horizontal transposon transfer.Mol. Genet. Genom.290:67–78
      [Google Scholar]
    99. 99. 
      Osanai-FutahashiM,SuetsuguY,MitaK,FujiwaraH2008. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm,Bombyx mori.Insect Biochem. Mol. Biol.38:121046–57
      [Google Scholar]
    100. 100. 
      PardueM-L,DeBaryshePG.2011. Retrotransposons that maintain chromosome ends.PNAS108:5120317–24
      [Google Scholar]
    101. 101. 
      ParicioN,Pèrez-AlonsoM,Martinez-SebastiánMJ,de FrutosR1991. P sequences ofDrosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein.Nucleic Acids Res19:246713–18
      [Google Scholar]
    102. 102. 
      PeccoudJ,LoiseauV,CordauxR,GilbertC2017. Massive horizontal transfer of transposable elements in insects.PNAS114:184721–26
      [Google Scholar]
    103. 103. 
      PengJC,KarpenGH.2007. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability.Nat. Cell Biol.9:125–35
      [Google Scholar]
    104. 104. 
      PetersenM,ArmisénD,GibbsRA,HeringL,KhilaA et al.2019. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects.BMC Evol. Biol.19:111
      [Google Scholar]
    105. 105. 
      PetrovDA,Fiston-LavierA-S,LipatovM,LenkovK,GonzalezJ2011. Population genomics of transposable elements inDrosophila melanogaster.Mol. Biol. Evol28:51633–44
      [Google Scholar]
    106. 106. 
      PoirierEZ,GoicB,Tomé-PodertiL,FrangeulL,BoussierJ et al.2018. Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects.Cell Host Microbe23:3353–65.e8
      [Google Scholar]
    107. 107. 
      QuesnevilleH,NouaudD,AnxolabehereD2005. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element.Mol. Biol. Evol.22:3741–46
      [Google Scholar]
    108. 108. 
      RahmanR,ChirnG,KanodiaA,SytnikovaYA,BrembsB et al.2015. Unique transposon landscapes are pervasive acrossDrosophila melanogaster genomes.Nucleic Acids Res43:2210655–72
      [Google Scholar]
    109. 109. 
      RayDA,GrimshawJR,HalseyMK,KorstianJM,OsmanskiAB et al.2019. Simultaneous TE analysis of 19 heliconiine butterflies yields novel insights into rapid TE-based genome diversification and multiple SINE births and deaths.Genome Biol Evol11:82162–77
      [Google Scholar]
    110. 110. 
      RechGE,Bogaerts-MárquezM,BarrónMG,MerencianoM,Villanueva-CañasJL et al.2019. Stress response, behavior, and development are shaped by transposable element-induced mutations inDrosophila.PLOS Genet15:2e1007900
      [Google Scholar]
    111. 111. 
      ReissD,MialdeaG,MieleV,de VienneDM,PeccoudJ et al.2019. Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot.PLOS Genet15:2e1007965
      [Google Scholar]
    112. 112. 
      RemnantEJ,GoodRT,SchmidtJM,LumbC,RobinC et al.2013. Gene duplication in the major insecticide target site,Rdl, inDrosophila melanogaster.PNAS110:3614705–10
      [Google Scholar]
    113. 113. 
      RiusN,GuillenY,DelpratA,KapustaA,FeschotteC,RuizA2016. Exploration of theDrosophila buzzatii transposable element content suggests underestimation of repeats inDrosophila genomes.BMC Genom17:344
      [Google Scholar]
    114. 114. 
      RobillardÉ,Le RouzicA,ZhangZ,CapyP,Hua-VanA2016. Experimental evolution reveals hyperparasitic interactions among transposable elements.PNAS113:5114763–68
      [Google Scholar]
    115. 115. 
      RostantWG,WedellN,HoskenDJ2012. Transposable elements and insecticide resistance.Adv. Genet.78:169–201
      [Google Scholar]
    116. 116. 
      SaddBM,BarribeauSM,BlochG,de GraafDC,DeardenP et al.2015. The genomes of two key bumblebee species with primitive eusocial organization.Genome Biol16:76
      [Google Scholar]
    117. 117. 
      Saint-LeandreB,NguyenSC,LevineMT2019. Diversification and collapse of a telomere elongation mechanism.Genome Res29:6920–31
      [Google Scholar]
    118. 118. 
      SchaackS,PrithamEJ,WolfA,LynchM2010. DNA transposon dynamics in populations ofDaphnia pulex with and without sex.Proc. Biol. Sci.277:16922381–87
      [Google Scholar]
    119. 119. 
      SchmidtJM,GoodRT,AppletonB,SherrardJ,RaymantGC et al.2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus.PLOS Genet6:6e1000998
      [Google Scholar]
    120. 120. 
      SchraderL,KimJW,EnceD,ZiminA,KleinA et al.2014. Transposable element islands facilitate adaptation to novel environments in an invasive species.Nat. Commun.5:5495
      [Google Scholar]
    121. 121. 
      SessegoloC,BurletN,HaudryA2016. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies.Biol. Lett.12:820160407
      [Google Scholar]
    122. 122. 
      SiguierP,GourbeyreE,ChandlerM2014. Bacterial insertion sequences: their genomic impact and diversity.FEMS Microbiol. Rev.38:5865–91
      [Google Scholar]
    123. 123. 
      SijenT,FleenorJ,SimmerF,ThijssenKL,ParrishS et al.2001. On the role of RNA amplification in dsRNA-triggered gene silencing.Cell107:4465–76
      [Google Scholar]
    124. 124. 
      SpradlingA,RubinG.1982. Transposition of cloned P elements intoDrosophila germ line chromosomes.Science218:4570341–47
      [Google Scholar]
    125. 125. 
      StapleyJ,SantureAW,DennisSR2015. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.Mol. Ecol.24:92241–52
      [Google Scholar]
    126. 126. 
      SuenG,TeilingC,LiL,HoltC,AbouheifE et al.2011. The genome sequence of the leaf-cutter antAtta cephalotes reveals insights into its obligate symbiotic lifestyle.PLOS Genet7:2e1002007
      [Google Scholar]
    127. 127. 
      SuhA,WittCC,MengerJ,SadanandanKR,PodsiadlowskiL et al.2016. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes.Nat. Commun.7:11396
      [Google Scholar]
    128. 128. 
      SzitenbergA,ChaS,OppermanCH,BirdDM,BlaxterML,LuntDH2016. Genetic drift, not life history or RNAi, determine long-term evolution of transposable elements.Genome Biol. Evol.8:92964–78
      [Google Scholar]
    129. 129. 
      TallaV,SuhA,KalsoomF,DincăV,VilaR et al.2017. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies.Genome Biol. Evol.9:102491–505
      [Google Scholar]
    130. 130. 
      TassettoM,KunitomiM,AndinoR2017. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response inDrosophila.Cell169:2314–25.e13
      [Google Scholar]
    131. 131. 
      TassettoM,KunitomiM,WhitfieldZJ,DolanPT,Sánchez-VargasI et al.2019. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements.eLife8:e41244
      [Google Scholar]
    132. 132. 
      UllastresA,PetitN,GonzálezJ2015. Exploring the phenotypic space and the evolutionary history of a natural mutation inDrosophila melanogaster.Mol. Biol. Evol32:71800–14
      [Google Scholar]
    133. 133. 
      van RijRP,SalehM-C,BerryB,FooC,HoukA et al.2006. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity inDrosophila melanogaster.Genes Dev20:212985–95
      [Google Scholar]
    134. 134. 
      van't HofAE,CampagneP,RigdenDJ,YungCJ,LingleyJ et al.2016. The industrial melanism mutation in British peppered moths is a transposable element.Nature534:7605102–5
      [Google Scholar]
    135. 135. 
      VennerS,MieleV,TerzianC,BiémontC,DaubinV et al.2017. Ecological networks to unravel the routes to horizontal transposon transfers.PLOS Biol15:2e2001536
      [Google Scholar]
    136. 136. 
      VogtA,GoldmanAD,MochizukiK,LandweberLF2013. Transposon domestication versus mutualism in ciliate genome rearrangements.PLOS Genet9:8e1003659
      [Google Scholar]
    137. 137. 
      WalshAM,KortschakRD,GardnerMG,BertozziT,AdelsonDL2013. Widespread horizontal transfer of retrotransposons.PNAS110:31012–16
      [Google Scholar]
    138. 138. 
      WangL,WangJ,MaY,WanP,LiuK et al.2019. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China.Sci. Rep.9:7479
      [Google Scholar]
    139. 139. 
      WangS,LorenzenMD,BeemanRW,BrownSJ2008. Analysis of repetitive DNA distribution patterns in theTribolium castaneum genome.Genome Biol9:3R61
      [Google Scholar]
    140. 140. 
      WangX,FangX,YangP,JiangX,JiangF et al.2014. The locust genome provides insight into swarm formation and long-distance flight.Nat. Commun.5:2957
      [Google Scholar]
    141. 141. 
      WangX,LiuX.2016. Close ecological relationship among species facilitated horizontal transfer of retrotransposons.BMC Evol. Biol.16:201
      [Google Scholar]
    142. 142. 
      WhiteJA,KellySE,CockburnSN,PerlmanSJ,HunterMS2011. Endosymbiont costs and benefits in a parasitoid infected with bothWolbachia andCardinium.Heredity106:4585–91
      [Google Scholar]
    143. 143. 
      WhitfieldZJ,DolanPT,KunitomiM,TassettoM,SeetinMG et al.2017. The diversity, structure, and function of heritable adaptive immunity sequences in theAedes aegypti genome.Curr. Biol.27:223511–19.e7
      [Google Scholar]
    144. 144. 
      WickerT,SabotF,Hua-VanA,BennetzenJL,CapyP et al.2007. A unified classification system for eukaryotic transposable elements.Nat. Rev. Genet.8:12973–82
      [Google Scholar]
    145. 145. 
      WoodJG,HelfandSL.2013. Chromatin structure and transposable elements in organismal aging.Front. Genet.4:274
      [Google Scholar]
    146. 146. 
      WoodJG,JonesBC,JiangN,ChangC,HosierS et al.2016. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span inDrosophila.PNAS113:4011277–82
      [Google Scholar]
    147. 147. 
      WoronikA,TunströmK,PerryMW,NeethirajR,StefanescuC et al.2019. A transposable element insertion is associated with an alternative life history strategy.Nat. Commun.10:15757
      [Google Scholar]
    148. 148. 
      WuC,LuJ.2019. Diversification of transposable elements in arthropods and its impact on genome evolution.Genes10:5338
      [Google Scholar]
    149. 149. 
      XiaoJ-H,YueZ,JiaL-Y,YangX-H,NiuL-H et al.2013. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.Genome Biol14:12R141
      [Google Scholar]
    150. 150. 
      ZanniV,EymeryA,CoiffetM,ZytnickiM,LuytenI et al.2013. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters.PNAS110:4919842–47
      [Google Scholar]
    /content/journals/10.1146/annurev-ento-070720-074650
    Loading
    Transposable Elements and the Evolution of Insects
    Annual Review of Entomology66, 355 (2021);https://doi.org/10.1146/annurev-ento-070720-074650
    /content/journals/10.1146/annurev-ento-070720-074650
    /content/journals/10.1146/annurev-ento-070720-074650
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/ento
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-ento-070720-074650
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. 
      AminetzachYT.2005. Pesticide resistance via transposition-mediated adaptive gene truncation inDrosophila.Science309:5735764–67
      [Google Scholar]
    2. 2. 
      AttardoGM,Abd-AllaAMM,Acosta-SerranoA,AllenJE,BatetaR et al.2019. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes.Genome Biol20:1187
      [Google Scholar]
    3. 3. 
      BarrónMG,Fiston-LavierA-S,PetrovDA,GonzálezJ2014. Population genomics of transposable elements inDrosophila.Annu. Rev. Genet48:561–81
      [Google Scholar]
    4. 4. 
      BartoloméC,BelloX,MasideX2009. Widespread evidence for horizontal transfer of transposable elements acrossDrosophila genomes.Genome Biol10:R22
      [Google Scholar]
    5. 5. 
      BartoloméC,MasideX,CharlesworthB2002. On the abundance and distribution of transposable elements in the genome ofDrosophila melanogaster.Mol. Biol. Evol19:6926–37
      [Google Scholar]
    6. 6. 
      BastJ,SchaeferI,SchwanderT,MaraunM,ScheuS,KraaijeveldK2016. No accumulation of transposable elements in asexual arthropods.Mol. Biol. Evol.33:3697–706
      [Google Scholar]
    7. 7. 
      BergmanCM,QuesnevilleH,AnxolabéhèreD,AshburnerM2006. Recurrent insertion and duplication generate networks of transposable element sequences in theDrosophila melanogaster genome.Genome Biol7:11R112
      [Google Scholar]
    8. 8. 
      BiémontC.2010. A brief history of the status of transposable elements: from junk DNA to major players in evolution.Genetics186:41085–93
      [Google Scholar]
    9. 9. 
      BiessmannH,ValgeirsdottirK,LofskyA,ChinC,GintherB et al.1992. HeT-A, a transposable element specifically involved in “healing” broken chromosome ends inDrosophila melanogaster.Mol. Cell. Biol12:93910–18
      [Google Scholar]
    10. 10. 
      BlumenstielJP,ChenX,HeM,BergmanCM2014. An age-of-allele test of neutrality for transposable element insertions.Genetics196:2523–38
      [Google Scholar]
    11. 11. 
      BonasioR,ZhangG,YeC,MuttiNS,FangX et al.2010. Genomic comparison of the antsCamponotus floridanus andHarpegnathos saltator.Science329:59951068–71
      [Google Scholar]
    12. 12. 
      BourgeoisY,BoissinotS.2019. On the population dynamics of junk: a review on the population genomics of transposable elements.Genes10:6419
      [Google Scholar]
    13. 13. 
      BourqueG,BurnsKH,GehringM,GorbunovaV,SeluanovA et al.2018. Ten things you should know about transposable elements.Genome Biol19:199
      [Google Scholar]
    14. 14. 
      BowenNJ,McDonaldJF.2001.Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside.Genome Res11:91527–40
      [Google Scholar]
    15. 15. 
      BrenneckeJ,AravinAA,StarkA,DusM,KellisM et al.2007. Discrete small RNA-generating loci as master regulators of transposon activity inDrosophila.Cell128:61089–103
      [Google Scholar]
    16. 16. 
      BrownEJ,NguyenAH,BachtrogD2019. The Y chromosome contributes to sex-specific aging inDrosophila. bioRxiv 156042.https://doi.org/10.1101/156042
      [Crossref]
    17. 17. 
      BuchetonA,ParoR,SangHM,PelissonA,FinneganDJ1984. The molecular basis of I-R hybrid dysgenesis inDrosophila melanogaster: identification, cloning, and properties of the I factor.Cell38:1153–63
      [Google Scholar]
    18. 18. 
      ChalopinD,VolffJ-N,GalianaD,AndersonJL,SchartlM2015. Transposable elements and early evolution of sex chromosomes in fish.Chromosome Res23:3545–60
      [Google Scholar]
    19. 19. 
      ChangC-H,ChavanA,PalladinoJ,WeiX,MartinsNMC et al.2019. Islands of retroelements are major components ofDrosophila centromeres.PLOS Biol17:5e3000241
      [Google Scholar]
    20. 20. 
      ChenB,ZhangB,XuL,LiQ,JiangF et al.2017. Transposable element-mediated balancing selection atHsp90 underlies embryo developmental variation.Mol. Biol. Evol.34:1127–39
      [Google Scholar]
    21. 21. 
      ChungH,BogwitzMR,McCartC,AndrianopoulosA,ffrench-ConstantRH et al.2007.Cis-regulatory elements in theAccord retrotransposon result in tissue-specific expression of theDrosophila melanogaster insecticide resistance geneCyp6g1.Genetics175:31071–77
      [Google Scholar]
    22. 22. 
      CordauxR,BatzerMA.2009. The impact of retrotransposons on human genome evolution.Nat. Rev. Genet.10:691–703
      [Google Scholar]
    23. 23. 
      CosbyRL,ChangN-C,FeschotteC2019. Host-transposon interactions: conflict, cooperation, and cooption.Genes Dev33:17–181098–116
      [Google Scholar]
    24. 24. 
      CraigNL,ChandlerM,GellertM,LambowitzAM,RicePA,SandmeyerSB2015.Mobile DNA III Sterlin, VA: Am. Soc. Microbiol.
      [Google Scholar]
    25. 25. 
      CridlandJM,MacdonaldSJ,LongAD,ThorntonKR2013. Abundance and distribution of transposable elements in twoDrosophila QTL mapping resources.Mol. Biol. Evol.30:102311–27
      [Google Scholar]
    26. 26. 
      DabornPJ,YenJL,BogwitzMR,Le GoffG,FeilE et al.2002. A single p450 allele associated with insecticide resistance inDrosophila.Science297:55902253–56
      [Google Scholar]
    27. 27. 
      DanielsSB,PetersonKR,StrausbaughLD,KidwellMG,ChovnickA1990. Evidence for horizontal transmission of the P transposable element betweenDrosophila species.Genetics124:339–55
      [Google Scholar]
    28. 28. 
      De CeccoM,CriscioneSW,PeckhamEJ,HillenmeyerS,HammEA et al.2013. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements.Aging Cell12:2247–56
      [Google Scholar]
    29. 29. 
      De CeccoM,CriscioneSW,PetersonAL,NerettiN,SedivyJM,KreilingJA2013. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.Aging5:12867–83
      [Google Scholar]
    30. 30. 
      DennisS,ShethU,FeldmanJL,EnglishKA,PriessJR2012.C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon.PLOS Pathogens8:3e1002591
      [Google Scholar]
    31. 31. 
      DriverCJ,McKechnieSW.1992. Transposable elements as a factor in the aging ofDrosophila melanogaster.Ann. N. Y. Acad. Sci673:83–91
      [Google Scholar]
    32. 32. 
      Drosophila 12 Genomes Consort.ClarkAG,EisenMB,SmithDR,BergmanCM et al.2007. Evolution of genes and genomes on theDrosophila phylogeny.Nature450:7167203–18
      [Google Scholar]
    33. 33. 
      EickbushT.2002. Fruit flies and humans respond differently to retrotransposons.Curr. Opin. Genet. Dev.12:6669–74
      [Google Scholar]
    34. 34. 
      EllisonCE,BachtrogD.2013. Dosage compensation via transposable element mediated rewiring of a regulatory network.Science342:6160846–50
      [Google Scholar]
    35. 35. 
      EllisonCE,BachtrogD.2015. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements.eLife4:e05899
      [Google Scholar]
    36. 36. 
      ElsnerD,MeusemannK,KorbJ2018. Longevity and transposon defense, the case of termite reproductives.PNAS115:215504–9
      [Google Scholar]
    37. 37. 
      FabrickJA,MathewLG,TabashnikBE,LiX2011. Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm,Pectinophora gossypiella: CR1 retrotransposon and Bt resistance.Insect Mol. Biol.20:5651–65
      [Google Scholar]
    38. 38. 
      FagegaltierD,BougéA-L,BerryB,PoisotÉ,SismeiroO et al.2009. The endogenous siRNA pathway is involved in heterochromatin formation inDrosophila.PNAS106:5021258–63
      [Google Scholar]
    39. 39. 
      FeschotteC,PrithamEJ.2007. DNA transposons and the evolution of eukaryotic genomes.Annu. Rev. Genet.41:331–68
      [Google Scholar]
    40. 40. 
      FonsecaPM,MouraRD,WallauGL,LoretoELS2019. The mobilome ofDrosophila incompta, a flower-breeding species: comparison of transposable element landscapes among generalist and specialist flies.Chromosome Res27:3203–19
      [Google Scholar]
    41. 41. 
      FraserMJ,SmithGE,SummersMD1983. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants ofAutographa californica andGalleria mellonella nuclear polyhedrosis viruses.J. Virol.47:287–300
      [Google Scholar]
    42. 42. 
      GadauJ,HelmkampfM,NygaardS,RouxJ,SimolaDF et al.2012. The genomic impact of 100 million years of social evolution in seven ant species.Trends Genet28:114–21
      [Google Scholar]
    43. 43. 
      GahanLJ,GouldF,HeckelDG2001. Identification of a gene associated with Bt resistance inHeliothis virescens.Science293:5531857–60
      [Google Scholar]
    44. 44. 
      GavotteL,MercerDR,StoeckleJJ,DobsonSL2010. Costs and benefits ofWolbachia infection in immatureAedes albopictus depend upon sex and competition level.J. Invertebr. Pathol.105:3341–46
      [Google Scholar]
    45. 45. 
      GilbertC,FeschotteC.2018. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.Curr. Opin. Genet. Dev.49:15–24
      [Google Scholar]
    46. 46. 
      GilbertC,PeccoudJ,ChateignerA,MoumenB,CordauxR,HerniouEA2016. Continuous influx of genetic material from host to virus populations.PLOS Genet12:e1005838
      [Google Scholar]
    47. 47. 
      GilbertC,SchaackS,PaceJK,BrindleyPJ,FeschotteC2010. A role for host-parasite interactions in the horizontal transfer of transposons across phyla.Nature464:1347–50
      [Google Scholar]
    48. 48. 
      GoicB,StaplefordKA,FrangeulL,DoucetAJ,GaussonV et al.2016. Virus-derived DNA drives mosquito vector tolerance to arboviral infection.Nat. Commun.7:12410
      [Google Scholar]
    49. 49. 
      GoicB,VodovarN,MondotteJA,MonotC,FrangeulL et al.2013. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect modelDrosophila.Nat. Immunol14:396–403
      [Google Scholar]
    50. 50. 
      GonzálezJ,KarasovTL,MesserPW,PetrovDA2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements inDrosophila.PLOS Genet6:4e1000905
      [Google Scholar]
    51. 51. 
      GonzálezJ,LenkovK,LipatovM,MacphersonJM,PetrovDA2008. High rate of recent transposable element–induced adaptation inDrosophila melanogaster.PLOS Biol6:10e251
      [Google Scholar]
    52. 52. 
      GonzálezJ,MacphersonJM,PetrovDA2009. A recent adaptive transposable element insertion near highly conserved developmental loci inDrosophila melanogaster.Mol. Biol. Evol26:91949–61
      [Google Scholar]
    53. 53. 
      GoubertC,HenriH,MinardG,Valiente MoroC,MavinguiP et al.2017. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments.Mol. Ecol.26:153968–81
      [Google Scholar]
    54. 54. 
      GuioL,BarrónMG,GonzálezJ2014. The transposable elementBari-Jheh mediates oxidative stress response inDrosophila.Mol. Ecol23:82020–30
      [Google Scholar]
    55. 55. 
      HanM-J,ZhouQ-Z,ZhangH-H,TongX,LuC et al.2016. iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects.Database2016:baw148
      [Google Scholar]
    56. 56. 
      HandlerAM,McCombsSD,FraserMJ,SaulSH1998. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly.PNAS95:137520–25
      [Google Scholar]
    57. 57. 
      HanlonS,HawleyR.2018. B chromosomes in theDrosophila genus.Genes9:10470
      [Google Scholar]
    58. 58. 
      HarrisonMC,JongepierE,RobertsonHM,ArningN,Bitard-FeildelT et al.2018. Hemimetabolous genomes reveal molecular basis of termite eusociality.Nat. Ecol. Evol.2:3557–66
      [Google Scholar]
    59. 59. 
      HimberC,DunoyerP,MoissiardG,RitzenthalerC,VoinnetO2003. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing.EMBO J22:174523–33
      [Google Scholar]
    60. 60. 
      HoltRA,SubramanianGM,HalpernA,SuttonGG,CharlabR et al.2002. The genome sequence of the malaria mosquitoAnopheles gambiae.Science298:5591129–49
      [Google Scholar]
    61. 61. 
      Honeybee Genome Seq. Consort.2006. Insights into social insects from the genome of the honeybeeApis mellifera.Nature443:7114931–49
      [Google Scholar]
    62. 62. 
      Hua-VanA,Le RouzicA,BoutinTS,FileeJ,CapyP2011. The struggle for life of the genome's selfish architects.Biol. Direct.6:19
      [Google Scholar]
    63. 63. 
      Int. Aphid Genomics Consort.2010. Genome sequence of the pea aphidAcyrthosiphon pisum.PLOS Biol8:2e1000313
      [Google Scholar]
    64. 64. 
      JoshiD,McFaddenMJ,BevinsD,ZhangF,XiZ2014.Wolbachia strain wAlbB confers both fitness costs and benefit onAnopheles stephensi.Parasites Vectors7:1336
      [Google Scholar]
    65. 65. 
      KaminkerJS,BergmanCM,KronmillerB,CarlsonJ,SvirskasR et al.2002. The transposable elements of theDrosophila melanogaster euchromatin: a genomics perspective.Genome Biol3:12research0084
      [Google Scholar]
    66. 66. 
      KanostMR,ArreseEL,CaoX,ChenYR,ChellapillaS et al.2016. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth,Manduca sexta.Insect Biochem. Mol. Biol.76:118–47
      [Google Scholar]
    67. 67. 
      KapheimKM,PanH,LiC,SalzbergSL,PuiuD et al.2015. Social evolution: genomic signatures of evolutionary transitions from solitary to group living.Science348:62391139–43
      [Google Scholar]
    68. 68. 
      KapitonovVV,JurkaJ.2003. Molecular paleontology of transposable elements in theDrosophila melanogaster genome.PNAS100:116569–74
      [Google Scholar]
    69. 69. 
      KelleherES.2016. Reexamining theP-element invasion ofDrosophila melanogaster through the lens of piRNA silencing.Genetics203:41513–31
      [Google Scholar]
    70. 70. 
      KelleyJL,PeytonJT,Fiston-LavierA-S,TeetsNM,YeeM-C et al.2014. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.Nat. Commun.5:4611
      [Google Scholar]
    71. 71. 
      KidwellMG,KidwellJF.1975. Cytoplasm-chromosome interactions inDrosophila melanogaster.Nature253:5494755–56
      [Google Scholar]
    72. 72. 
      KoflerR.2019. Dynamics of transposable element invasions with piRNA clusters.Mol. Biol. Evol.36:71457–72
      [Google Scholar]
    73. 73. 
      KoflerR,BetancourtAJ,SchlöttererC2012. Sequencing of pooled DNA samples (pool-seq) uncovers complex dynamics of transposable element insertions inDrosophila melanogaster.PLOS Genet8:1e1002487
      [Google Scholar]
    74. 74. 
      KoflerR,NolteV,SchlöttererC2015. Tempo and mode of transposable element activity inDrosophila.PLOS Genet11:7e1005406
      [Google Scholar]
    75. 75. 
      KorbJ,PoulsenM,HuH,LiC,BoomsmaJJ et al.2015. A genomic comparison of two termites with different social complexity.Front. Genet.6:9
      [Google Scholar]
    76. 76. 
      KraaijeveldK,ZwanenburgB,HubertB,VieiraC,De PaterS et al.2012. Transposon proliferation in an asexual parasitoid.Mol. Ecol.21:163898–906
      [Google Scholar]
    77. 77. 
      KurakuS,QiuH,MeyerA2012. Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys.Genome Biol. Evol.4:929–36
      [Google Scholar]
    78. 78. 
      Le RouzicA,DupasS,CapyP2007. Genome ecosystem and transposable elements species.Gene390:1–2214–20
      [Google Scholar]
    79. 79. 
      LeratE,GoubertC,Guirao‐RicoS,MerencianoM,DufourA et al.2019. Population‐specific dynamics and selection patterns of transposable element insertions in European natural populations.Mol. Ecol.28:61506–22
      [Google Scholar]
    80. 80. 
      LermanDN,FederME.2005. Naturally occurring transposable elements disrupt hsp70 promoter function inDrosophila melanogaster.Mol. Biol. Evol22:3776–83
      [Google Scholar]
    81. 81. 
      LewisSH,QuarlesKA,YangY,TanguyM,FrézalL et al.2018. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements.Nat. Ecol. Evol.2:1174–81
      [Google Scholar]
    82. 82. 
      LinheiroRS,BergmanCM.2012. Whole genome resequencing reveals natural target site preferences of transposable elements inDrosophila melanogaster.PLOS ONE7:2e30008
      [Google Scholar]
    83. 83. 
      LowerSS,JohnstonJS,Stanger-HallKF,HjelmenCE,HanrahanSJ et al.2017. Genome size in North American fireflies: substantial variation likely driven by neutral processes.Genome Biol. Evol.9:61499–512
      [Google Scholar]
    84. 84. 
      LucasER,KellerL.2018. New explanation for the longevity of social insect reproductives: transposable element activity.PNAS115:215317–18
      [Google Scholar]
    85. 85. 
      MagwireMM,BayerF,WebsterCL,CaoC,JigginsFM2011. Successive increases in the resistance ofDrosophila to viral infection through a transposon insertion followed by a duplication.PLOS Genet7:10e1002337
      [Google Scholar]
    86. 86. 
      MajumdarS,RioDC.2015. P transposable elements inDrosophila and other eukaryotic organisms.Microbiol. Spectr.3:2MDNA3-0004–2014
      [Google Scholar]
    87. 87. 
      MaraisGAB,GaillardJ-M,VieiraC,PlottonI,SanlavilleD et al.2018. Sex gap in aging and longevity: Can sex chromosomes play a role.Biol. Sex Differ.9:33
      [Google Scholar]
    88. 88. 
      MateoL,UllastresA,GonzálezJ2014. A transposable element insertion confers xenobiotic resistance inDrosophila.PLOS Genet10:8e1004560
      [Google Scholar]
    89. 89. 
      MaumusF,Fiston-LavierAS,QuesnevilleH2015. Impact of transposable elements on insect genomes and biology.Curr. Opin. Insect Sci.7:30–36
      [Google Scholar]
    90. 90. 
      MaxwellPH,BurhansWC,CurcioMJ2011. Retrotransposition is associated with genome instability during chronological aging.PNAS108:5120376–81
      [Google Scholar]
    91. 91. 
      McClintockB.1950. The origin and behavior of mutable loci in maize.PNAS36:6344–55
      [Google Scholar]
    92. 92. 
      MerencianoM,UllastresA,de CaraMAR,BarrónMG,GonzálezJ2016. Multiple independent retroelement insertions in the promoter of a stress response gene have variable molecular and functional effects inDrosophila.PLOS Genet12:8e1006249
      [Google Scholar]
    93. 93. 
      MiesenP,JoostenJ,van RijRP2016. PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes.PLOS Pathogens12:12e1006017
      [Google Scholar]
    94. 94. 
      MillerWJ,McDonaldJF,NouaudD,AnxolabéhèreD1999. Molecular domestication: more than a sporadic episode in evolution.Genetica107:1–3197–207
      [Google Scholar]
    95. 95. 
      NeafseyDE,WaterhouseRM,AbaiMR,AganezovSS,AlekseyevMA et al.2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16Anopheles mosquitoes.Science347:62171258522
      [Google Scholar]
    96. 96. 
      NeneV,WortmanJR,LawsonD,HaasB,KodiraC et al.2007. Genome sequence ofAedes aegypti, a major arbovirus vector.Science316:58321718–23
      [Google Scholar]
    97. 97. 
      OliverKR,GreeneWK.2012. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis.Ecol. Evol.2:112912–33
      [Google Scholar]
    98. 98. 
      OrtizMF,WallauGL,GraichenDA,LoretoEL2015. An evaluation of the ecological relationship betweenDrosophila species and their parasitoid wasps as an opportunity for horizontal transposon transfer.Mol. Genet. Genom.290:67–78
      [Google Scholar]
    99. 99. 
      Osanai-FutahashiM,SuetsuguY,MitaK,FujiwaraH2008. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm,Bombyx mori.Insect Biochem. Mol. Biol.38:121046–57
      [Google Scholar]
    100. 100. 
      PardueM-L,DeBaryshePG.2011. Retrotransposons that maintain chromosome ends.PNAS108:5120317–24
      [Google Scholar]
    101. 101. 
      ParicioN,Pèrez-AlonsoM,Martinez-SebastiánMJ,de FrutosR1991. P sequences ofDrosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein.Nucleic Acids Res19:246713–18
      [Google Scholar]
    102. 102. 
      PeccoudJ,LoiseauV,CordauxR,GilbertC2017. Massive horizontal transfer of transposable elements in insects.PNAS114:184721–26
      [Google Scholar]
    103. 103. 
      PengJC,KarpenGH.2007. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability.Nat. Cell Biol.9:125–35
      [Google Scholar]
    104. 104. 
      PetersenM,ArmisénD,GibbsRA,HeringL,KhilaA et al.2019. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects.BMC Evol. Biol.19:111
      [Google Scholar]
    105. 105. 
      PetrovDA,Fiston-LavierA-S,LipatovM,LenkovK,GonzalezJ2011. Population genomics of transposable elements inDrosophila melanogaster.Mol. Biol. Evol28:51633–44
      [Google Scholar]
    106. 106. 
      PoirierEZ,GoicB,Tomé-PodertiL,FrangeulL,BoussierJ et al.2018. Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects.Cell Host Microbe23:3353–65.e8
      [Google Scholar]
    107. 107. 
      QuesnevilleH,NouaudD,AnxolabehereD2005. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element.Mol. Biol. Evol.22:3741–46
      [Google Scholar]
    108. 108. 
      RahmanR,ChirnG,KanodiaA,SytnikovaYA,BrembsB et al.2015. Unique transposon landscapes are pervasive acrossDrosophila melanogaster genomes.Nucleic Acids Res43:2210655–72
      [Google Scholar]
    109. 109. 
      RayDA,GrimshawJR,HalseyMK,KorstianJM,OsmanskiAB et al.2019. Simultaneous TE analysis of 19 heliconiine butterflies yields novel insights into rapid TE-based genome diversification and multiple SINE births and deaths.Genome Biol Evol11:82162–77
      [Google Scholar]
    110. 110. 
      RechGE,Bogaerts-MárquezM,BarrónMG,MerencianoM,Villanueva-CañasJL et al.2019. Stress response, behavior, and development are shaped by transposable element-induced mutations inDrosophila.PLOS Genet15:2e1007900
      [Google Scholar]
    111. 111. 
      ReissD,MialdeaG,MieleV,de VienneDM,PeccoudJ et al.2019. Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot.PLOS Genet15:2e1007965
      [Google Scholar]
    112. 112. 
      RemnantEJ,GoodRT,SchmidtJM,LumbC,RobinC et al.2013. Gene duplication in the major insecticide target site,Rdl, inDrosophila melanogaster.PNAS110:3614705–10
      [Google Scholar]
    113. 113. 
      RiusN,GuillenY,DelpratA,KapustaA,FeschotteC,RuizA2016. Exploration of theDrosophila buzzatii transposable element content suggests underestimation of repeats inDrosophila genomes.BMC Genom17:344
      [Google Scholar]
    114. 114. 
      RobillardÉ,Le RouzicA,ZhangZ,CapyP,Hua-VanA2016. Experimental evolution reveals hyperparasitic interactions among transposable elements.PNAS113:5114763–68
      [Google Scholar]
    115. 115. 
      RostantWG,WedellN,HoskenDJ2012. Transposable elements and insecticide resistance.Adv. Genet.78:169–201
      [Google Scholar]
    116. 116. 
      SaddBM,BarribeauSM,BlochG,de GraafDC,DeardenP et al.2015. The genomes of two key bumblebee species with primitive eusocial organization.Genome Biol16:76
      [Google Scholar]
    117. 117. 
      Saint-LeandreB,NguyenSC,LevineMT2019. Diversification and collapse of a telomere elongation mechanism.Genome Res29:6920–31
      [Google Scholar]
    118. 118. 
      SchaackS,PrithamEJ,WolfA,LynchM2010. DNA transposon dynamics in populations ofDaphnia pulex with and without sex.Proc. Biol. Sci.277:16922381–87
      [Google Scholar]
    119. 119. 
      SchmidtJM,GoodRT,AppletonB,SherrardJ,RaymantGC et al.2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus.PLOS Genet6:6e1000998
      [Google Scholar]
    120. 120. 
      SchraderL,KimJW,EnceD,ZiminA,KleinA et al.2014. Transposable element islands facilitate adaptation to novel environments in an invasive species.Nat. Commun.5:5495
      [Google Scholar]
    121. 121. 
      SessegoloC,BurletN,HaudryA2016. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies.Biol. Lett.12:820160407
      [Google Scholar]
    122. 122. 
      SiguierP,GourbeyreE,ChandlerM2014. Bacterial insertion sequences: their genomic impact and diversity.FEMS Microbiol. Rev.38:5865–91
      [Google Scholar]
    123. 123. 
      SijenT,FleenorJ,SimmerF,ThijssenKL,ParrishS et al.2001. On the role of RNA amplification in dsRNA-triggered gene silencing.Cell107:4465–76
      [Google Scholar]
    124. 124. 
      SpradlingA,RubinG.1982. Transposition of cloned P elements intoDrosophila germ line chromosomes.Science218:4570341–47
      [Google Scholar]
    125. 125. 
      StapleyJ,SantureAW,DennisSR2015. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.Mol. Ecol.24:92241–52
      [Google Scholar]
    126. 126. 
      SuenG,TeilingC,LiL,HoltC,AbouheifE et al.2011. The genome sequence of the leaf-cutter antAtta cephalotes reveals insights into its obligate symbiotic lifestyle.PLOS Genet7:2e1002007
      [Google Scholar]
    127. 127. 
      SuhA,WittCC,MengerJ,SadanandanKR,PodsiadlowskiL et al.2016. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes.Nat. Commun.7:11396
      [Google Scholar]
    128. 128. 
      SzitenbergA,ChaS,OppermanCH,BirdDM,BlaxterML,LuntDH2016. Genetic drift, not life history or RNAi, determine long-term evolution of transposable elements.Genome Biol. Evol.8:92964–78
      [Google Scholar]
    129. 129. 
      TallaV,SuhA,KalsoomF,DincăV,VilaR et al.2017. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies.Genome Biol. Evol.9:102491–505
      [Google Scholar]
    130. 130. 
      TassettoM,KunitomiM,AndinoR2017. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response inDrosophila.Cell169:2314–25.e13
      [Google Scholar]
    131. 131. 
      TassettoM,KunitomiM,WhitfieldZJ,DolanPT,Sánchez-VargasI et al.2019. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements.eLife8:e41244
      [Google Scholar]
    132. 132. 
      UllastresA,PetitN,GonzálezJ2015. Exploring the phenotypic space and the evolutionary history of a natural mutation inDrosophila melanogaster.Mol. Biol. Evol32:71800–14
      [Google Scholar]
    133. 133. 
      van RijRP,SalehM-C,BerryB,FooC,HoukA et al.2006. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity inDrosophila melanogaster.Genes Dev20:212985–95
      [Google Scholar]
    134. 134. 
      van't HofAE,CampagneP,RigdenDJ,YungCJ,LingleyJ et al.2016. The industrial melanism mutation in British peppered moths is a transposable element.Nature534:7605102–5
      [Google Scholar]
    135. 135. 
      VennerS,MieleV,TerzianC,BiémontC,DaubinV et al.2017. Ecological networks to unravel the routes to horizontal transposon transfers.PLOS Biol15:2e2001536
      [Google Scholar]
    136. 136. 
      VogtA,GoldmanAD,MochizukiK,LandweberLF2013. Transposon domestication versus mutualism in ciliate genome rearrangements.PLOS Genet9:8e1003659
      [Google Scholar]
    137. 137. 
      WalshAM,KortschakRD,GardnerMG,BertozziT,AdelsonDL2013. Widespread horizontal transfer of retrotransposons.PNAS110:31012–16
      [Google Scholar]
    138. 138. 
      WangL,WangJ,MaY,WanP,LiuK et al.2019. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China.Sci. Rep.9:7479
      [Google Scholar]
    139. 139. 
      WangS,LorenzenMD,BeemanRW,BrownSJ2008. Analysis of repetitive DNA distribution patterns in theTribolium castaneum genome.Genome Biol9:3R61
      [Google Scholar]
    140. 140. 
      WangX,FangX,YangP,JiangX,JiangF et al.2014. The locust genome provides insight into swarm formation and long-distance flight.Nat. Commun.5:2957
      [Google Scholar]
    141. 141. 
      WangX,LiuX.2016. Close ecological relationship among species facilitated horizontal transfer of retrotransposons.BMC Evol. Biol.16:201
      [Google Scholar]
    142. 142. 
      WhiteJA,KellySE,CockburnSN,PerlmanSJ,HunterMS2011. Endosymbiont costs and benefits in a parasitoid infected with bothWolbachia andCardinium.Heredity106:4585–91
      [Google Scholar]
    143. 143. 
      WhitfieldZJ,DolanPT,KunitomiM,TassettoM,SeetinMG et al.2017. The diversity, structure, and function of heritable adaptive immunity sequences in theAedes aegypti genome.Curr. Biol.27:223511–19.e7
      [Google Scholar]
    144. 144. 
      WickerT,SabotF,Hua-VanA,BennetzenJL,CapyP et al.2007. A unified classification system for eukaryotic transposable elements.Nat. Rev. Genet.8:12973–82
      [Google Scholar]
    145. 145. 
      WoodJG,HelfandSL.2013. Chromatin structure and transposable elements in organismal aging.Front. Genet.4:274
      [Google Scholar]
    146. 146. 
      WoodJG,JonesBC,JiangN,ChangC,HosierS et al.2016. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span inDrosophila.PNAS113:4011277–82
      [Google Scholar]
    147. 147. 
      WoronikA,TunströmK,PerryMW,NeethirajR,StefanescuC et al.2019. A transposable element insertion is associated with an alternative life history strategy.Nat. Commun.10:15757
      [Google Scholar]
    148. 148. 
      WuC,LuJ.2019. Diversification of transposable elements in arthropods and its impact on genome evolution.Genes10:5338
      [Google Scholar]
    149. 149. 
      XiaoJ-H,YueZ,JiaL-Y,YangX-H,NiuL-H et al.2013. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.Genome Biol14:12R141
      [Google Scholar]
    150. 150. 
      ZanniV,EymeryA,CoiffetM,ZytnickiM,LuytenI et al.2013. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters.PNAS110:4919842–47
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-ento-070720-074650
    10.1146/annurev-ento-070720-074650
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp