Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Phylogeography of Ticks (Acari: Ixodida)

Abstract

Improved understanding of tick phylogeny has allowed testing of some biogeographical patterns. On the basis of both literature data and a meta-analysis of available sequence data, there is strong support for a Gondwanan origin of Ixodidae, and probably Ixodida. A particularly strong pattern is observed for the genusAmblyomma, which appears to have originated in Antarctica/southern South America, with subsequent dispersal to Australia. The endemic Australian lineages of Ixodidae (no other continent has such a pattern) appear to result from separate dispersal events, probably from Antarctica. Minimum ages for a number of divergences are determined as part of an updated temporal framework for tick evolution. Alternative hypotheses for tick evolution, such as a very old Pangean group, a Northern hemisphere origin, or an Australian origin, fit less well with observed phylogeographic patterns.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-ento-020117-043027
    2019-01-07
    2026-02-17

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ento/64/1/annurev-ento-020117-043027.html?itemId=/content/journals/10.1146/annurev-ento-020117-043027&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. AviseJ,ArnoldJ,BallR,BerminghamE,LambT et al.1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.Annu. Rev. Ecol. Syst.18:489–522
      [Google Scholar]
    2. 2. AviseJC1998. The history and purview of phylogeography: a personal reflection.Mol. Ecol.7:371–379
      [Google Scholar]
    3. 3. AviseJC2000.Phylogeography: The History and Formation of Species London: Harvard Univ. Press
      [Google Scholar]
    4. 4. AviseJC,BowenBW,AyalaFJ2016. In the light of evolution X: comparative phylogeography.PNAS113:7957–61
      [Google Scholar]
    5. 5. BalashovYS1989. Coevolution of ixodid ticks and terrestrial vertebrates.Parazitologiya23:427–467
      [Google Scholar]
    6. 6. BalashovYS1994. Importance of continental drift in the distribution and evolution of ixodid ticks.Entomol. Rev.73:42–50
      [Google Scholar]
    7. 7. Bandonide Olivera F,CassolaMolina E,MarroigG2009. Paleontology of the South Atlantic: a route for primates and rodents into the New World?.South American PrimatesPGarber55–68 New York: Springer Sci.
      [Google Scholar]
    8. 8. BarkerSC,BurgerTD2018. Two new genera of hard ticks,Robertsicus n. gen. andArchaeocroton n. gen., and the solution of the mystery of Hoogstraal's and Kaufman's “primitive” tick from the Carpathian Mountains.Zootaxa In press
      [Google Scholar]
    9. 9. BarkerSC,MurrellA2002. Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress.Exp. Appl. Acarol.28:55–68
      [Google Scholar]
    10. 10. BeatiL,KeiransJE,DurdenLA,OpiangMD2008.Bothriocroton oudemansi (Neumann, 1910)n. comb. (Acari: Ixodida: Ixodidae), an ectoparasite of the western long-beaked echidna in Papua New Guinea: redescription of the male and first description of the female and nymph.Syst. Parasitol.69:185–200
      [Google Scholar]
    11. 11. BeatiL,NavaS,BurkmanEJ,Barros-BattestiDM,LabrunaMB et al.2013.Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation.BMC Evol. Biol.13:267
      [Google Scholar]
    12. 12. BeckRMD,GodthelpH,WeisbeckerV,ArcherM,HandSJ2008. Australia's oldest marsupial fossils and their biogeographical implications.PLOS ONE3:e1858
      [Google Scholar]
    13. 13. BedfordG1931.Nuttalliella namaqua, a new genus and species of tick.Parasitology23:230–232
      [Google Scholar]
    14. 14. BlackWC,PiesmanJ1994. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.PNAS91:10034–38
      [Google Scholar]
    15. 15. BlackWC 4th,KlompenJS,KeiransJE1997. Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene.Mol. Phylogenet. Evol.7:129–44
      [Google Scholar]
    16. 16. BriggsJC1989. The historic biogeography of India: isolation or contact?.Syst. Zool.38:322–332
      [Google Scholar]
    17. 17. BriggsJC2003. Fishes and birds: Gondwana life rafts reconsidered.Syst. Biol.52:548–53
      [Google Scholar]
    18. 18. BurgerTD,ShaoR,LabrunaMB,BarkerSC2014. Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences.Ticks Tick-Borne Dis.5:195–207
      [Google Scholar]
    19. 19. CantrillDJ,PooleI2005. A new EoceneAraucaria from Seymour Island, Antarctica: evidence from growth form and bark morphology.Alcheringa29:341–350
      [Google Scholar]
    20. 20. Chitimia-DoblerL,Canciande Araujo BC,RuthensteinerB,PfefferT,DunlopJA2017.Amblyomma birmitum, a new species of hard tick in Burmese amber.Parasitology144:1441–48
      [Google Scholar]
    21. 21. CliffordCM,SonenshineDE,KeiransJE,KohlsGM1973. Systematics of the subfamily Ixodinae (Acarina: Ixodidae) 1. The subgenera ofIxodes.Ann. Entomol. Soc. Am.66:489–500
      [Google Scholar]
    22. 22. CooperA,Lalueza-FoxC,AndersonS,RambautA,AustinJ,WardR2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution.Nature409:704–7
      [Google Scholar]
    23. 23. DabertM,WitalinskiW,KazmierskiA,OlszanowskiZ,DabertJ2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts.Mol. Phylogenet. Evol.56:222–41
      [Google Scholar]
    24. 24. DobsonSJ,BarkerSC1999. Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genusAponomma is paraphyletic.Mol. Phylogenet. Evol.11:288–95
      [Google Scholar]
    25. 25. DunlopJA,ApanaskevichDA,LehmannJ,HoffmannR,FusseisF et al.2016. Microtomography of the Baltic amber tickIxodes succineus reveals affinities with the modern Asian disease vectorIxodes ovatus.BMC Evol. Biol.16:203
      [Google Scholar]
    26. 26. DunlopJA,de OliveraBernardi LF2014. An opilioacarid mite in Cretaceous Burmese amber.Naturwissenschaften10:759–763
      [Google Scholar]
    27. 27. DunlopJA,SeldenPA2009. Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy.Exp. Appl. Acarol.48:183–97
      [Google Scholar]
    28. 28. DunlopJA,SempfC,WunderlichJ2010. A new opilioacarid mite in Baltic amber.Contrib. Nat. Hist. (Bern)1:59–70
      [Google Scholar]
    29. 29. DurdenL,BeatiL2013. Modern tick systematics.Biology of TicksDESonenshine,RRoe17–58 New York: Oxford Univ. Press
      [Google Scholar]
    30. 30. Estrada-PeñaA,MangoldAJ,NavaS,VenzalJM,LabrunaM,GuglielmoneAA2010. A review of the systematics of the tick family Argasidae (Ixodida).Acarologia50:317–333
      [Google Scholar]
    31. 31. FilippovaNA1977.Ixodid Ticks of the Subfamily Amblyomminae Leningrad: Izd. Nauka
      [Google Scholar]
    32. 32. FilippovaNA2010. Uncommon zoogeographical connections in the subgenusExopalpiger Schultze of the genusIxodes Latreille (Acari, Ixodidae).Entomol. Rev.90:793–797
      [Google Scholar]
    33. 33. FrancisJE,AshworthA,CantrillDJ,CrameJA,HoweJ et al.2008. 100 million years of antarctic climate evolution: evidence from fossil plants.Antarctica, a Keystone in a Changing WorldAKCooper,PJBarrett,HStagg,BStorey,EStump,WWise 10th ISAES Ed. Team19–27 Washington, DC: Natl. Acad. Press
      [Google Scholar]
    34. 34. FujitaMK,EngstromTN,StarkeyDE,ShafferHB2004. Turtle phylogeny: insights from a novel nuclear intron.Mol. Phylogenet. Evol.31:1031–40
      [Google Scholar]
    35. 35. FukunagaM,YabukiM,HamaseA,OliverJH,NakaoM2000. Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences.J. Parasitol.86:38–43
      [Google Scholar]
    36. 36. GibbGC,KardailskyO,KimballRT,BraunEL,PennyD2007. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations.Mol. Biol. Evol.24:269–80
      [Google Scholar]
    37. 37. GoinFJ,TejedorMF,ChornogubskyL,LópezGM,GelfoJN et al.2012. Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia.Naturwissenschaften99:449–63
      [Google Scholar]
    38. 38. Graham-ReynoldsR,NiemillerML,RevellLJ2014. Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.Mol. Phylogenet. Evol.71:201–13
      [Google Scholar]
    39. 39. GrimaldiDA,EngelMS,NascimbenePC2002. Fossiliferous cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance.Am. Mus. Novitates3361:1–71
      [Google Scholar]
    40. 40. GuglielmoneAA,NavaS2014. Names for Ixodidae (Acari: Ixodoidea): valid, synonyms, incertae sedis, nomina dubia, nomina nuda, lapsus, incorrect and suppressed names—with notes on confusions and misidentifications.Zootaxa3767:1–256
      [Google Scholar]
    41. 41. HeineC,MüllerR2005. Late Jurassic rifting along the Australian Northwest shelf: margin geometry and spreading ridge configuration.Austral. J. Earth Sci.52:27–39
      [Google Scholar]
    42. 42. HillD2009. Salticidae of the Antarctic land bridge.Peckhamia76:1–14
      [Google Scholar]
    43. 43. HoogstraalH1978. Biology of ticks.Tick-Borne Diseases and Their VectorsJWilde3–14 Edinburgh: Cent. Trop. Vet. Med.
      [Google Scholar]
    44. 44. HoogstraalH,AeschlimannA1982. Tick-host specificity.Mitt. Schweiz. Entomol. Ges.55:5–32
      [Google Scholar]
    45. 45. HoogstraalH,KimKC1985. Ticks and mammal coevolution, with emphasis onHaemaphysalis.Coevolution of Parasitic Arthropods and Mammals.KCKim505–69 New York: Wiley
      [Google Scholar]
    46. 46. HouleA1999. The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model.Am. J. Phys. Anthropol.109:541–559
      [Google Scholar]
    47. 47. JeyaprakashA,HoyMA2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny.Exp. Appl. Acarol.47:1–18
      [Google Scholar]
    48. 48. KaufmanT1972.A revision of the genus AponommaNeumann, 1899 (Acarina: Ixodidae) PhD Thesis, Univ. Md.
      [Google Scholar]
    49. 49. KeiransJE,LaneRS,CaubleR2002. A series of larvalAmblyomma species (Acari: Ixodidae) from amber deposits in the Dominican Republic.Int. J. Acarol.28:61–66
      [Google Scholar]
    50. 50. KlompenH1992. Comparative morphology of argasid larvae (Acari: Ixodida: Argasidae), with notes on phylogenetic relationships.Ann. Entomol. Soc. Am.85:541–60
      [Google Scholar]
    51. 51. KlompenH2010. Holothyrids and ticks: new insights from larval morphology and DNA sequencing, with the description of a new species ofDiplothyrus (Parasitiformes: Neothyridae).Acarologia50:269–85
      [Google Scholar]
    52. 52. KlompenH,DobsonSJ,BarkerSC2002. A new subfamily, Bothriocrotoninae n. subfam., for the genusBothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy ofAponomma Neumann, 1899 withAmblyomma Koch, 1844.Syst. Parasitol.53:101–7
      [Google Scholar]
    53. 53. KlompenH,GrimaldiD2001. First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae).Ann. Entomol. Soc. Am.94:10–15
      [Google Scholar]
    54. 54. KlompenH,LekveishviliM,BlackWC2007. Phylogeny of parasitiform mites (Acari) based on rRNA.Mol. Phylogenet. Evol.43:936–51
      [Google Scholar]
    55. 55. KlompenH,OliverJH1993. Systematic relationships in the soft ticks.Syst. Entomol.18:313–331
      [Google Scholar]
    56. 56. KlompenJ,BlackW,KeiransJE,NorrisDE2000. Systematics and biogeography of hard ticks, a total evidence approach.Cladistics16:79–102
      [Google Scholar]
    57. 57. KlompenJS,BlackWC,KeiransJE,OliverJH1996. Evolution of ticks.Annu. Rev. Entomol.41:141–61
      [Google Scholar]
    58. 58. KnappM,MudaliarR,HavellD,WagstaffSJ,LockhartPJ2007. The drowning of New Zealand and the problem ofAgathis.Syst. Biol.56:862–70
      [Google Scholar]
    59. 59. KontschanJ,MahunkaS2004.Caribothyrus barbatus n. gen., n. sp., a new holothyrid mite (Acari: Neothyridae) from Dominican Republic.Int. J. Acarol.30:343–346
      [Google Scholar]
    60. 60. KrauseDW,SampsonSD,CarranoMT,O'ConnorPM2007. Overview of the history of discovery, taxonomy, phylogeny, and biogeography ofMajungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar.J. Vert. Paleontol. Mem.27:Suppl. 21–20
      [Google Scholar]
    61. 61. KrenzJG,NaylorGJP,ShafferHB,JanzenFJ2005. Molecular phylogenetics and evolution of turtles.Mol. Phylogenet. Evol.37:178–91
      [Google Scholar]
    62. 62. LadoP,NavaS,LabrunaMB,SzaboMPJ,DurdenLA et al.2016.Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): phylogeography and systematic considerations.Ticks Tick-Borne Dis.7:817–27
      [Google Scholar]
    63. 63. LahilleF1905. Contribution a l'étude des ixodidés de la République argentine.An. Minist. Agr. Zootec. Bacteriol. Vet. Zool.2:1–166
      [Google Scholar]
    64. 64. LaneRS,PoinarGO1986. First fossil tick (Acari: Ixodidae) in New World amber.Int. J. Acarol.12:75–78
      [Google Scholar]
    65. 65. LatifAA,PutterillJF,de KlerkDG,PienaarR,MansBJ2012.Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): first description of the male, immature stages and re-description of the female.PLOS ONE7:e41651
      [Google Scholar]
    66. 66. LehtinenP1991. Phylogeny and zoogeography of the Holothyrida.Modern AcarologyFDusbábek,VBukva101–13 The Hague: SPB Academic
      [Google Scholar]
    67. 67. MangoldAJ,BarguesMD,Mas-ComaS1998. 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae).Parasitol. Res.84:31–7
      [Google Scholar]
    68. 68. MansBJ,de CastroMH,PienaarR,de KlerkD,GavenP et al.2016. Ancestral reconstruction of tick lineages.Ticks Tick-Borne Dis.7:509–35
      [Google Scholar]
    69. 69. MansBJ,de KlerkD,PienaarR,de CastroMH,LatifAA2012. The mitochondrial genomes ofNuttalliella namaqua (Ixodoidea: Nuttalliellidae) andArgas africolumbae (Ixodoidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters.PLOS ONE7:e49461
      [Google Scholar]
    70. 70. MansBJ,de KlerkD,PienaarR,de CastroMH,LatifAA2015. Next-generation sequencing as means to retrieve tick systematic markers, with the focus onNuttalliella namaqua (Ixodoidea: Nuttalliellidae).Ticks Tick-Borne Dis.6:450–62
      [Google Scholar]
    71. 71. MansBJ,de KlerkD,PienaarR,LatifAA2011.Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks.PLOS ONE6:e23675
      [Google Scholar]
    72. 72. MansBJ,de KlerkDG,PienaarR,LatifAA2014. The host preferences ofNuttalliella namaqua (Ixodoidea: Nuttalliellidae): a generalist approach to surviving multiple host-switches.Exp. Appl. Acarol.62:233–40
      [Google Scholar]
    73. 73. MorelP1969.Contribution à la connaissance de la distribution des tiques (Acariens, Ixodidae et Amblyommidae) en Afrique éthiopienne continentale PhD Thesis, Univ. Paris, Paris
      [Google Scholar]
    74. 74. Mourer-ChauviréC,TabuceR,MahboubiM,AdaciM,BensalahM2011. A phrorhacoid bird from the Eocene of Africa.Naturwissenschaften98:815–823
      [Google Scholar]
    75. 75. MurrellA,BarkerSC2003. Synonymy ofBoophilus Curtice, 1891 withRhipicephalus Koch, 1844 (Acari: Ixodidae).Syst. Parasitol.56:169–72
      [Google Scholar]
    76. 76. MurrellA,CampbellNJ,BarkerSC2001. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography.Mol. Phylogenet. Evol.21:244–58
      [Google Scholar]
    77. 77. MurrellA,DobsonS,WalterD,CampbellN,ShaoR,BarkerSC2005. Relationships among the three major lineages of the Acari (Arthropoda: Arachnida) inferred from small subunit rRNA: paraphyly of the Parasitiformes with respect to the Opilioacariformes and relative rates of nucleotide substitution.Invert. Syst.19:383–389
      [Google Scholar]
    78. 78. NavaS,GuglielmoneAA2013. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae).Bull. Entomol. Res.103:216–24
      [Google Scholar]
    79. 79. NavaS,GuglielmoneAA,MangoldAJ2009. An overview of systematics and evolution of ticks.Front. Biosci.14:2857–77
      [Google Scholar]
    80. 80. NavaS,MartínezJG,ArreguezGA,GuglielmoneAA2013. Ticks (Acari: Argasidae, Ixodidae) from Middle and pre-hispanic Late Holocene associated with human activities in northwestern Argentina.Ticks Tick-Borne Dis.4:167–69
      [Google Scholar]
    81. 81. OliverJH1989. Biology and systematics of ticks (Acari: Ixodida).Annu. Rev. Ecol. Syst.20:397–430
      [Google Scholar]
    82. 82. PeñalverE,ArilloA,DelclòsX,PerisD,GrimaldiDA et al.2017. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages.Nat. Commun.8:1924
      [Google Scholar]
    83. 83. PoinarGJr.,BrownAE2003. A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae).Syst. Parasitol.54:199–205
      [Google Scholar]
    84. 84. PoinarGO1995. First fossil ticks,Ornithodoros antiquus n. sp. (Acari: Argasidae) in Dominican amber with evidence of their mammalian host.Experientia51:384–387
      [Google Scholar]
    85. 85. PoinarGO,BuckleyR2008.Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from lower Cretaceous Burmese amber.Proc. Entomol. Soc. Wash.110:445–450
      [Google Scholar]
    86. 86. PomerantsevBI1948. Basic directions of evolution in the Ixodoidea.Parasit. Art. Zool. Inst. Acad. Sci. U.S.S.R.10:5–18
      [Google Scholar]
    87. 87. PooleI,CantrillDJ2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record.Geol. Soc. London258:63–81
      [Google Scholar]
    88. 88. Pospelova-ShtromMV1969. On the system of classification of ticks of the family Argasidae Can., 1890.Acarologia11:1–22
      [Google Scholar]
    89. 89. RichP1993.Wildlife of Gondwana Sydney: William Heinemann
      [Google Scholar]
    90. 90. RonquistF,HuelsenbeckJP2003. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics19:1572–74
      [Google Scholar]
    91. 91. RougierGW,WibleJR,NovacekMJ1998. Implications ofDeltatheridium specimens for early marsupial history.Nature396:459–63
      [Google Scholar]
    92. 92. SanchezJP,NavaS,LareschiM,OrtizPE,GuglielmoneAA2010. Finding of an ixodid tick inside a late Holocene owl pellet from northwestern Argentina.J. Parasitol.96:820–22
      [Google Scholar]
    93. 93. SanmartínI,RonquistF2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.Syst. Biol.53:216–43
      [Google Scholar]
    94. 94. SassuchinD1935. Beiträge zum Studium der phylogenetischen Entwicklung der Zecken (Ixodoidea).Zool. Anz.111:262–64
      [Google Scholar]
    95. 95. SchettinoA,ScoteseC2001. New internet software aids paleomagnetic analysis and plate tectonic reconstructions.Eos Trans. AGU82:45
      [Google Scholar]
    96. 96. SchettinoA,ScoteseC2005. Apparent polar wander paths for the major continents (200 ma to the present day): a paleomagnetic reference frame for global plate tectonic reconstructions.Geophys. J. Int.163:727–759
      [Google Scholar]
    97. 97. SchilleF1916. Entomologie aus der Mammut- und Rhinoceros-Zeit Galiziens.Entomol. Z.30:42–43
      [Google Scholar]
    98. 98. SchulzeP1936. Sind Säugetiere die ursprünglichen Zeckenwirte?.Zool. Anz.114:19–24
      [Google Scholar]
    99. 99. SchulzeP1936. Trilobita, Xiphosura, Acarina. Eine morphologische Untersuchung über die Plangelichheit zwischen Trilobiten und Spinnentieren.Z. Morph. Ökol. Tiere32:181–226
      [Google Scholar]
    100. 100. ScoteseC2001.Atlas of earth history, Vol. 1: Paleogeography PALEOMAP Proj.http://scotese.com
      [Google Scholar]
    101. 101. ScudderSH1885. Fossilien Myriapoden, Arachnoiden und Insekten.Handbuch der Paleontologie I. Abteilung, Paleozoologie2KZittel721–831 Munich, Ger.: R. Oldenbourg
      [Google Scholar]
    102. 102. SeaboltM2016.Biogeographical patterns in the hard-tick genus Amblyomma Koch 1844 (Acari: Ixodidae) Master's Thesis, Ga. South. Univ.
      [Google Scholar]
    103. 103. SerenoPC,WilsonJA,ConradJL2004. New dinosaurs link southern landmasses in the Mid-Cretaceous.Proc. R. Soc. London B Biol.271:1325–30
      [Google Scholar]
    104. 104. SetonM,MüllerRD,ZahirovichS,GainaC,TorsvikT et al.2012. Global continental and ocean basin reconstructions since 200 ma.Earth Sci. Rev.113:212–70
      [Google Scholar]
    105. 105. ShaoR,BarkerSC,MitaniH,AokiY,FukunagaM2005. Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with AustralasianIxodes ticks.Mol. Biol. Evol.22:620–29
      [Google Scholar]
    106. 106. SmithND,MakovickyPJ,AgnolinFL,EzcurraMD,PaisDF,SalisburySW2008. A Megaraptor-like theropod (Dinosauria: Tetanurae) in Australia: support for faunal exchange across eastern and western Gondwana in the Mid-Cretaceous.Proc. Biol. Sci.275:2085–93
      [Google Scholar]
    107. 107. SonenshineD,RoeR, eds2013.Biology of Ticks New York: Oxford Univ. Press. 2nd ed.
      [Google Scholar]
    108. 108. SonenshineDE,MatherTN1994.Ecological Dynamics of Tick-Borne Zoonoses New York: Oxford Univ. Press
      [Google Scholar]
    109. 109. SwoffordDL2002.PAUP*: Phylogenetic analysis using parsimony (and other methods*) 4.0 beta Sinauer Associates, Sunderland, MA
      [Google Scholar]
    110. 110. WallisGP,TrewickSA2009. New Zealand phylogeography: evolution on a small continent.Mol. Ecol.18:3548–80
      [Google Scholar]
    111. 111. WalterD,ProctorH1999.Mites: Ecology, Evolution and Behaviour Sydney: Univ. N.S.W. Press
      [Google Scholar]
    112. 112. WatersJM,CrawD2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity.Syst. Biol.55:351–6
      [Google Scholar]
    113. 113. WeidnerH1964. Eine Zecke,Ixodes succineus sp. n., in baltischen Bernstein.Veroff. Uberseemus. Bremen3:143–151
      [Google Scholar]
    114. 114. WoodburneMO,CaseJA1996. Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia.J. Mamm. Evol.3:121–161
      [Google Scholar]
    115. 115. WoodburneMO,ZinsmeisterWJ1982. Fossil land mammals from Antarctica.Science218:284–86
      [Google Scholar]
    116. 116. XuG,FangQQ,KeiransJE,DurdenLA2003. Molecular phylogenetic analyses indicate that theIxodes ricinus complex is a paraphyletic group.J. Parasitol.89:452–57
      [Google Scholar]
    117. 117. ZeissetI,BeebeeTJC2008. Amphibian phylogeography: a model for understanding historical aspects of species distributions.Heredity101:109–19
      [Google Scholar]
    118. 118. ZhangJX,MaddisonWP2013. Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae).Mol. Phylogenet. Evol.68:81–92
      [Google Scholar]
    119. 119. ZieglerA,EshelG,McAllisterRees P,RothfusT,RowleyDB,SunderlinD2003. Tracing the tropics across land and sea: Permian to present.Lethaia36:227–54
      [Google Scholar]
    120. 120. ZumptF1951. Phylogenie der Zecken und “natürliches System.”.Z. Parasitenkd.15:87–101
      [Google Scholar]
    /content/journals/10.1146/annurev-ento-020117-043027
    Loading
    Phylogeography of Ticks (Acari: Ixodida)
    Annual Review of Entomology64, 379 (2019);https://doi.org/10.1146/annurev-ento-020117-043027
    /content/journals/10.1146/annurev-ento-020117-043027
    /content/journals/10.1146/annurev-ento-020117-043027
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/ento
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-ento-020117-043027
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. AviseJ,ArnoldJ,BallR,BerminghamE,LambT et al.1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.Annu. Rev. Ecol. Syst.18:489–522
      [Google Scholar]
    2. 2. AviseJC1998. The history and purview of phylogeography: a personal reflection.Mol. Ecol.7:371–379
      [Google Scholar]
    3. 3. AviseJC2000.Phylogeography: The History and Formation of Species London: Harvard Univ. Press
      [Google Scholar]
    4. 4. AviseJC,BowenBW,AyalaFJ2016. In the light of evolution X: comparative phylogeography.PNAS113:7957–61
      [Google Scholar]
    5. 5. BalashovYS1989. Coevolution of ixodid ticks and terrestrial vertebrates.Parazitologiya23:427–467
      [Google Scholar]
    6. 6. BalashovYS1994. Importance of continental drift in the distribution and evolution of ixodid ticks.Entomol. Rev.73:42–50
      [Google Scholar]
    7. 7. Bandonide Olivera F,CassolaMolina E,MarroigG2009. Paleontology of the South Atlantic: a route for primates and rodents into the New World?.South American PrimatesPGarber55–68 New York: Springer Sci.
      [Google Scholar]
    8. 8. BarkerSC,BurgerTD2018. Two new genera of hard ticks,Robertsicus n. gen. andArchaeocroton n. gen., and the solution of the mystery of Hoogstraal's and Kaufman's “primitive” tick from the Carpathian Mountains.Zootaxa In press
      [Google Scholar]
    9. 9. BarkerSC,MurrellA2002. Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress.Exp. Appl. Acarol.28:55–68
      [Google Scholar]
    10. 10. BeatiL,KeiransJE,DurdenLA,OpiangMD2008.Bothriocroton oudemansi (Neumann, 1910)n. comb. (Acari: Ixodida: Ixodidae), an ectoparasite of the western long-beaked echidna in Papua New Guinea: redescription of the male and first description of the female and nymph.Syst. Parasitol.69:185–200
      [Google Scholar]
    11. 11. BeatiL,NavaS,BurkmanEJ,Barros-BattestiDM,LabrunaMB et al.2013.Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation.BMC Evol. Biol.13:267
      [Google Scholar]
    12. 12. BeckRMD,GodthelpH,WeisbeckerV,ArcherM,HandSJ2008. Australia's oldest marsupial fossils and their biogeographical implications.PLOS ONE3:e1858
      [Google Scholar]
    13. 13. BedfordG1931.Nuttalliella namaqua, a new genus and species of tick.Parasitology23:230–232
      [Google Scholar]
    14. 14. BlackWC,PiesmanJ1994. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences.PNAS91:10034–38
      [Google Scholar]
    15. 15. BlackWC 4th,KlompenJS,KeiransJE1997. Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene.Mol. Phylogenet. Evol.7:129–44
      [Google Scholar]
    16. 16. BriggsJC1989. The historic biogeography of India: isolation or contact?.Syst. Zool.38:322–332
      [Google Scholar]
    17. 17. BriggsJC2003. Fishes and birds: Gondwana life rafts reconsidered.Syst. Biol.52:548–53
      [Google Scholar]
    18. 18. BurgerTD,ShaoR,LabrunaMB,BarkerSC2014. Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences.Ticks Tick-Borne Dis.5:195–207
      [Google Scholar]
    19. 19. CantrillDJ,PooleI2005. A new EoceneAraucaria from Seymour Island, Antarctica: evidence from growth form and bark morphology.Alcheringa29:341–350
      [Google Scholar]
    20. 20. Chitimia-DoblerL,Canciande Araujo BC,RuthensteinerB,PfefferT,DunlopJA2017.Amblyomma birmitum, a new species of hard tick in Burmese amber.Parasitology144:1441–48
      [Google Scholar]
    21. 21. CliffordCM,SonenshineDE,KeiransJE,KohlsGM1973. Systematics of the subfamily Ixodinae (Acarina: Ixodidae) 1. The subgenera ofIxodes.Ann. Entomol. Soc. Am.66:489–500
      [Google Scholar]
    22. 22. CooperA,Lalueza-FoxC,AndersonS,RambautA,AustinJ,WardR2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution.Nature409:704–7
      [Google Scholar]
    23. 23. DabertM,WitalinskiW,KazmierskiA,OlszanowskiZ,DabertJ2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts.Mol. Phylogenet. Evol.56:222–41
      [Google Scholar]
    24. 24. DobsonSJ,BarkerSC1999. Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genusAponomma is paraphyletic.Mol. Phylogenet. Evol.11:288–95
      [Google Scholar]
    25. 25. DunlopJA,ApanaskevichDA,LehmannJ,HoffmannR,FusseisF et al.2016. Microtomography of the Baltic amber tickIxodes succineus reveals affinities with the modern Asian disease vectorIxodes ovatus.BMC Evol. Biol.16:203
      [Google Scholar]
    26. 26. DunlopJA,de OliveraBernardi LF2014. An opilioacarid mite in Cretaceous Burmese amber.Naturwissenschaften10:759–763
      [Google Scholar]
    27. 27. DunlopJA,SeldenPA2009. Calibrating the chelicerate clock: a paleontological reply to Jeyaprakash and Hoy.Exp. Appl. Acarol.48:183–97
      [Google Scholar]
    28. 28. DunlopJA,SempfC,WunderlichJ2010. A new opilioacarid mite in Baltic amber.Contrib. Nat. Hist. (Bern)1:59–70
      [Google Scholar]
    29. 29. DurdenL,BeatiL2013. Modern tick systematics.Biology of TicksDESonenshine,RRoe17–58 New York: Oxford Univ. Press
      [Google Scholar]
    30. 30. Estrada-PeñaA,MangoldAJ,NavaS,VenzalJM,LabrunaM,GuglielmoneAA2010. A review of the systematics of the tick family Argasidae (Ixodida).Acarologia50:317–333
      [Google Scholar]
    31. 31. FilippovaNA1977.Ixodid Ticks of the Subfamily Amblyomminae Leningrad: Izd. Nauka
      [Google Scholar]
    32. 32. FilippovaNA2010. Uncommon zoogeographical connections in the subgenusExopalpiger Schultze of the genusIxodes Latreille (Acari, Ixodidae).Entomol. Rev.90:793–797
      [Google Scholar]
    33. 33. FrancisJE,AshworthA,CantrillDJ,CrameJA,HoweJ et al.2008. 100 million years of antarctic climate evolution: evidence from fossil plants.Antarctica, a Keystone in a Changing WorldAKCooper,PJBarrett,HStagg,BStorey,EStump,WWise 10th ISAES Ed. Team19–27 Washington, DC: Natl. Acad. Press
      [Google Scholar]
    34. 34. FujitaMK,EngstromTN,StarkeyDE,ShafferHB2004. Turtle phylogeny: insights from a novel nuclear intron.Mol. Phylogenet. Evol.31:1031–40
      [Google Scholar]
    35. 35. FukunagaM,YabukiM,HamaseA,OliverJH,NakaoM2000. Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences.J. Parasitol.86:38–43
      [Google Scholar]
    36. 36. GibbGC,KardailskyO,KimballRT,BraunEL,PennyD2007. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations.Mol. Biol. Evol.24:269–80
      [Google Scholar]
    37. 37. GoinFJ,TejedorMF,ChornogubskyL,LópezGM,GelfoJN et al.2012. Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia.Naturwissenschaften99:449–63
      [Google Scholar]
    38. 38. Graham-ReynoldsR,NiemillerML,RevellLJ2014. Toward a tree-of-life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.Mol. Phylogenet. Evol.71:201–13
      [Google Scholar]
    39. 39. GrimaldiDA,EngelMS,NascimbenePC2002. Fossiliferous cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance.Am. Mus. Novitates3361:1–71
      [Google Scholar]
    40. 40. GuglielmoneAA,NavaS2014. Names for Ixodidae (Acari: Ixodoidea): valid, synonyms, incertae sedis, nomina dubia, nomina nuda, lapsus, incorrect and suppressed names—with notes on confusions and misidentifications.Zootaxa3767:1–256
      [Google Scholar]
    41. 41. HeineC,MüllerR2005. Late Jurassic rifting along the Australian Northwest shelf: margin geometry and spreading ridge configuration.Austral. J. Earth Sci.52:27–39
      [Google Scholar]
    42. 42. HillD2009. Salticidae of the Antarctic land bridge.Peckhamia76:1–14
      [Google Scholar]
    43. 43. HoogstraalH1978. Biology of ticks.Tick-Borne Diseases and Their VectorsJWilde3–14 Edinburgh: Cent. Trop. Vet. Med.
      [Google Scholar]
    44. 44. HoogstraalH,AeschlimannA1982. Tick-host specificity.Mitt. Schweiz. Entomol. Ges.55:5–32
      [Google Scholar]
    45. 45. HoogstraalH,KimKC1985. Ticks and mammal coevolution, with emphasis onHaemaphysalis.Coevolution of Parasitic Arthropods and Mammals.KCKim505–69 New York: Wiley
      [Google Scholar]
    46. 46. HouleA1999. The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model.Am. J. Phys. Anthropol.109:541–559
      [Google Scholar]
    47. 47. JeyaprakashA,HoyMA2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny.Exp. Appl. Acarol.47:1–18
      [Google Scholar]
    48. 48. KaufmanT1972.A revision of the genus AponommaNeumann, 1899 (Acarina: Ixodidae) PhD Thesis, Univ. Md.
      [Google Scholar]
    49. 49. KeiransJE,LaneRS,CaubleR2002. A series of larvalAmblyomma species (Acari: Ixodidae) from amber deposits in the Dominican Republic.Int. J. Acarol.28:61–66
      [Google Scholar]
    50. 50. KlompenH1992. Comparative morphology of argasid larvae (Acari: Ixodida: Argasidae), with notes on phylogenetic relationships.Ann. Entomol. Soc. Am.85:541–60
      [Google Scholar]
    51. 51. KlompenH2010. Holothyrids and ticks: new insights from larval morphology and DNA sequencing, with the description of a new species ofDiplothyrus (Parasitiformes: Neothyridae).Acarologia50:269–85
      [Google Scholar]
    52. 52. KlompenH,DobsonSJ,BarkerSC2002. A new subfamily, Bothriocrotoninae n. subfam., for the genusBothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy ofAponomma Neumann, 1899 withAmblyomma Koch, 1844.Syst. Parasitol.53:101–7
      [Google Scholar]
    53. 53. KlompenH,GrimaldiD2001. First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae).Ann. Entomol. Soc. Am.94:10–15
      [Google Scholar]
    54. 54. KlompenH,LekveishviliM,BlackWC2007. Phylogeny of parasitiform mites (Acari) based on rRNA.Mol. Phylogenet. Evol.43:936–51
      [Google Scholar]
    55. 55. KlompenH,OliverJH1993. Systematic relationships in the soft ticks.Syst. Entomol.18:313–331
      [Google Scholar]
    56. 56. KlompenJ,BlackW,KeiransJE,NorrisDE2000. Systematics and biogeography of hard ticks, a total evidence approach.Cladistics16:79–102
      [Google Scholar]
    57. 57. KlompenJS,BlackWC,KeiransJE,OliverJH1996. Evolution of ticks.Annu. Rev. Entomol.41:141–61
      [Google Scholar]
    58. 58. KnappM,MudaliarR,HavellD,WagstaffSJ,LockhartPJ2007. The drowning of New Zealand and the problem ofAgathis.Syst. Biol.56:862–70
      [Google Scholar]
    59. 59. KontschanJ,MahunkaS2004.Caribothyrus barbatus n. gen., n. sp., a new holothyrid mite (Acari: Neothyridae) from Dominican Republic.Int. J. Acarol.30:343–346
      [Google Scholar]
    60. 60. KrauseDW,SampsonSD,CarranoMT,O'ConnorPM2007. Overview of the history of discovery, taxonomy, phylogeny, and biogeography ofMajungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar.J. Vert. Paleontol. Mem.27:Suppl. 21–20
      [Google Scholar]
    61. 61. KrenzJG,NaylorGJP,ShafferHB,JanzenFJ2005. Molecular phylogenetics and evolution of turtles.Mol. Phylogenet. Evol.37:178–91
      [Google Scholar]
    62. 62. LadoP,NavaS,LabrunaMB,SzaboMPJ,DurdenLA et al.2016.Amblyomma parvum Aragão, 1908 (Acari: Ixodidae): phylogeography and systematic considerations.Ticks Tick-Borne Dis.7:817–27
      [Google Scholar]
    63. 63. LahilleF1905. Contribution a l'étude des ixodidés de la République argentine.An. Minist. Agr. Zootec. Bacteriol. Vet. Zool.2:1–166
      [Google Scholar]
    64. 64. LaneRS,PoinarGO1986. First fossil tick (Acari: Ixodidae) in New World amber.Int. J. Acarol.12:75–78
      [Google Scholar]
    65. 65. LatifAA,PutterillJF,de KlerkDG,PienaarR,MansBJ2012.Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): first description of the male, immature stages and re-description of the female.PLOS ONE7:e41651
      [Google Scholar]
    66. 66. LehtinenP1991. Phylogeny and zoogeography of the Holothyrida.Modern AcarologyFDusbábek,VBukva101–13 The Hague: SPB Academic
      [Google Scholar]
    67. 67. MangoldAJ,BarguesMD,Mas-ComaS1998. 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae).Parasitol. Res.84:31–7
      [Google Scholar]
    68. 68. MansBJ,de CastroMH,PienaarR,de KlerkD,GavenP et al.2016. Ancestral reconstruction of tick lineages.Ticks Tick-Borne Dis.7:509–35
      [Google Scholar]
    69. 69. MansBJ,de KlerkD,PienaarR,de CastroMH,LatifAA2012. The mitochondrial genomes ofNuttalliella namaqua (Ixodoidea: Nuttalliellidae) andArgas africolumbae (Ixodoidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters.PLOS ONE7:e49461
      [Google Scholar]
    70. 70. MansBJ,de KlerkD,PienaarR,de CastroMH,LatifAA2015. Next-generation sequencing as means to retrieve tick systematic markers, with the focus onNuttalliella namaqua (Ixodoidea: Nuttalliellidae).Ticks Tick-Borne Dis.6:450–62
      [Google Scholar]
    71. 71. MansBJ,de KlerkD,PienaarR,LatifAA2011.Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks.PLOS ONE6:e23675
      [Google Scholar]
    72. 72. MansBJ,de KlerkDG,PienaarR,LatifAA2014. The host preferences ofNuttalliella namaqua (Ixodoidea: Nuttalliellidae): a generalist approach to surviving multiple host-switches.Exp. Appl. Acarol.62:233–40
      [Google Scholar]
    73. 73. MorelP1969.Contribution à la connaissance de la distribution des tiques (Acariens, Ixodidae et Amblyommidae) en Afrique éthiopienne continentale PhD Thesis, Univ. Paris, Paris
      [Google Scholar]
    74. 74. Mourer-ChauviréC,TabuceR,MahboubiM,AdaciM,BensalahM2011. A phrorhacoid bird from the Eocene of Africa.Naturwissenschaften98:815–823
      [Google Scholar]
    75. 75. MurrellA,BarkerSC2003. Synonymy ofBoophilus Curtice, 1891 withRhipicephalus Koch, 1844 (Acari: Ixodidae).Syst. Parasitol.56:169–72
      [Google Scholar]
    76. 76. MurrellA,CampbellNJ,BarkerSC2001. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography.Mol. Phylogenet. Evol.21:244–58
      [Google Scholar]
    77. 77. MurrellA,DobsonS,WalterD,CampbellN,ShaoR,BarkerSC2005. Relationships among the three major lineages of the Acari (Arthropoda: Arachnida) inferred from small subunit rRNA: paraphyly of the Parasitiformes with respect to the Opilioacariformes and relative rates of nucleotide substitution.Invert. Syst.19:383–389
      [Google Scholar]
    78. 78. NavaS,GuglielmoneAA2013. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae).Bull. Entomol. Res.103:216–24
      [Google Scholar]
    79. 79. NavaS,GuglielmoneAA,MangoldAJ2009. An overview of systematics and evolution of ticks.Front. Biosci.14:2857–77
      [Google Scholar]
    80. 80. NavaS,MartínezJG,ArreguezGA,GuglielmoneAA2013. Ticks (Acari: Argasidae, Ixodidae) from Middle and pre-hispanic Late Holocene associated with human activities in northwestern Argentina.Ticks Tick-Borne Dis.4:167–69
      [Google Scholar]
    81. 81. OliverJH1989. Biology and systematics of ticks (Acari: Ixodida).Annu. Rev. Ecol. Syst.20:397–430
      [Google Scholar]
    82. 82. PeñalverE,ArilloA,DelclòsX,PerisD,GrimaldiDA et al.2017. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages.Nat. Commun.8:1924
      [Google Scholar]
    83. 83. PoinarGJr.,BrownAE2003. A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae).Syst. Parasitol.54:199–205
      [Google Scholar]
    84. 84. PoinarGO1995. First fossil ticks,Ornithodoros antiquus n. sp. (Acari: Argasidae) in Dominican amber with evidence of their mammalian host.Experientia51:384–387
      [Google Scholar]
    85. 85. PoinarGO,BuckleyR2008.Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from lower Cretaceous Burmese amber.Proc. Entomol. Soc. Wash.110:445–450
      [Google Scholar]
    86. 86. PomerantsevBI1948. Basic directions of evolution in the Ixodoidea.Parasit. Art. Zool. Inst. Acad. Sci. U.S.S.R.10:5–18
      [Google Scholar]
    87. 87. PooleI,CantrillDJ2006. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record.Geol. Soc. London258:63–81
      [Google Scholar]
    88. 88. Pospelova-ShtromMV1969. On the system of classification of ticks of the family Argasidae Can., 1890.Acarologia11:1–22
      [Google Scholar]
    89. 89. RichP1993.Wildlife of Gondwana Sydney: William Heinemann
      [Google Scholar]
    90. 90. RonquistF,HuelsenbeckJP2003. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics19:1572–74
      [Google Scholar]
    91. 91. RougierGW,WibleJR,NovacekMJ1998. Implications ofDeltatheridium specimens for early marsupial history.Nature396:459–63
      [Google Scholar]
    92. 92. SanchezJP,NavaS,LareschiM,OrtizPE,GuglielmoneAA2010. Finding of an ixodid tick inside a late Holocene owl pellet from northwestern Argentina.J. Parasitol.96:820–22
      [Google Scholar]
    93. 93. SanmartínI,RonquistF2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.Syst. Biol.53:216–43
      [Google Scholar]
    94. 94. SassuchinD1935. Beiträge zum Studium der phylogenetischen Entwicklung der Zecken (Ixodoidea).Zool. Anz.111:262–64
      [Google Scholar]
    95. 95. SchettinoA,ScoteseC2001. New internet software aids paleomagnetic analysis and plate tectonic reconstructions.Eos Trans. AGU82:45
      [Google Scholar]
    96. 96. SchettinoA,ScoteseC2005. Apparent polar wander paths for the major continents (200 ma to the present day): a paleomagnetic reference frame for global plate tectonic reconstructions.Geophys. J. Int.163:727–759
      [Google Scholar]
    97. 97. SchilleF1916. Entomologie aus der Mammut- und Rhinoceros-Zeit Galiziens.Entomol. Z.30:42–43
      [Google Scholar]
    98. 98. SchulzeP1936. Sind Säugetiere die ursprünglichen Zeckenwirte?.Zool. Anz.114:19–24
      [Google Scholar]
    99. 99. SchulzeP1936. Trilobita, Xiphosura, Acarina. Eine morphologische Untersuchung über die Plangelichheit zwischen Trilobiten und Spinnentieren.Z. Morph. Ökol. Tiere32:181–226
      [Google Scholar]
    100. 100. ScoteseC2001.Atlas of earth history, Vol. 1: Paleogeography PALEOMAP Proj.http://scotese.com
      [Google Scholar]
    101. 101. ScudderSH1885. Fossilien Myriapoden, Arachnoiden und Insekten.Handbuch der Paleontologie I. Abteilung, Paleozoologie2KZittel721–831 Munich, Ger.: R. Oldenbourg
      [Google Scholar]
    102. 102. SeaboltM2016.Biogeographical patterns in the hard-tick genus Amblyomma Koch 1844 (Acari: Ixodidae) Master's Thesis, Ga. South. Univ.
      [Google Scholar]
    103. 103. SerenoPC,WilsonJA,ConradJL2004. New dinosaurs link southern landmasses in the Mid-Cretaceous.Proc. R. Soc. London B Biol.271:1325–30
      [Google Scholar]
    104. 104. SetonM,MüllerRD,ZahirovichS,GainaC,TorsvikT et al.2012. Global continental and ocean basin reconstructions since 200 ma.Earth Sci. Rev.113:212–70
      [Google Scholar]
    105. 105. ShaoR,BarkerSC,MitaniH,AokiY,FukunagaM2005. Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with AustralasianIxodes ticks.Mol. Biol. Evol.22:620–29
      [Google Scholar]
    106. 106. SmithND,MakovickyPJ,AgnolinFL,EzcurraMD,PaisDF,SalisburySW2008. A Megaraptor-like theropod (Dinosauria: Tetanurae) in Australia: support for faunal exchange across eastern and western Gondwana in the Mid-Cretaceous.Proc. Biol. Sci.275:2085–93
      [Google Scholar]
    107. 107. SonenshineD,RoeR, eds2013.Biology of Ticks New York: Oxford Univ. Press. 2nd ed.
      [Google Scholar]
    108. 108. SonenshineDE,MatherTN1994.Ecological Dynamics of Tick-Borne Zoonoses New York: Oxford Univ. Press
      [Google Scholar]
    109. 109. SwoffordDL2002.PAUP*: Phylogenetic analysis using parsimony (and other methods*) 4.0 beta Sinauer Associates, Sunderland, MA
      [Google Scholar]
    110. 110. WallisGP,TrewickSA2009. New Zealand phylogeography: evolution on a small continent.Mol. Ecol.18:3548–80
      [Google Scholar]
    111. 111. WalterD,ProctorH1999.Mites: Ecology, Evolution and Behaviour Sydney: Univ. N.S.W. Press
      [Google Scholar]
    112. 112. WatersJM,CrawD2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity.Syst. Biol.55:351–6
      [Google Scholar]
    113. 113. WeidnerH1964. Eine Zecke,Ixodes succineus sp. n., in baltischen Bernstein.Veroff. Uberseemus. Bremen3:143–151
      [Google Scholar]
    114. 114. WoodburneMO,CaseJA1996. Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia.J. Mamm. Evol.3:121–161
      [Google Scholar]
    115. 115. WoodburneMO,ZinsmeisterWJ1982. Fossil land mammals from Antarctica.Science218:284–86
      [Google Scholar]
    116. 116. XuG,FangQQ,KeiransJE,DurdenLA2003. Molecular phylogenetic analyses indicate that theIxodes ricinus complex is a paraphyletic group.J. Parasitol.89:452–57
      [Google Scholar]
    117. 117. ZeissetI,BeebeeTJC2008. Amphibian phylogeography: a model for understanding historical aspects of species distributions.Heredity101:109–19
      [Google Scholar]
    118. 118. ZhangJX,MaddisonWP2013. Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae).Mol. Phylogenet. Evol.68:81–92
      [Google Scholar]
    119. 119. ZieglerA,EshelG,McAllisterRees P,RothfusT,RowleyDB,SunderlinD2003. Tracing the tropics across land and sea: Permian to present.Lethaia36:227–54
      [Google Scholar]
    120. 120. ZumptF1951. Phylogenie der Zecken und “natürliches System.”.Z. Parasitenkd.15:87–101
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-ento-020117-043027
    10.1146/annurev-ento-020117-043027
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp